Electronic Colloquium on Computational Complexity - Reports Series 1996 - available via:

E(:(:(: FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW:

http://www.eccc.uni-trier.de/eccc/
T R96- 009 Email: ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

On Learning Branching Programs
and Small Depth Circuits

Francesco Bergadano Nader H. Bshouty Christino Tamon
Universita di Torino University of Calgary University of Calgary

Stefano Varricchio
Universita di L’Aquila

Abstract

This paper studies the learnability of branching programs and small depth circuits with
modular and threshold gates in both the exact and PAC learning models with and without
membership queries. Some of the results extend earlier works in [GG95, ERR95, BTW95]. The
main results are as follows. For branching programs we show the following.

1. Any monotone width two branching program (defined by Borodin et al. [BDFP86]) is PAC
learnable with membership queries under the uniform distribution. This extends Jackson’s
result [J94] for learning DNF formulae.

2. Any width two branching program with a bounded number of sinks is exactly learnable
using equivalence queries only. This extends the result of PAC learning width two branch-
ing programs with two sinks [BTW95]. This cannot be extended to an unbounded number
of sinks unless k-term DNF is learnable from equivalence queries, for non-constant k.

3. Any width three and width four even permutation branching program (defined by Bar-
rington [B89]) are exactly learnable with equivalence and membership queries. These
results cannot be extended to width five unless NC' is learnable with membership queries

[B89, AK95].

4. Any mod, of polynomially many Obdds (ordered binary decision diagrams) and any con-
stant Boolean combination of mod, of Obdds are exactly learnable using equivalence and
membership queries, assuming that p is a fixed prime. This extends a result of Gavalda

and Guijarro [GG95].
For small depth circuits with modular and threshold gates we prove the following.

1. Any depth two circuit with a mod, gate at the top, for a fixed prime p, and arbitrary
modular gates at the bottom level is exactly learnable using equivalence and membership
queries.

2. Any depth two circuit with a mod, gates at the top, for a fixed prime p, and arbitrary
threshold gates at the bottom level is exactly learnable using equivalence and membership
queries. We note that by a result of Krause and Pudlak [KP94] learning a threshold of
modular gates will imply the learnability of DNF formulae.

3. Any f(g1,92,...,9%), where k is constant, f is any Boolean function and g1,9a,..., gk
are one of the above two classes, is exactly learnable using equivalence and membership
queries.

Keywords: Branching programs. Small depth modular and threshold circuits. Computational
learning. Ordered binary decision diagrams.

1 Introduction

Branching program is a well-studied computational model in complexity theory. The interest was
in proving space and time-space tradeoff lower bounds in a non-uniform model of computation.
One of the earliest famous conjectures is that majority cannot be computed by a bounded width
branching program of polynomial size [BDFP86]. Barrington [B89] disproved this with the surpris-
ing result that the computational power of width five permutation branching programs or Ss-PBPs
is equivalent to NC'. Recently, under the name of binary decision diagrams, branching programs
have found numerous applications in computer-aided circuit design and verification (see [GM93]
and the references therein).

The problem of learning branching programs has been studied in earlier works [RW93, ERR95,
GG95, BTW95]. We will review these results in the following and outline the contributions of this
paper.

The learnability of bounded width branching programs was studied initially by Ergiin, Ravi
Kumar, and Rubinfeld [ERR95]. In that paper they proved that restricted width two read-once
branching programs with two sinks is PAC learnable under any distribution. They also showed
that learning width three branching programs is as hard as learning DNF formulae. In [BTW95]
strict width two branching programs SW, (as defined by Borodin et al. [BDFP86]) is shown to
be properly PAC learnable under any distribution. This is an improvement over [ERR95] since the
latter is a more general class. It was also observed that learning monotone width two branching
programs (as defined by Borodin et al. [BDFP86]) is as hard as learning DNF formulae.

In this paper we improve the above results in two ways. First we show that any width two
branching programs with a bounded number of sinks is exactly learnable using equivalence queries
only. This improves upon the result of [BTW95] showing the learnability of width two branching
programs with two sinks. Second, we show that any monotone width two branching program is PAC
learnable with membership queries under the uniform distribution. This extends Jackson’s known
result [J94] on learning DNF formulae since DNF formulae form a proper subclass of monotone
width two branching programs.

For branching programs with width more than two, Barrington [B89] proved that width three
permutation branching programs are equivalent to depth two circuits with a mods gate at the top
and parity gates at the bottom level. There is also a characterization of width four even permutation
branching programs as depth three circuits with A, mods, and mods; gates. We exploit these
alternative characterizations to obtain exact learning algorithm using equivalence and membership
queries for these two classes of permutation branching programs. On the other hand, by the work of
Angluin and Kharitonov [AK95], we know that learning width five permutation branching programs
with membership queries is hard under cryptographic assumptions.

The learnability of branching programs with read restrictions was studied in [RW93, GG95].
They proved that p-branching programs (each variable appears at most once in the entire program)
and ordered binary decision diagrams or Obdds (each variable appears at most once along any path)
are exactly learnable using equivalence and membership queries. We extend the latter result in
several ways. Let p be a fixed prime. We prove that a constant Boolean combination of a mod, of
polynomially many Obdds is exactly learnable from equivalence and membership queries.

Further in the paper, we study the problem of learning depth two circuits that consist of
threshold and modular gates. We show that any depth two circuit with a mod, gate at the top, for a
fixed prime p, and arbitrary modular gates at the bottom level (possibly with different modularities)
is exactly learnable using equivalence and membership queries. Also we show that any depth two
circuit with a mod, gate at the top, for a fixed prime p, and arbitrary threshold gates at the bottom

level is exactly learnable using equivalence and membership queries. We note that by a result of
Krause and Pudlak [KP94], DNF formulae are contained in the class of depth two circuits with
a threshold gate at the top and parity gates at the bottom level. Hence learning a threshold of
modular gates will imply the learnability of DNF formulae.

Finally we prove that any Boolean combination of a constant number of concepts taken from
the above classes is exactly learnable using equivalence and membership queries.

The rest of the paper is organized as follows. In section 2, we provide some necessary nota-
tion and definitions for the concept classes considered in the paper, such as decision trees and
lists, branching programs, and multiplicity automata. We also define the learning models that we
consider. In section 3 we prove the result on monotone width two branching program after first re-
viewing the basic theory of Fourier transform for Boolean functions. In section 4 we turn to width
two branching programs with bounded number of sinks and prove that they are learnable from
equivalence queries only. The last two sections, sections 5 and 6, we will use a single technique,
exact learning of multiplicity automata, to prove that certain classes of permutation branching
programs and ordered binary decision diagrams as well as small depth circuits with modular and
threshold gates are exactly learnable from equivalence and membership queries.

2 Preliminaries

In this section we define some necessary notation and definition for various models of branching
programs and the learning models considered in this paper.

We use [n] to denote the set {1,2,...,n} and [a,b] to denote {a,a+ 1,...,b}. The Iversonian
I[statement] notation means 1 if the statement is true and 0 otherwise. For a € {0,1}", let q;
denote the i-th bit of a. The vector e; € {0,1}" denotes the vector with all entries equal to zeros
except for the ¢-th bit which is 1. The all zero vector is denoted 0,. The Hamming weight of a,
i.e. the number of ones in «a, is denoted by |a|. The bitwise exclusive-or operation is denoted &;
sometimes we also use the + sign. The inner product operation of a € {0,1}" is denoted a’z or
a- .

The ring of integers is denoted by Z. The finite field of ¢ elements is denoted by GF(¢). The
expectation operation is denoted E[]; unless otherwise stated, the expectation is assumed to be
over a uniform distribution (denoted U).

2.1 Decision trees and parity classes

Let A and B be two concept classes over {0,1}". An (A, B)-decision tree or (A, B)-DT is a rooted
binary tree whose internal nodes are labeled with functions from A and whose leaves are labeled
with functions from B. Each internal node has precisely two outgoing edges, one labeled with 0
and the other labeled with 1.

An (A, B)-decision tree computes a Boolean function from {0,1}"” to {0,1} in the following
natural way. Given an assignment ¢ € {0, 1}", the computation starts at the root node, evaluating
each function that labels the internal node according to its label, and taking the consistent edge
out to the next internal node. The computation stops at a leaf node and outputs the value of the
function that labels the leaf node. An (A, B)-decision list or (A, B)-DL is a degenerate (A, B)-
decision tree. In notation, we will write

[(f1791)7 (f2792)7 sy (fmvgm)]

where fi, fo,..., fm € A and ¢1,92,...,9m € B, to represent a (A, B)-DL. We implicitly assume
that the last function f,, is the constant one (always true) function.

The class const consists of the constant functions always false and always true. We will short-
hand (A, const) to A, for example (A, const)-DT is abbreviated A-DT.

We need to define the notion of rank of a decision tree.

Definition 1 (rank of a decision tree)
Let T be a decision tree. Then the rank of a node in T is defined inductively as follows. For a
non-leaf node v, let vy, and vy be the left and right child, respectively, of v.

0 if v is a leaf
rank(v) =< 14 rank(vr) if rank(vy) = rank(vg)
max{rank(vr),rank(vg)} if rank(vr) # rank(vg)

The rank of the tree T is the rank of its root node.

Another concept class that we consider is the class of parity functions @, = {a’z + bla €
{0,1}",b € {0,1},|a|] < k}, where the parity may depend on at most k variables. Note that ¢
is the set of literals and @, is the set of all parities. We also consider the class of parities of
k-monomials (monomials of size at most k) which we denote &Nj.

2.2 Branching programs

A branching program M over X, = {z,...,z,} is an acyclic directed graph whose nodes labeled
with variables from X, and whose edges are labeled with the constants {0,1}. It has a unique
source (a node with no incoming edges) and at least two sinks (a node with no outgoing edges).
The sinks are labeled with 0 (rejecting) and 1 (accepting), and both labels must be present. An
assignment a € {0,1}" to the variables induces a selection on the edges of M; it keeps alive all
edges that are consistent with the assignment a. Then the branching program is said to accept a
if there is a directed path from the source to an accepting sink.

The size of a branching program is the number of nodes in the branching program. A branching
program is called leveled if there is ordered partition II = (Ly, Lo, .. .) of the nodes of the branching
program such that all of the edges connect nodes of one level to the next one in the partition. The
width of a leveled branching program is the maximum number of nodes in any level in the ordered
partition.

Borodin et al. [BDFP86] defined several variations of the width two branching programs. A
width two branching program is called strict if it has exactly one accepting sink and one rejecting
sink. A width two branching program is called monotone if it has exactly one rejecting sink. It was
pointed out in [BDFP86] that any DNF can be converted into a width two monotone branching
program. We will need the following properties of strict width two branching programs in terms of
decision lists as shown in [BTW95].

Fact 1 The class SW, of strict width two branching programs is equivalent to (B2, ®,)-DL. More-
over, any decision list in (@4, ®,)-DL has length at most n’.

A width w permutalion branching program is a leveled branching program of width w whose
edges labeled with one form a permutation on [w] and the same rule applies for edges labeled with
zero. Also we require that the nodes in each level of the partition is labeled with a unique variable
from X,. Thus, sometimes we will say a G-permutation branching program or G-PBP, for some

permutation group G, to denote a specific permutation used by the branching program. The notion
of acceptance in a permutation branching program is slightly different. For this we need to fix some
subset S of G. Given an input assignment @, the entire branching program will compute a product
of permutations from G. If this product is a permutation from S then the branching program
accepts otherwise it rejects.

Next we define ordered binary decision diagrams or Obdds. Let 7 be an ordering or bijection of
{1,2,...,n}. For an assignment = € {0,1}", let 7(x) be the string @(1)...%xn). For an ordering =
and a branching program M, we say that M is m-ordered bdd or w-Obdd if the labels of the nodes
along any path in M are consistent with the ordering 7. An ordered branching program or decision
diagram is one that is m-ordered, for some m. The notion of accepting is the same for ordinary
branching programs.

2.3 Small depth circuits with modular and threshold gates

In this section we introduce some notation for describing small depth Boolean circuits with modular
and threshold gates. Our notation follows loosely the ones used by Krause and Pudldk [KP94].

A mod, gate over n Boolean inputs z,...,z, returns the value z; + 2, + ... + z,(mod,). A
threshold gate or function over n Boolean inputs with integer weights ¢ = ay, as,...,a, € Z and a
threshold of b € Z, denoted by f,;, returns the value

fanlz) = 1 ez +aszs+...4a,2, >0
at\t) = 0 otherwise

In another notation, f,,(z) = [Y;=; a;z; > b]. The class of Boolean function computable by a
threshold gate with integer weights is denoted by LT,. For a threshold function fap, we define
w(fas) to be |b] + 377, |a;|. The representation size of a threshold function f is w(f).

The class mody is the class of mod, gates, for all integers ¢ € Z. For two classes of gates A and
B, we denote A-B circuits to be the class of functions computable by a depth two Boolean circuit
with a gate from A at the top and gates from B at the bottom level. For example, a mod,-mody
circuit is a depth two Boolean circuit that has a mod, gate at the top and arbitrary mod, gates,
q € Z, at the bottom level. Note that we allow mod, gates with possibly different ¢’s at the bottom
level (not just for a single value ¢).

2.4 Learning models

In this paper we will consider two standard learning models, namely the Probably Approximately
Correct (PAC) model and the exact learning model with equivalence and membership queries.

First we define the Probably Approximately Correct (PAC) learning model [V84]. Let C, H be
two classes of Boolean functions over n variables, let D be a probability distribution over {0, 1}",
and let f € C be a target function chosen from C'. The learning algorithm has access to an example
oracle EX(f, D) which generates random labeled examples (a, f(a)), where ¢ € {0,1}" is drawn
according the distribution D.

We say that C'is PAC learnable using H if there exists an algorithm A so that: for any concept
f € C, for any distribution D over {0,1}", for any 0 < ¢,6 < 1, if A is given access to EX(f, D)
and inputs €, 6§, then with probability at least 1 — d, A outputs a hypothesis A € H satisfying
D(fAh) < e. The last probability is taken over the internal randomization of A along with the
randomization in the calls to EX(f, D). We also require that the learning algorithm A runs in time
polynomial in n,%, %, and the size of the target function f. We say that C' is weakly PAC learnable

under distribution D if there is a fixed polynomial p and a learning algorithm that succeeds for an
error € = — p(n,i(f))'

Next we review the exact learning model using equivalence and membership queries [Ang88,
L.88]. As above we have two concept classes C', H over {0,1}" and a target concept f € C. In the
exact learning model the learner asks certain oracles certain types of questions or queries about the

target function f. The goal of the exact learning algorithm is to halt after time polynomial in n and
the size of the representation for f in the class, and output a representation h € H that is logically
equivalent to f. The following types of queries are allowed. In an equivalence query, the learning
algorithm supplies any function h € H as input to EQ;() and the reply of the oracle is either yes,
signifying that h = f, or a counterezample, which is an assignment b such that h(b) # f(b). In a
membership query, the learning algorithm supplies an assignment b to M@ ;() and the reply of the
oracle is f(b).

Note that, initially, the learner has no knowledge about f other than its membership to the
target class. Learning must succeed against any valid choice of counterexamples by the teacher.

In both of these learning models, we assume that the hypothesis h produced by the learner
is taken from the representation class H. The only requirement on H that we impose is that it
be polynomial-time computable (or evaluatable), i.e., given z € {0,1}", h(z) is computable in
polynomial time.

2.5 Multiplicity automata

In this section we describe relevant definitions from the theory of multiplicity automata and a recent
result on the learnability of multiplicity automata. We will also prove a lemma that describes a
non-trivial closure operation on this class of automata.

Let K be a field. A nondeterministic automaton M with multiplicity is a five-tuple M(A,Q, F, I, F)
where A is a finite alphabet, @) is the finite set of states, I, F' : () — K are two mappings associated
with the initial and final states, respectively, and

E:QxAxQ—-K

is a map that associates a multiplicity to each edge of M. We will sometimes call M a K-automaton
for brevity.
Let # = (z4,...,2,) € A*. An accepting path for z is a sequence

P = (pla xlap2)7 (p27 $2,p3), sy (pnv wnvpn+1)7

where p; € I and p,41 € F. Let Accy(x) denote the set of all accepting paths for . The behavior
of M is a mapping Sy : A* — K defined as follows: for each z = (z4,...,2,) € A*

Su(z)y="Y_ I(p) (ﬁE(pi,xi,pm)) F(pns1)-

pEAccr () i=1

For a Boolean function over f: A* — {0,1}, we say that a multiplicity automata M computes
fif for all # € A* we have Sy (z) = f(x). Alternatively one may think of f as a characteristic
function of a language over A*.

In the following we will describe several operations on multiplicity automata, namely the
Hadamard product, union, and scalar multiplication. In effect we will argue that multiplicity
automata are closed under these operations.

Definition 2 (Closure operations)
Let K be a field. Let M,(A,Q, Ey, I, Fy) and My(A, Qa, Fa, I», Fy) be two K -automata.

1. The Hadamard product of M; and M,, denoted by M,® M, is a K-automaton M(A,Q, E,I,F)
where Q = Q1xQ4, and I, F, E are defined as I(q1, ¢2) = I1(q1)12(q2), F(q1,¢2) = Fi(q1)F2(q2),
and E((4,p), 0, (¢,p")) = Ex(g, a,¢")Ealp, a,). Note that M has |Q1]|Qs| states. Moreover
M salisfies

Su(z) = Su, (2)Sa, ().

2. Assume that Q1 and Qs are two disjoint sets of states. The union of M, and M,, denoted
simply by My UM, is a K-automaton where M(A,Q, FE, I, F) where Q = Q1UQ,, and I, F, F
are defined as 1(q) = 1,(q)lg € Q1] + I2(9)lg € Q1], F(q) = Fi(q)lg € Q1] + Fax(g)lg € Q3]
E(q,a,p) = Ei(q,a,p)lg,p € Q1] + Ex(q,a,p)g,p € Q2]. Note that M has [Q1] +|Qa| states.
Moreover M salisfies

Su(z) = Sy, (z) + S, ().

3. For any A € K, the automaton AM,; is defined to be K-automaton M(A,Q, FE,I,F) where
Q =0, I =X, F=F,, and E = E,. Nole that |Q| = |Q+| and that M satisfies

Su(z) = ASy,(z).

Next we prove a result that adds another closure operation, namely constant Boolean combi-
nations of multiplicity automata.

Lemma 2.1 Lel p be a fized prime. Let g1, ¢, ..., g1 be Boolean functions that can be computed by
G'F(p)-automata of size at most s. Then for any Boolean function f on k inputs, f(g1,92,...,9x)
can be computed by a GF(p)-automaton with at most 2*s* states.

Proof The function f(g1,¢a,...,9%) can be written as

E Aagit XX gpt.

aEZk

Since g1, ga, - .., gr take values {0,1}, we may assume that ay,...,a; € {0,1}. Therefore we can
write
= Z Aggit X ...ng".

pe{o,1}*

By the properties of Hadamard product gi* x ... X g,f’“ has a multiplicity G F(p)-automaton of
size at most s*. The multiplication with Az admits another GF(p)-automaton of size s*. Then
summing 2* of such GF(p)-automata gives an automaton with size at most 2*s*. g

A multiplicity oracle MU Ly () for a K-automaton M is an oracle that receives as input a string
z € A* and returns Sy (z). The following result was recently established in [BV94].

Theorem 2.1 [BV94] The class of K-automata, for a field K, is exactly learnable from equivalence
and multiplicity queries.

3 Monotone width two branching programs

In this section we prove that monotone width two branching programs are PAC learnable with
membership queries under the uniform distribution. To prove the claim we need to introduce some
notation and fact from harmonic or Fourier analysis of Boolean functions. In fact our analysis will
use some of the standard methods from this area.

3.1 Fourier transform of Boolean functions

We will review the basic setting for the Fourier transform of Boolean functions [M94]. In this
setting Boolean functions will be thought of having range {—1,+1}. To avoid confusion we will
denote “normal” Boolean functions, i.e., ones with the range {0, 1}, with lower-case letters, such as
f 40,1} — {0,1}, and their corresponding {—1,+1}-range counterpart with upper-case letters,
e.g., FF:{0,1}* = {—=1,+1}. It is easy to see that the following relations hold between f and F

14+ F
F=2f-1, f:+T.

Let F': {0,1}" — {—1,+41} be a Boolean function. The Fourier transform of Boolean functions
over the uniform distribution is defined as follows. First we define the inner product over the
2"-dimensional vector space of all real-valued functions over {0, 1}".

(F,Gy=2""> " F(z)G(z) = E[FG].

Next we define for each a € {0,1}" the basis function y, as follows:

These functions are orthonormal, i.e., (x4, X») = [a@ #], and they are decomposable, i.e., xus(zy) =
Xa(®)xs(y), where zy is the concatenation of strings z and y (possibly of different lengths).

Given the orthonormality of these x,’s we get the Fourier representation of any Boolean function
F as

F(z) = F(a)xa(2),

where F(a) = (F,xa) = E[Fx,]. Also because of orthonormality we have Parseval’s identity:
>, F?(a) = 1. Finally note that x,(z) is the constant function 1.

3.2 Jackson’s DNF learning algorithm

In a beautiful paper Jackson [J94] proved the following theorem.

Theorem 3.1 [J9/] The class of DNF formulae is PAC learnable from membership queries under
the uniform distribution.

We outline the arguments used by Jackson and illustrate how we modify it to prove the learn-
ability of monotone width two branching programs. The first key fact about DNF formulae is that
they correlate well with some parity function x4, A € {0,1}", under any distribution. In notation,
if fis a DNF formulae of size s (f has s terms) and D is an arbitrary distribution, then there is
some A such that

Ep|F > .
|Ep| XA]|—25—|-1

We remind the reader that F' is the {—1,+1}-version of f. Using the above inequality, since
Ep[Fxa] = Prp[F = xa] —Prp[F # xa] we derive the following. Assume without loss of generality
that Ep[Fxa] is positive (the other case is symmetrically similar).

1

1 1
=1 - > — <3 225 L 1)
Ep[Fxa]l=1-2 %T[F # Xal il %T[F 7 Xal < 2 2(2s+1)

—2s+1
This is good news since it means that the parity function y,4 is a potential hypothesis for weak
learning f. The problem is that we do not know what A is in relation to F' (other than it correlates
well with F).

The second key fact is that there is an efficient algorithm due to Kushilevitz and Mansour
[KM93] to find all parities that correlate well with certain Boolean functions assuming that the
underlying distribution is uniform. So weakly learning DNF under the uniform distribution is
possible by combining these two facts [BFJKMR94].

The third ingredient is a boosting algorithm, developed by Freund [F90], that can turn any weak
learning algorithm into a strong learning algorithm. This does not solve the DNF learning problem
immediately since the boosting algorithm assumes that the weak learning algorithm works under
arbitrary distributions (not just the uniform distribution). This is because the boosting method
works by running the weak learning algorithm on a carefully chosen set of modified distributions.

Jackson then supplied the missing pieces: he proved that the boosting algorithm of Freund
combined with a modified version of Kushilevitz and Mansour’s algorithm will still work since the
distribution is not being perturbed too much (he quantified precisely this intuition in [J94]). Also
by the first fact, DNF formulae are still guaranteed to correlate well with some parity when the
distribution is changed. In fact the only property that is ever needed about DNF formulae to get
the learning result is the first fact. Jackson called this DNF learning algorithm the harmonic sieve
algorithm.

To prove our PAC learning result we will show in the next section that the first fact holds for
monotone width two branching programs. Using this we can then claim the following theorem.

Theorem 3.2 The class MW, of monotone width two branching programs is PAC learnable with
membership queries under the uniform distribution.

3.3 A correlation lemma

In this section we prove the following lemma that states any monotone width two branching program
correlates well with some parity function under any distribution. The fact that the lemma is true
for any distribution is critical for the boosting stage in Jackson’s harmonic sieve algorithm.

Lemma 3.1 For any F € MW, with s accepting sinks and for any distribution D there is a parity
xc thatl satisfies

Ep[Fxcl| > ———.

|Ep[Fxc]l > 2sn? + 1

Proof Let f € MW, be computed by a monotone width two branching program with s sinks.
Note that each accepting sink defines a subportion of the branching program that is a strict width
two branching program. Let gq,..., g, be the functions computed by the s subportions associated
with the s strict width two branching programs. Note that

f:gl\/QQ\/\/gs

Hence there is a subportion g¢; so that

We fix our attention to this subportion g; and call it g.
Using Fact 1, g € SW, is equivalent to a decision list in (G2, §,)-DL. If ¢ is defined as

G = [(Xam Xb1)a (XG2? sz)a cey (Xama Xbm)]

recall that G is the {—1, +1}-version of ¢) then it can be rewritten as
) g

_m 1+Xai1+Xbii_11_Xaj
v= 2_; ;o Ul
i= ji=1
Let -
1 a1 Ly
hi: + Xa, —I_XblH XJ.
2 2 ol 2
Therefore
ml‘l’ a,l‘l' ,i_ll_XaJ
[Ep(Fgll = [Ep |F (z X T —
i=1 i=1

i=1

s

S |Ep[Fhil| < m |Ep[Fh]|

i=1

IN

where i € [m] is such that |Ep[Fh;,]| is maximum. We now rewrite

ig—1

1- XG]' o
H 5 = EQE{O,I}’U_I[(_l)l lXAa]v

ji=1

where A, =) ;":1 o;a;. Thus we have
T+ Yo 14X, 251 — Y,
hi, = Xai, Xbi, H Xa;
2 2 L 2
ji=1
I+ Xa,, 1+ xs.

= 9 2 0Eae{o,l}’ﬂ—l[(_l)lale\a]

= Es[(—1)"*Ixs]

where the probability space S is over a uniformly chosen from {0, 1}%~! and 3, uniformly chosen
from {0, 1} and B is defined as B = A, + Ba;, + vb;,. Combining this into an earlier expression we
get

1

[Ep[Fhi,)| = [Ep[FEs[(~1)*g]]| = [Bs[(=1)“/Ep[Fx5])| < Es[[Ep[Fxs]|).
Given this we may claim that there is a choice ay, 39,70 wWith C = A,, & Boa;, & Yob;, so that

|Ep[Fxc]| > |Ep[Fh;,]| > %.

10

But notice that since g implies f we have the following relation (we remind the reader that F
has range {—1,+1} and g has range {0,1})

Ep[F]+1

BplFy] = Bplg] = Prlg = 1] > By = 1] = ~2L0

Hence, we have

Ep[F]+1

Ep|F >
|Ep[Fxcl| 25m

So either |Ep[Fxc]| > 1/(2sm+ 1) or Ep[F] = Ep[Fxo,] < —1/(2sm+1). Noting that by Fact 1
m < n?, we obtain the desired claim. g

4 Width two branching programs with bounded number of sinks

In this section we prove width two branching programs with a constant number of sinks is exactly
learnable from equivalence queries only. In notation we use k-sink W, to denote the class of width
two branching programs with at most k sinks. We prove the following theorem.

Theorem 4.1 k-sink W, is exactly learnable using equivalence queries.

In the next lemma we prove that k-sink width two branching program is equivalent to rank-k
decision trees with parity nodes.

Lemma 4.1 The class of k-sink, k > 2, width two branching programs is a subclass of the class
rank-k @©,-DT decision trees with parity nodes.

Proof We prove by induction on k. For k£ = 2, the claim states that strict width two branching
program or SW, is a subclass of rank-2 @,-DT. But this is true by Fact 1, since SW, is equivalent
to (B2, ®n)-DL, and an element f € (o, ®,)-DL can be turned into an element of rank-2 @,-DT
(by trivially adding two new nodes for each leaf of f).

Assume that the claim is true for all width two branching programs with at most & — 1 sinks,
k > 3. Consider a width two branching program B with k sinks. B can be decomposed into k
strict width two branching programs. Let L; be the first strict width two branching program and
let b € {0,1} be the label of its sink. By Fact 1 L; can be converted into a decision list of type
(®2,®n)-DL. By induction the remaining portion of B can be written as a rank-(k — 1) decision
tree T with parity nodes. We attach T to each leaf node of I; as follows. For each leaf node ! of
L,, we create an outgoing edge labeled with —1 (or 0) going into 7" and an outgoing edge labeled
with +1 going into the constant function b. Note that the resulting decision tree is of rank k. To
see this, notice that the new rank of the leaves of L; is now & (the rank of T') and hence the new
rank of the internal nodes of L, is also k. This completes the inductive argument and hence the
lemma. g

Next, using an idea due to Blum [B92], we transform further the target width two branching
program into a decision list representation.

Lemma 4.2 The class of rank-k decision trees with parily nodes is a subclass of decision lists

whose nodes are parity of monomials, where each monomial is of size at most k. In notation,
rank-k @&,-DT is a subclass of & Ny -DL.

11

Proof The proof follows is an adaptation of Blum’s argument [B92]. Let 7" be a rank-k decision
trees with parity nodes. Because of its rank, 7" has a leaf node that is of depth at most k& (Lemma
1 in [B92]); call this leaf node . Let p be the parent of « and let 7, be the other subtree of p.

Create a node n, in the decision list that is labeled with a conjunction of at most k parity
questions (induced by the root to leaf path ending in x). This conjunction of parities can be
converted into a parity of conjunctions where each conjunction is of size at most k.

The next crucial step is that we can remove from 7T, the nodes p and xz, and reattach the parent
of p directly to T,,. The resulting tree is still a rank-£’ decision tree with parity nodes, where k' < k.
If ¥ = k then we may repeat the same process until the rank reduces to kK — 1. At that point we
appeal to an inductive hypothesis and complete the lemma. g

Finally we show in the following lemma that & N, -DL, and hence k-sink width two branching
programs, are exactly learnable from equivalence queries. The idea is to use the closure algorithm
for learning nested differences of intersection-closed concept classes due to Helmbold, Sloan, and

Warmuth [HSW90].

Lemma 4.3 The class & Ny -DL of decision lisls whose nodes are parity of monomials of size al
most k is exactly learnable using equivalence queries.

Proof By the transformation technique of Littlestone [L88], it suffices to prove the claim for the
concept class of decision list with parity nodes, i.e., @,-DL. That is we can create new variables for
each k-subset of the variables and learn the target concept as a new function over at most n + n*
variables.

To exactly learn @,-DL we will appeal to the exact learning algorithm for nested differences
of intersection-closed concept classes due to Helmbold, Sloan, and Warmuth [HSW90]. For this we
will argue that we can express any element of @,-DL as a nested difference of vector spaces over
GF(2)".

Assume that the target concept f € &,-DL is given by

/= [(Xala bl)a (XCL2? b2)7 SRR (Xaka blc)]a

where ai, as,...,ar € {0,1}" and by, bs, ..., b € {0,1}. We compress consecutive leaves that output
the same value. This is fine since consecutive parity tests can be turn into a membership test for
a linear subspace L that halts at the leaf if the test failed and proceeds to the next node if the
test is passed. When the compression process is finished, we will end up with a decision list whose
internal nodes are labeled with membership tests for linear subspaces. So assume that we have

/= [(Lla Cl)v (L2a CZ)a SR (Lla Ct)]a

where ¢ < k, the L;’s stand for linear subspaces, and ¢i,...,¢; € {0,1} are alternating in values.
Again we remind the reader that the value ¢; will be output if the example does not belong to the
linear subspace Ly, the value ¢, will be output if the example passed test L; but not test L,, and so
on. Assume without loss of generality that ¢; = 0 (the case when ¢; = 1 can be treated as easily).
Then we have the following form

=L —(Ly—(Lz—(...)).

Note crucially that the class of linear subspaces are closed under intersection and hence we may
safely apply the closure algorithm given in [HSW90]. g

12

5 Small depth circuits and bounded width permutation branching
programs

In this section we will show that some small depth circuits with modular and threshold gates
and certain types of bounded width permutation branching programs are exactly learnable using
equivalence and membership queries. First we consider depth two circuits with modular gates.

Theorem 5.1 For any fized prime p, the class of mod,-mody, circuits is exactly learnable using
equivalence and membership queries.

Proof It suffices to exhibit a multiplicity automaton for the target mod,-mody circuit. Let K =
G'F(p). We construct for each mod, gate, ¢ € Z, a K-automaton that accepts it (a simple cycle-like
automata will suffice here). Next we combine these automata into a single K-automaton by taking
the union of all the automata for the mod, gates. By Fermat’s Little theorem, the Hadamard
product of M with itself p — 1 times computes the target mod,-mod; circuit. g

In the following we will exploit circuit characterizations of permutation branching programs to
prove the learnability of S3 and A, permutation branching programs, where S; is the symmetric
group on [3] and A, is the alternating group on [4]. The following fact about S3-PBPs was proved
by Barrington [B86].

Fact 2 The class S3-PBP is equivalent to mods-mods circuil.
Theorem 5.2 S3-PBPs are exactly learnable using equivalence and membership queries.
Proof Follows from Theorem 5.1. g

It was implicitly shown in [BST90] that A4-PBP is equivalent to (mods, mod,)-mods circuit,
i.e., a depth “two” circuit consisting of mods gates at the bottom level coming into two mod, gates
at the second level. The output of the two mod, gates can then be combined using any Boolean
operation.

We will prove a more general result and as a corollary we will show that A, permutation
branching programs are exactly learnable using equivalence and membership queries.

Theorem 5.3 Let g1, g, .. ., gx be Boolean functions that can be computed by a multiplicity GF(p)-

automata of size at most s. Then for any Boolean function f on k inputs, f(g1,92,...,gx) is exactly

learnable using equivalence and membership queries in time sO*),

Proof Follows from Lemma 2.1 and Theorem 2.1. g
Corollary 5.1 A, PBPs are exactly learnable using equivalence and membership queries.

In the following we will show that Boolean functions computable by threshold gates with integer
weights can be represented as a multiplicity automata.

Lemma 5.1 The class ﬁl admits a representation as a GF(p)-automata, for any prime p.

13

Proof Suppose that f(z) = [a'z > b] where a € Z" and b € Z. Let A = |ay| + |as] + ...+ |a,| + 1.
We construct the automata M with state set @) = {¢;; : i € [-A, A],j € [n+ 1]}. The edge set
contain only the following edges (assigned a multiplicity of 1):

(¢i,5,0, G j41): (¢, 1, Qi+aj,j+1) el
for all i € [A] and j € [n]. Set I = {qoo} and F = {¢; 41| > b}. n

Using the above lemma we can claim (as before) that a mod, and a constant Boolean combi-
nation of threshold functions are exactly learnable.

Corollary 5.2 The class of modp-ﬁl is exactly learnable using equivalence and membership
quertes.

Corollary 5.3 For any Boolean function f on k inputs, and for g¢.,..., g, taken from the class
mod,-LT,, the Boolean function f(gi, g, ...,qx) is exactly learnable using equivalence and mem-

bership queries.

We remark that proving the learnability of either ﬁl—modp or ﬁl—ﬁl functions will prove
the learnability of DNF formulae [KP94].

6 Ordered binary decision diagrams

In this section we provide exact learning algorithms for certain Boolean combinations of ordered
binary decision diagrams (Obdds). In particular we consider any mod, and any constant Boolean
combinations of Obdds.

In all of our learning results we always assume that the learning algorithm is given the ordering
7. As pointed out by Gavalda and Guijarro [GG95] the problem of learning using the best ordering
(that minimizes the size of the branching program) is hard. So from now on we will assume that
the ordering is simply the identity ordering z; < x5 < ... < @,.

Now we prove that a mod, of polynomially many Obdds are learnable. First we state a result
that is implicit in the work of Gavalda and Guijarro [GG95].

Fact 3 [GGY95] For every Obbd there is an equivalent GF(p)-automaton, for any prime p, that
accepts it. Moreover the transformation can be carried out in polynomial-time in the size of the

Obdd.

Theorem 6.1 Let p be a fized prime. A mod, of a polynomially many Obdds is exactly learnable
using equivalence and membership queries.

Proof First we convert each Obdd into a GF(p)-automaton using Fact 3. Finally we combine all
these into a single G'F(p)-automaton by taking the union and by taking the Hadamard product
p — 1 times to booleanize the output. g

Theorem 6.2 For any Boolean function f on k inputs, the function f(g1, s, ..., gr), where gi,..., gr
are mod, of Obdds, is exactly learnable using equivalence and membership queries.

Proof First we convert each mod, of Obdds into a GF(p)-automaton using the previous theorem,
Theorem 6.1. To learn the target function, we apply Lemma 2.1 and Theorem 2.1. g

14

Acknowledgments

We thank David A. Mix Barrington for his generosity in sending us his thesis and for his help on
permutation branching programs.

References

[Ang88] Dana Angluin. Queries and Concept Learning. Machine Learning, 2:319-342, 1988.

[AK95] Dana Angluin and Michael Kharitonov. When Won’t Membership Queries Help? In
Journal of Computer and System Sciences, 50:336-355, 1995.

[B86] David A. Barrington. Bounded-Width Branching Programs. PhD thesis, Massachusetts
Institute of Technology, 1986.

[B89] David A. Barrington. Bounded-Width Polynomial-Size Branching Programs Recognize Ex-
actly Those Languages in NC'. In Journal of Computer and System Sciences, 38:150-164,
1989.

[B92] Avrim Blum. Rank-r Decision Trees are a Subclass of r-Decision Lists. In Information
Processing Letters, 42:183-185, 1992.

[BCV] Francesco Bergadano, D. Catalano, and Stefano Varricchio. Learning Sat-k-DNF Formulas
from Membership Queries. Manuscript.

[BDFP86] Allan Borodin, Danny Dolev, Faith Fich, and Wolfgang Paul. Bounds for Width Two
Branching Programs. In SIAM Journal on Computing, 15(2):549-560, 1986.

[BFJKMRO94] Avrim Blum, Merrick Furst, Jeffrey Jackson, Michael Kearns, Yishay Mansour, and
Steven Rudich. Weakly Learning DNF and Characterizing Statistical Query Learning using
Fourier Analysis. In Proceedings of the Twenty Sizth Annual ACM Symposium on Theory of
Computing, pages 253-262, 1994.

[BST90] David A. Mix Barrington, Howard Straubing, and Denis Thérien. Non-uniform Automata
over Groups. In Information and Computation, 89:109-132, 1990.

[BTW95] Nader H. Bshouty, Christino Tamon, and David K. Wilson. On Learning Width Two
Branching Programs. Manuscript, 1995.

[BV94] Francesco Bergadano and Stefano Varricchio. Learning Behaviors of Automata from Multi-
plicity and Equivalence Queries. In Proceedings of the Second Italian Conference on Algorithms
and Complezity (CIAC 94), Lecture Notes in Computer Science No. 778, M. Bonuccelli, P.
Crescenzi, R. Petreschi (Eds.), Springer-Verlag, 1994. To appear in SIAM Journal on Com-
puting.

[ERR95] Funda Ergiin, S. Ravi Kumar, and Ronitt Rubinfeld. On Learning Bounded-Width
Branching Programs. In Proceedings of the 8th Annual ACM Conference on Compulational
Learning Theory, 361-368, 1995.

[F90] Yoav Freund. Boosting a Weak Learning Algorithm by Majority. In Proceedings of the 3rd
Annual Workshop on Computational Learning Theory, 202-216, 1990.

15

GGY5| Ricard Gavalda and David Guijarro. Learning Ordered Binary Decision Diagrams. In 6th
g g
International Workshop on Algorithmic Learning Theory, Lecture Notes in Artificial Intelli-
gence No. 997, Jantke, Shinohara, Zeugmann (Eds.), Springer-Verlag, 1995.

[GM93] Jordan Gergov and Christoph Meinel. MOD-2-OBDD’s — A Generalization of OBDD’s
and EXOR-Sum-Of-Products. In IFIP WG 10.5 Workshop on the Applications of Reed-Muller
Expansion in Circuit Design, Hamburg, 1993.

[HSW90] David Helmbold, Robert Sloan, and Manfred Warmuth. Learning Nested Differences of
Intersection-Closed Concept Classes. In Machine Learning, 5:165-196, 1990.

[J94] Jeffrey C. Jackson. DNF is Efficiently Learnable under the Uniform distribution with Mem-
bership Queries. In Proceedings of the 35th Annual Symposium on Foundations of Computer
Science, 42-53, 1994.

[KM93] Eyal Kushilevitz and Yishay Mansour. Learning Decision Trees using the Fourier Spectrum.
In STAM Journal on Computing, 22:6, pages 1331-1348, 1993.

[KP94] Matthias Krause and Pavel Pudlak. On the Computational Power of Depth 2 Circuits
with Threshold and Modulo gates. In Proceedings of the 26th Annual ACM Symposium on the
Theory of Computing, 4857, 1994.

[L88] Nick Littlestone. Learning Quickly When Irrelevant Attributes Abound: A New Linear-
Threshold Algorithm. Machine Learning, 2, 285-318, 1988.

[M94] Yishay Mansour. Learning Boolean Functions via the Fourier Transform. Tutorial Notes for
the Workshop on Computational Learning Theory, 1994.

[RW93] Vijay Raghavan and Dawn Wilkins. Learning Branching Programs with Queries. In Pro-
ceedings of the 6th Annual Workshop on Computational Learning Theory, 27-36, 1993.

[V84] Leslie G. Valiant. A Theory of the Learnable. Communications of the ACM, 27(11):1134~
1142, November 1984.

16

