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Abstract

Reducibility concepts are fundamental in complexity theory. Usually, they are defined as follows:
A problem II is reducible to a problem X if I can be computed using a program or device for X
as a subroutine. However, in the case of such restricted models as ordered binary decision diagrams
(OBDDs), this approach is very limited in its power and leads necessarily to concepts which are quite
meaningless for complexity theoretic considerations.

In the following, we propose a new reducibility concept for OBDDs. We say that 1l is reducible
to ¥ if an OBDD for II can be constructed by applying a sequence of computationally elementary
operations to an OBDD for ¥ instead of using the unmodified OBDD for X as a subroutine. Hence,
11 is reducible to ¥ means that it is somewhat clear how to obtain a program for Il from a program
for ¥ without insisting on an almost unmodified use of the original program.

Although well-motivated, defining reducibility in terms of sequences of elementary operations has
the disadvantage that it is very difficult to handle dynamically changing structures. The main purpose
of this paper is to establish an algorithmically based static description of this dynamical reducibility
notion which makes adaquate complexity theoretic investigations possible.

1 Introduction

Reducibility is one of the most basic notions in complexity theory. Tt provides a fundamental tool for
comparing the computational complexity of different problems. The key idea is to use a program for
a device that solves one problem X as a subroutine within the computation of another problem II. If
this is possible, II is said to be reducible to X. Reductions provide the possiblity to conclude upper
bound results on the computational complexity of problem II and lower bounds for X, if one insists that
the program for I1 designed around the subroutine for ¥ respects certain resource complexity bounds of
interest.

In the past, a great variety of different reducibility notions have been investigated in order to get a
better understanding of the different computational paradigms and/or resource bounds. Here we only
mention polynomial-time Turing reducibility, log-space reducibility, polynomial projection reducibility,
and NC'l-reducibility (see, e.g., [Lee90], [BDG88]). This great variety of different reducibility notions is
a consequence of the fact that the computational power implemented within a reducibility notion must
not be stronger than the computational power of the complexity classes under consideration. Otherwise,
it would be possible to hide some essential computations within the reduction, instead of respecting the
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computational paradigma and/or resource bounds under consideration and, consequently, no relevant
complexity theoretic results can be obtained. For example, polynomial-time reducibility does not give
any relevant insight into the computational complexity of, say, logarithmic-time bounded computations.
Another example provides NC*-reducibility which is not the right tool for the investigation of classes
like AC?.

This fact causes some troubles if one considers very restricted models, like eraser Turing machines
[KMW88], real-time branching programs [KW8T], or ordered binary decision diagrams [Bry86]. The
consideration of the complexity classes defined by such restricted models is interesting and important
since, on one hand, they occur in connection with (our merely minor abilities in) lower bound consider-
ations, and, on the other hand, they provide a complexity theoretic framework for the investigation of
data structures used in practical applications. The difficulty in defining adapted reducibility notions for
such restricted classes lies in the fact that the frame for using subroutines becomes extremely restrictive,
since it devours almost all of the computational resources of the complexity class under consideration.
Hence, the computational power implemented in the reducibility notion has to be very restricted. As a
result, one obtains a reducibility notions that relate merely highly similar problems, and are, hence, only
of limited use.

Let us consider complexity classes defined by ordered binary decision diagrams (OBDDs), i.e., reduced
oblivious read-once branching programs. In [BW95], Bollig and Wegener tried to introduce a reducibility
notion for these classes. In order to obtain a reducibility notion whose computational power does not
exceed the computational power of the underlying OBDDs, they successively restricted the projection
[SV81] (which fits well to complexity classes defined by branching programs [Mei89]) up to the point
that it respects the read-once property. Although the resulting read-once projection formally defines a
reducibility for OBDD-based complexity classes, there are some properties which cast doubts whether
this notion is meaningful from the viewpoint of complexity theory. For example, with respect to read-once
projections, even constant functions are not reducible to each other although they have almost identical
OBDD realizations. The reason for these difficulties lies not in a bad definition — Bollig and Wegener
used the broadest reducibility notion that can be obtained on this line — it lies in the fact that almost all
computational resources of OBDD-classes are devoured by the OBDDs used as subroutines. Hence, in
the case of very restricted classes, the usual reducibility approach to construct a program for a problem
‘around’ the more or less unchanged program for the other problem does not give the desired results.

In the paper, we propose a new reducibility concept that overcomes the difficulties which arise if one
applies the traditional reduction concept in the context of very restricted complexity classes like those
defined in terms of OBDDs. The new reducibility concept is based on the idea that a problem II is
reducible to a problem X if a program (in our case an OBDD) for II can be constructed from a given
program for ¥ by applying a sequence of elementary (i.e., performable in constant time) operations.
Hence, TI is reducible to ¥ means that it is somewhat clear how to obtain a program for II from a
program for ¥ without insisting on an almost unmodified use of the original program.

Although well-motivated, defining reducibility in terms of sequences of elementary operations has the
disadvantage that it is very difficult to handle dynamically changing structures. The main purpose
of this paper is to establish an algorithmically based static description of this dynamical reducibility
notion. This simplifies the handling of the reducibility concept in complexity theoretic investigations,
e.g. for deriving lower bounds on the size of OBDD representation for a function, as well as in practical
applications, where the estimation of the OBDD-sizes may be crucial.

2 Notations and Preliminaries

Let X,, denote the set {z1, 23, ..., 2z, } of Boolean variables. A variable ordering on X,, is meant as a total
order and is described by a permutation of the index set I,, = {1,...,n}, i.e. z; < z; iff 771(i) < 771(j).



Identity is a trivial permutation. Two orderings are said to be consistent if there is no pair (z;, z;) such
that z; precedes x; in one ordering and z; precedes z; in the other.

Speaking about functions, we mean Boolean functions {false, true}” — {false, true}. The standard
representation of false and trueis 0 and 1, respectively. However, it will be more convenient for us to use
—1 for false and +1 for true. Speaking about labeled graphs, we write = for the isomorphism.

Definition.
An ordered binary decision diagram (OBDD) over X, is a connected acyclic directed graph with the
following properties:

- There is one distinguished node (called root) without in-coming edges;
- Nodes without out-going edges (sinks) are labeled by —1 or +1;

- All non-sink nodes are labeled by variables from X,, and have two out-going edges (called true- and
false-edge) labeled by +1 and —1, respectively;

- Each node has a negation mark —1 or +1;

- All variable orderings defined by the occurence of variables on root-to-sink paths are consistent.

In order to make figures more clear, we use solid lines for the 1-edges and dotted lines for the —1-edges
of an OBDD. The negation mark 1 is usually omitted in the figures.

The nodes that are labeled by the same variables form a level. Let 7 be a variable ordering. An ordered
binary decision diagram is a fOBDD if all variable orderings defined by the occurence of variables on
root-to-sink paths are consistent with m. The size of an OBDD P is defined as the number of non-sink
nodes and is denoted by size(P).

Each node v of an OBDD represents a Boolean function as follows: Each input assignment a =
(a1,...,a,) uniquely determines a v-to-sink path p(a) according to the following rule: At an inner
node with label z;, the outgoing edge with label a; is chosen. Let sgn(«) denote the product of the nega-
tion marks on the nodes on p(a). Now v represents the function f if, for each input «, p(«) terminates
in a sink labeled with f(a)sgn(a). The function represented by an OBDD is the function represented
by its root. We will not distinguish between an OBDD and its root (as long as it do not introduce an
ambiguity). In this sense, the successors of a node are the nodes reachable via edges starting in the node
as well as the subOBDDs rooted in these nodes. An OBDD (respectively, a TOBDD) for a function f is
denoted by OBDD(f) (respectively, TfOBDD(f)).

The defined OBDD model slightly differs from the one usually used. The introduction of the negated
nodes is motivated by the existing OBDD-implementations [BRB90, Lon93, Ros95], where the use of
negated edges allows to save up to half the size of the representation. In these implementations, the root
of an OBDD has one possibly negated in-coming edge (reference). In order to model this situation, we
assign the negation marks to nodes and avoid the introduction of dummy nodes for the origins of the
reference edges.

If P is an OBDD, then P denotes an OBDD obtained from P by multiplying the negation mark of the
root by —1. Two OBDDs are (functionally) equivalent (denoted by =) if they represent the same function.
An OBDD is called reduced if all nodes have negation mark 41 and no two subgraphs represent equivalent
OBDDs. We remark that an OBDD can be reduced in linear time [SW93]. For a fixed variable ordering,
the representation of a Boolean function in terms of reduced OBDD is uniquely determined [Bry86].

The main interest of this paper is the development of a complexity theoretic reducibility concept for
OBDDs. Unfortunately, in the context of OBDDs, the notions ‘reduce’ and ‘reduction’ have a fixed
meaning in the abovementioned sense. Speaking about reductions in the complexity theoretical sense, we
avoid the terminological ambiguity by using the term OBDD-transformation instead of OBDD-reduction.

The non-uniformity of OBDDs and the sensitivity of the structure and the size of an OBDD to a variable
ordering implicitly specify the notion of ‘problem’ in the context of OBDDs.



Definition.
A problem (f,m) is a sequence of pairs ((fn,mn))S%,, where f, : {false, true} — {false, true} is a
Boolean function and , is a permutation on I,, = {1, ...,n}. For each n, (f., ) is called an instance of
the problem.

For each problem (f, 7), there is a uniquely determined sequence of reduced OBDDs (OBDD(f,, m,))50% .

3 OBDD-Transformations

Our aim is the introduction of a reducibility notion that compares the problems with respect to a ‘sim-
ilarity’ in their OBDD-representations. What the ‘similarity’ means can be intuitively described as a
possibility to construct a target OBDD from another one by performing a sequence of ‘elementary’ op-
erations. An operation is considered as elementary if it can be performed in constant time (under unit
cost measure). We define elementary operations via schemes instead of a long formal description. The
original node always appears on the left side and the transformed one on the right. Marks and labels that
are not significant for the operation are omitted. The label (the negation mark) of a node is positioned
on the left (respectively, right) of the node.

Definition.
Elementary operations are:

Operation 1. Setting/deletion of the negation mark of a node.
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Operation 2. Exchange of out-going edges of a node, i.e. negation of their labels.
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Operation 3. Redirection of one out-going edge towards the second one.
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Operation 4. Conversion of a node to a sink.
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Operation 6. Introduction of a dummy node labeled with a variable that is consistent with the considered
variable ordering (let z; < z; < x in the picture).
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The abovedefined operations have clear semantics. The first operation negates the subfunction defined
in a node, the second operation negates the evaluation of the checked literal, the third one corresponds



to the restriction, and the fourth operation provides a replacement of a subfunction by a trivial function
(constant). Unlike the first four operations that change the functionality of the OBDD, the last two
allow to work with an unreduced OBDD for a function, and hence, to perform the subsequent operations
merely on some distinguished subfunctions.

There are several operations that look like trivial, e.g. redirection of an edge to another node. However,
being in a node, we only have local information about the OBDD. Another observation is that not every
elementary operation has an inverse counterpart, e.g. Operation 4. Anyway, as it is discussed later, also
such operations can be simulated by a sequence of elementary operations. However, the length of the
sequence reflects the complexity of the simulated operation.

A natural requirement by a transformation of OBDDs is the possibility of a renaming variables. Among
others, it allows to move from one variable ordering to another. In order to preserve the ‘read-once
property’, we have to insist that no two different variables are identified by renaming.

Now we are ready to define the reducibility /transformability notion formally.

Definition.

A problem (f,m) is an (OBDD-)transformation of a problem (g,0) (written as (f,7) <ospp (9,0)),
if for each n, there is an m such that the reduced 7, OBDD(f,) can be obtained from the reduced
omOBDD(g,,) by a sequence of elementary operations completed by the reduction and a renaming of
variables (i.e., application of a bijective mapping on the set of variables that occur in the reduced OBDD).

OBDD-transformations are more powerful than read-once projections introduced in [BW95].

Proposition 1.
Read-once projections are spectal OBDD-transformations.

Proof. Let f = (f,) be a read-once projection of ¢ = (g,). According to the definition of read-once
projection, for each n there is a p, and a mapping 7 : X, = Y such that:

Dy e{-1,+1}UX, U{F;|z; € X} for each 1 <i < p(n).

2) For any i and j, i # j, if y; € {x,, 7} then y; € {z,,%;}. (read-once property)

3) a1, n) = gp(n) (Y15 Yp(n))-

An OBDD(fs) can be obtained from an OBDD(g,(,)) by applying elementary operations of one type
on each particular level of nodes according to the rules described below, completed by the reduction of
equivalent nodes and by a certain renaming. The operations as well as the renaming depend on the
projection 7 as follows:

- If y; = +1, or —1, then Operation 3 is performed on each node v labeled by ;.

- If y; = x;, then y; will be renamed to z; in all occurences.

- If y; = 2;, then Operation 2 is performed on each node labeled by y;, and y; is renamed to z;
The nodes modified by Operation 3 are redundant and are removed in the reduction. The read-once

property assures the injectiveness of the renaming. Tt is easy to see that, for each 7, (f, 7) is an OBDD-
transformation of (g, 7). O

Proposition 2.
There are OBDD-transformations which can be derived by means of one elementary operation, but cannot
be obtained via any read-once projection.

Proof. Let us consider the constant functions 0 and 1. Obviously, none of the functions is a read-once
projection of the other. On the other side, independently from the variable ordering, the OBDD for 0
can be obtained from an OBDD for 1 (and vica versa) by applying Operation 1. O



4 OBDD-Transformer and the Algorithms Derive and Compose

The definition of the OBDD-transformation via a sequence of elementary operation matches our intuition
about an OBDD-reducibility concept. However, the fact that the operations are applied to a dynamically
changed OBDD complicates the description of an OBDD-transformation.

In this section, we develop an algorithmical framework for efficient representation and handling of OBDD-
transformations. We will show that every sequence of elementary operations can be described by a
structure that has the same nature as the considered OBDD-model. This can be seen as an evidence that
the introduced reducibility notion reflects the properties of OBDD-representations adequately.

4.1 OBDD-Transformer

Definition.
Let X, = X, U{Z|z € X, }U{ls|2 € Xn}U{—1s|z € X,}. An OBDD-transformer (or simply transformer)
over X, is a connected directed acyclic graph with the following properties:

- There is one distinguished node (called root) without in-coming edges.

- Nodes without out-going edges (sinks) are labeled by —1, 41, or L (the last symbol has the meaning
of no label assigned).

- All non-sink nodes are labeled by symbols in X,, and have two out-going edges (called true- and
false-edge) labeled by +1 and —1, respectively.

- Each node has a negation mark —1 or +1.

- All variable orderings defined by the occurence of variables on root-to-sink paths are consistent.

For each label # € X,,, |z| denotes the associated variable, i.e. |z;| = |&| = |14, = | — 1s,| = 2. A
7OBDD-transformer is an OBDD-transformer where the orderings of the variables associated with the
labels of the nodes on root-to-sink paths are consistent with 7. Obviously, each TOBDD is a 7OBDD-
transformer. The size of a transformer T is defined as the number of its non-sink nodes and is denoted
by size(T).

4.2 The Algorithm Derive

Next, we prove that an OBDD-transformer uniquely describes an OBDD-transformation and, vice versa,
every OBDD-transformation can be described by some OBDD-transformer. In order to do this, we con-
struct an algorithm Derive that realizes an OBDD-transformation defined by a given OBDD-transformer.
Derive is applicable on any pair consisting of a 7 OBDD and a m3sOBDD-transformer as long as m; and
Ty are consistent. In that case, handling m; and 7y as relations, we can define an ordering m (over the
union of variables that appear in the OBDD and the transformer) as a transitive closure of the union
71 U 72 and all comparisons are meant w.r.t. .

The result of Deriwe(P,T) is denoted by POT. If the variable orderings in 7' and P are not consistent,
POT remains undefined. The algorithm starts in the roots of P and T, scans the graphs in parallel,
and creates the result recursively. The information in the root of T describes the required changes in the
root of P. Instead of modifying P, we create a new graph as the result. The mark —1 corresponds to
Operation 1, the negative literal to Operation 2, labels 1, and —1, to Operation 3, and the sink node to
Operation 4.

We explain this idea more deeply. 1If z is a label (of the root) of T, then (the root of) Tj;=s is the
d-successor (of the root) of 7. Similarly, Py=s is the d-successors of P.



Trivial case:

—If T is a sink labeled by L, then POT will be a graph isomorphic to P but its mark is inverted if the
mark of T is —1.

— If T is a sink labeled by a constant, then POT is a sink isomorphic to 7.

Nontrivial case:

Let z be the label of P and y the label of T'. The program splits according to the positions of z and |y|
in the ordering.

—If z < |y|, then a node with the label and mark of P is created and with true-, and false-successor
Pp=1 0T, and Pp—_1OT), respectively.

—If z > |y|, then a node labeled by |y| with the same mark as T is created, with the true-, and false-
successor POTy =1, and POT)y =0, Tespectively.

- If 2 = |y|, then a node labeled by z is created and the mark of the node will be the product of the
marks of P and T'. The true- and false-successor of the node depend on y:

true-successor  false-successor

y== : Ppo1OTpz1 Pz 10Tp=—1
y==z : Ppe 10T 21 Ppo1OTp—_1
Yy = 11; : Pz:1<>T$:1 PI:1<>T =1
Yy = —11; : P$:_1<>T$:1 P$:_1<>T =1

Particularly, if 7" is an OBDD), then for each OBDD P holds POT = T

For details, see the pseudocode of the algorithm in the appendix. The algorithm is presented in a form
that is close to the respective transformation and produces an OBDD that is not reduced. The reduction
running in parallel is easy to implement in the algorithm without changing its assymptotic time and
space performance.

Proposition 3.
The time as well as the space complexity of the algorithm Derive on an wnput (P,T) is bounded by
O(size(P) - size(T)). The size of the output is bounded by size(P) - size(T).

Proof. The main observation in the complexity analysis of the algorithm is that each pair of nodes (u, v),
where u € P and v € T, generates at most two recursive calls to Derwe_step. O

4.3 The Algorithm Compose

An important property of the OBDD-transformation is its transitivity. This property should be express-
ible in terms of transformers, too. In the following, we give an algorithm Compose for the composition
of two transformers that will reflect the ‘concatenation’ of two OBDD-transformations. The result of
Compose(Ty,Ty) is denoted by Ty o Ty. Compose is closely related to Derive. Tt is designed in such a way
that (POT))OTs is isomorphic to PO(Ty o Ty) which corresponds to the idea of the composition of two
transformations.

For details, see the pseudocode of the algorithm given in the appendix.

Proposition 4.
The time as well as the space complezity of the algorithm Compose on an input (T1,T5) is bounded by
O(size(Th) - size(Th)). The size of the output is bounded by size(Th) - size(T5).

Proof. The main observation in the complexity analysis of the algorithm is that each pair of nodes (u, v),
where u € Ty and v € Ty, generates at most two recursive calls to Compose_step. O



Proposition 5.
For any mOBDD P and mOBDD-transformers 11,15 holds:

PO oT) = (POT)OT, (¥

Proof. The construction of Compose was based on (*). Its correctness can be easily shown by induction
on the top variable of the triple (P, 71,75) (i.e., the top most label w.r.t. the given variable ordering).
The basis of the induction is the case when all arguments are sinks. Derive_step and Compose_step always
generate recursive calls with a smaller top variable that allows to use the inductive hypothesis. The proof
is then reduced to the consideration of all possible cases which are characterized by different relative
positions of the top variables. O

5 Algorithmic Description of OBDD-Transformations

The well-motivated concept of defining OBDD-transformations via sequences of elementary operations
has the big disadvantage that it is very difficult to handle the dynamically changing structures occuring
in the course of an OBDD-transformation. In the following section, we prove that the application of any
sequence of elementary operations to a given OBDD P can be simulated by the algorithm Derive applied
to P and a suited transformer T'. Hence, we obtain a static description of the dynamical transformation
process in terms of the OBDD-like structure of transformers. Moreover, the size and the shape of
the transformer gives all information needed to understand the transformation itself. For example, it is
possible to estimate the size of the target OBDD from the sizes of the original OBDD and the transformer.

In fact, we prove even more. We show that the concepts of transforming OBDDs by means of applying
sequences of elementary operations is equivalent to the concept of computing OBDDs by means of the
Derve algorithm and certain transformers.

The second part of this section, contains several examples of OBDD-transformations that illustrate the
use of transformers.

5.1 Transformers vs. Sequences of Elementary Operations

Theorem 6.

(f, m) is an OBDD-transformation of (g,0), (f,7) <oppp (9,0), if and only if for every n, there is an
m and an OBDD-transformer T, such that 7, OBDD(f,) and 0m OBDD(gm )< T, are equivalent up to a
renaming of the variables.

The proof of Theorem 6 is the consequence of the next two lemmas.

Lemma 7.
Let I" be a mOBDD-transformer and let P be a tOBDD. Then POT is a transformation of P, i.e., it
can be obtained from P by applying a sequence of elementary operations.

Proof.

In order to prove the statement, we show that, for each P and 7', there is a P’ derivable from P by a
sequence of elementary operations such that P/ = P<OT. The proof is done by induction on the depth of
T (i.e., on the length of the longest path in 7).



Basis: depth(7)=1.

T consists of a sink labeled by —1,+1,or L. Let the negation mark of 7" be 1. In the first two cases,
POT 2 T and we obtain T from P by applying Operation 4. In the last case, when T consists of the
sink labeled by L, POT = P. If the negation mark of T'is —1, then we use Operation 1 as well.

Inductive step: Let the statement hold for all transformers of depth less than &k, £ > 1.

The information in a node is represented by a tuple [var,true-successor, false-successor, negation mark.
Let P =[zp, P,, Ps,mp) and T = [xp, T}, T, m7).

a)

zp = |zp|==2

There are several subcases that correspond to zp. If mp = —1, we change the negation mark of
P. Applying Operation 5, we separate the subgraphs P; and P, i.e., we derive from P an OBDD
Q = [z,Q:, Qf, mp * my] such that Q; = P, Qy = Py and @, and Q; are disjunct.

1) 20 =2
) According to Derive, POT = [z, P,OTy, PrOTy, mp * myp]. POT, 2 QuOTy and PrOTy =
Qs<OTy. Since Ty and Ty are transformers of depth less than k, we can use the inductive
hypothesis on Q¢ OT; and QOTy. There is a P (Py) derivable from Q; (@) and, hence, from
P, (Py) by applying elementary operations such that P/ = P,OTy (P = PrOTy).
ii) T =X
According to Derive, POT = [z, PrOTy, PoOTy, mp * mp]. Applying Operation 2 to @, we
obtain an OBDD R = [z,Qy, Q¢, mp * mp]. Since T; and Ty are transformers of depth less
than k, we can use the inductive hypothesis on QfOT; and QOTy. There is a P (P})
derivable from Q¢ (Q:) and, hence, from P; (P;) by applying elementary operations such that
P = P;OTy (P = POTy).
i) zr =1,
According to Derwe, POT = [z, P,OTy, PoOTy, mp * mp]. Applying Operation 3 on @ we
modify Q to R = [z, Q¢, Qt, mp*my]. Since T; and T are transformers of depth less than k, we
can use the inductive hypothesis on Q;CT; and Q;<OT. There is a P/ and PJi derivable from Q:
and, hence, from P by applying elementary operations such that P} = P,OTy (Pp = POTy).
iv) zp = -1,
According to Derwe, POT = [z, P;OTy, PyOTy, mp * myp]. @ is modified by Operation 3 to
R=1[z,Q¢,Qf, mp + mp]. Then we proceed similarly as in the previous case.

In all subcases we obtain P’ = [z, P}, P}, mp x my] which is equivalent to POT.

rp > |$T|
P can be expanded by multiple application of Operation 6 to an equivalent OBDD P’ with the
variable 7 on the top. Then we have the case a).

rp < |1‘T|

Let 7" := [xp,T,T,1]. According to Derive, POT' = [xp, B,OT, PrOT, mp] = POT. A similar
“unfolding” can be done recursively in P,OT', resp. Py OT', until the restrictions of P with top
variables greater or equal to a7 are reached. Thus, the top part of POT will be isomorphic to P
and the bottom part consists of OBDDs P, 1 < @ < r, for respective restrictions Py, ..., P, of P.
Each of them fulfils the assumption of case a) or b). O

Lemma 8.
Let P be a tOBDD. If P' is a tOBDD obtained from P by applying a sequence of elementary operations,
then there is a 1 OBDD-transformer T' such that P’ is equivalent to POT.

Proof.
The corresponding transformers are constructed inductive, with respect to the number of elementary
operations that transform P to P’.

10



Basis: k= 1.

Let v be a node of P which is transformed via an elementary operation. Since Operations 5 and 6 do
not change the functionality of P, the trivial transformer (a sink labeled by L with negation mark +1)
is the solution. In the other cases, the transformer T is constructed as follows. We start with a graph
Ttop isomorphic with the subgraph of P that consists of all root-to-v paths in P. Then we change all
negations marks in Tiop to 1. The node v' in T that corresponds to v is changed according to the used
elementary operation:

Let ¢ be a sink node labeled by L with negation mark equal 1.

Operation 1: v’ has the inverse negation mark of v and its true- and false-edges enter ¢.
Operation 2: v’ is labeled by the negated variable of v and the true- and false-edges enter .

Operation 3: If the true- (false-) edge of v should be redirected to the false- (true-) successor of v, then
v’ is labeled by —1, (respectively, 1,), and both successors are t.

Operation 4: v' will be the respective sink.

All other edges (according to definition each non-sink node of a transformer has two out-going edges)
enter .

The correctness of the construction can be shown by induction on the index of the top variable of T'.
Inductive step: Let Py, P, ..., Py, Pry1 be the sequence of OBDDs such that for 1 < i < k holds that P4
is obtained from P; via one elementary operation (applied to one node), and let Py = P. According to
the inductive hypothesis, there are transformers Ty and 7" such that POT, = Py and PrOT" = Prya.
Applying Proposition 5, we get PO(TgoT") =2 (POTE)OT! =2 PyOT' = Pyqq, ie., T 0T is a transformer
that transforms P into Pgy;. O

We say that the sequence of OBDD-transformers (7,,)5%; from the theorem realizes an OBDD-transfor-
mation (f, 7) <opp (9, 7). We remark that there is nothing said about the number of variables in T},
yet (e.g., see examples at the end of this section).

5.2 Examples
We have proved in Theorem 6 that transformers provide an alternative formalism for OBDD-transfor-

mations which is supported by the output-efficient algorithms Deriwve and Compose. The effect of this
formalism is demonstrated by the following examples.

5.2.1 Redirection of an Edge

In Section 3, we discussed the operation of redirecting an edge of an OBDD P to another node of P. The
situation is sketched in the Figure 1. The above mentioned non-elementarity of this operation follows
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from the fact that each node stores only local information.

Let u, v and w be nodes of P, v be d-successor of P T
u. We want to redirect the d-edge of u to w. A
transformer 7' that simulates this operation on P
is constructed as follows. In order to describe the
operation, we have to specify the node to which
the edge should be redirected. The idea is the
same as in the basis case of the proof of Lemma 8.
The top part of T' is constructed as an isomor-
phic counterpart of all root-to-u paths in P. All
other edges enter a sink labeled by L with nega-
tion mark equal 1. The d-edge of u enters a root
of an OBDD that is isomorphic with the OBDD
rooted in w.

Figure 1

5.2.2 (MOD-2,7) <oppp (MOD-4, )

Another example, describes the transformers that realize the transformation of MOD-4 to MOD-2 function
with respect to trivial variable ordering (the change to any other ordering is straightforward) Formally,
MOD-2% (21, ...,2,) = 1 iff Z?zl z; MOD-2! = 0. All negation marks are equal to 1 and are omitted
in the figures.

P4 T P2
€T €T €T
9 o To To ]
xr3 xr3 xr3 xr3
T4 T4 k T4 T4

Ty Ty Ty Ty

e ,/'536 e

8%

iy

1 -1 -1 -1

Figure 2 P4OT = P2

P4is an OBDD for MOD-44 and P2 is an OBDD for MOD-2¢. T is a transformer that modifies P4 to P2,
i.e., PA4OT = P2. We leave the OBDDs unreduced since it is easier to see what happens. The idea behind
the construction of T is based on the observation that MOD-2,(z1,...,z,) = 1 iff > . ,z; MOD 4
is equal 0 or 2.

Another transformer which realizes an OBDD-transformation of (MOD-2, 7) to (MOD-4, 7) can be con-
structed based on the observation that MOD-2, (a1, as, ..., an) = MOD-4s, (a1, a1, as, as, ..., an, an) holds
for all @ € {0,1}", a = (a1, as, ...,a,). S is a transformer that modifies OBDD @4 (for MOD-4;) into
OBDD @2 (for MOD-23). After reduction of redundant nodes from Q2 (i.e., those nodes that have two
equal successors), we obtain an OBDD for MOD-2 over the variables {z, z3, z¢}.
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Q4 = P4

T
o T3
T3
Tq

Ty

Lo

AP

Figure 3 Q405 = @2
It is easy to see that MOD-2 <oppp MOD-2¢, for any 1.

5.2.3 (MOD-4,7) <oppp (MOD-2, )

R2

Figure 4 R4 = R2OU

R2 is an OBDD for MOD-24, U is a transformer and R4 = R2OU. red(R4) is obtained from R4 by

elimination of the redundant nodes.

It is easy to see that MOD-2 <pgpp MOD2, for any i.
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6 Complexity-bounded OBDD-Transformations

It is easy to see that the relation <pppp defined via OBDD-transformations is reflexive and transitive.
Even more, we can show that <gppp is symmetric, too, and, hence, that all problems are equivalent
with respect to unbounded OBDD-transformations. This is not surprising since we allow to apply any
sequence of elementary operations, no matter how long it is.

Proposition 9.
Fach problem (f, 7) is transformable to problem (1, 0), where o is any variable ordering and, vice versa,
problem (1, 0) s transformable to any problem (f, ).

Proof. The proof is based on the algorithm Derive. Every OBDD can be seen as an OBDD-transformer.
Let 1 be the reduced OBDD for the constant function 1. Each OBDD P fulfills the relation 1OP = P
and PO1=1. O

Corollary 10.
Any two problems are transformable to each other. O

In order to use OBDD-transformations for the investigation of complexity theoretic properties of OBDDs,
we have to restrict their computational resources in an appropriate way. As already mentioned, the
complexity measure of main interest is OBDD-size. Since, due to Propositions 3 and 4 together with
Theorem 6, the size of the OBDD constructed by the transformation can be estimated in terms of the
size of the applied transformer it suffices to restrict the size of the transformers in order to obtain results
of complexity theoretic relevance.

Definition.

Let r(n) be a function on the natural numbers. A problem (f,7) is called a r(n)-bounded OBDD-
transformation of the problem (g,0) (denoted by (f, m) STO(Z,)DD (g,0)) if there is a sequence of OBDD-
transformers (7,,) such that

- for each n there is an m such that =, OBDD(f,) and o, OBDD(g,,)<T,, are equivalent up to a
renaming of the variables, and

- the sequence of transformers (7,,)024 is 7(n)-bounded, i.e., size(T,,) < r(n) for each n.

If C is a class of functions, then the problem (f, 7) is a C-OBDD-transformation of the problem (g, o)
(denoted by (f,7) <Szpp (9,0)) if there is a function r € C such that (f, 7) Sgg)DD (9,0).

To give some examples, we mention that the transformations described in Sections 5.2.2 and 5.2.3 are
examples of linearly bounded transformations. Unlike that, the operation in the example 5.2.1 provides
a transformation that may be exponential, depending on the position of the redirected edge.

No matter how much we restrict the sizes of transformers, the transformations remain reflexiv in any
case. The transitivity is a more sensitive property. According to Propositions 4 and 5, transitivity is
fulfilled in the cases of, e.g., constantly, polylogarithmically or polynomially bounded transformations.
The transformation might not be transitive e.g. in the case of linearly bounded ones. Generally, we have

Proposition 11.
For every function class C it holds that the C-OBDD-transformations are transitive if and only if for
every r1,r9 € C there is an r € C such that r > rirs. O

A noteworthy phenomenon is that the symmetry property of unbounded transformations stated in Propo-
sition 9 is no more true if one considers bounded transformations. For example, if one cuts out an expo-
nentially large subOBDD by Operation 4, then an exponentially large transformer is needed to ‘repair’
this. Fig. 5 below shows an example.
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Example: Operation 4 and its reversion

Let P be a OBDD and u be a node of P. The replacement of the d-successor of u by the 0-sink can
be realized by means of a transformer 7' whose top part is isomorphic to the subgraph of P which is
defined by all root-to-u paths. The d-successor (—d-successor) of node u’ in T' that corresponds to u in
this isomorphism is the sink with the negation mark equal to 1 and is labeled by 0 (respectively, by ).
All omitted edges enter the sink labelled by L with negation mark 1.

The transformer 7! realizes the inverse operation as 7" on P. The whole OBDD P’ rooted in v has
to be reconstructed. This OBDD P’ is a part of 7. Hence, it can be exponential in the number of
variables, if this is true for P’.

T—l

Figure 5  (POT)OT-!' =P

6.1 Polynomial OBDD-Transformations

Size bounded transformers provide a relevant reduction tool for the investigation of complexity classes
defined in terms of OBDDs. Remember, if C is a class of functions, then the complexity class Cornn
is defined to consist of all problems (f, w) for which, for every n, the size of the reduced =, OBDD(f,)
is bounded by r(n) for some r € C. Particularly, Poppp denotes the set of problems representable by
means of polynomially bounded OBDDs, i.e.,

Poepp = {(f, )| there is a polynomial p(n) with size(m,OBDD(f,)) < p(n) for all n }.

Now, let <% 5, p denotes the relation defined by means of polynomially bounded OBDD-transformation.
Two problems TT and ¥ are said to be equivalent w.r.t. polynomial OBDD-transformation (denoted by
M =bppp ) if M <ppp ¥ and X <Gppp I

Proposition 12.
The relation <V, 1s transitive.

Proof. The transitivity follows from Propositions 4 and 5. In order to apply Compose, we have to use
the respective renamings, too. O
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Pospp is the basic class in the hierarchy of complexity classes defined by polynopmially bounded OBDD-
transformations

Proposition 13.
Let 11 be a problem from Poppp and o any vartable ordering. Then I1 =4, 5, (1,0).

Proof. The construction of the transformers is the same as in the proof of Proposition 9. O

Corollary 14.
For any two problems Il and ¥ from Poppp it holds T E}(SBDD ¥.

Polynomially bounded OBDD-transformations are the adequate reduction tool for investigating the mem-
bership in the class Poppp. This property can be very useful in practical applications of OBDD trans-
formations.

Corollary 15.
If 11 SPOBDD Y then X € Porpp implies Il € Poppp and 11 € Poppp implies ¥ & Poppp. O

In the following we sketch an example which shows how to use OBDD-transformations in order to derive
exponential lower bounds on the OBDD-size.

Example: Transfer of exponential lower bounds.

Let PERM,, be the test whether an n X n matrix M over {0,1} is a permutation matrix, i.e., if there
is exactly one 1 in each row and each column. Let MAG,, denote the test whether an n x n matrix M
over {0,1} is a magic square, i.e. whether the sum of the elements in each rows and each column agree.
MAG,, differs from MAG),, in the point that the matrix has entries from {0, 1,...,n}. It holds

PERM <% MAG*  PERM <, MAG

In [KMWS&8] it was proven that the function PERM requires exponentially large OBDDs for any variable
ordering. (This lower bound holds even for FBDDs that generalize OBDDs by allowing different variable
orderings on different paths). Due to this fact we derive exponential lower bounds for the two magic
square problems MAG* and MAG.

First, we construct, for any variable ordering 7, an OBDD-transformation from (PERM, ) to (MAG", 7).
Then we discuss the extension of this solution to the transformation of (PERM, ) to (MAG, 7). In any
case, the existence of these transformations prove the intractability of the problems MAG and MAG*.

W.l.o.g, the functions PERM,, and MAG] are assumed to be defined over the same set of variables
{m;; |1 < i,j < n}. The transformation is based on the observation that a permutation matrix is a magic
matrix whose row and column sum is equal to 1. Let m;; be the first variable in the considered ordering
m. Let the variables in the i-th row occur in the ordering m;; = mj;(1y < myj2) < Myja) < - -+ < Myjn)
and the variables in the j-th column in the ordering m;; = m;(1); < my(2); < my); < -+ < My(n);. The
transformer 7T)! (Fig. 6) excludes from the solutions of MAG}, those matrices which row sums are destinct
from 1 (it suffices to check the sum in one row). The transformer 7)? that can be obtained from 7, by
replacing each my; ) by my(ky; excludes from the solutions of MAG;, those matrices which column sums
are destinct from 1 (it suffices to check the sum in one column).
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o

Figure 6

T} and 7?2 are both m,-transformers and we can build a transformer 7' = T} AT?, which excludes those
matrices that have either a row sum or a column sum distinct from 1. The size of T}, is bounded by the
product of the sizes of 7! and T? and is hence O(n?). Transformer T,, on the figure is constructed with
respect to the natural ordering, i.e. for all 1 < ¢,7,k,1 < n, such that ¢ < j or (i = j)&(k < 1) holds
m;; < my. Let MAG, be defined over variables {p;;x |1 <i,j <n,0 <k < N}, where N = [logn] + 1
and (pijo, Pij1, .-, pijn) is a binary code of the element in the i-th row and j-th column in the input
matrix. The transformers for the transformation of Perm to MAG can be obtained from the transformers
T for the transformation of Perm to MAG" described above by setting p;jo, pij1, ..., pijn—1 to 0 and by

replacing m; ; by pi;n.

Corollary 16.
For any variable ordering m, tOBDDs for the functions MAG, and MAG, have size in 282(n)

Now we show that read-once projections correspond to polynomially bounded OBDD-transformations
which are realizable by means of very simple structured transformers.

Corollary 17.
The read-once projection defined by a mapping 7, : (21, ...,2n) — (Y1, ..., Ym) can be realized by means of
an OBDD-transformer of size m.

Proof. Following the proof of Proposition 1, we construct the transformer 7, which consists of a sequence
of n+ 1 nodes labeled by the literals consistently with the natural order. Depending on 7,, the following
cases occur: 1 <i1<n

yi = 1(respectively, 0): The i—th node is labeled by 1,, (resp., —1,,) and both its outgoing edges
enter the (7 + 1)-st node.

yi = xj(respectively, Z;): The i—th node is labeled by y; (resp., 7i) and has two outgoing edges, both
enter the (7 + 1)-st node.

The (n + 1)-st node is a sink labelled by L with the negation mark 1. O

However, polynomially bounded OBDD transformations are definitively stronger than read-once-reductions.
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Corollary 18.
There are even constantly bounded OBDD-transformations that can not be obtained via any read-once
projection. 0O

Generalizing OBDDs to multi-rooted OBDDs, we obtain an appropriate representation of multivalued
Boolean functions, i.e., mappings {true, false}" — {true, false}”, where all output bits are represented
at once. OBDD-transformations for this generalised type of OBDDs can be obtained in a similar
way as explained for OBDDs: A problem TI is reducible to problem X if, for each instance T, its
OBDD-representation can be obtained from the OBDD-representation of some instance X,,. Formally,
(f,m) <ompp (g,0) iff, for each n, there is an m and a transformer T such that for all ¢ there are j, k
with
Fi = T%¢GI,

(up to a renaming of the variables), where F¥ is the fOBDD for the i-th output bit of f,,, 7%, is the k-th
root of the transformer T', and G7, is the cOBDD of the j—th output bit of g,,.

The most surprising result obtained for read-once projections in [BW95] was the non-reducibility of
SQUARING to MULTTPLICATION. We show that this result is not a witness of the higher complexity
of the SQUARING. In contrary, it is an additional argument for the need of a more adequate notion of
reducibility in the context of restricted complexity classes.

Example: (SQU,n) <0, ;,, (MUL,7’'), where

oy = (w(1), 7(1)+n, 7(2), 7(2)+n, ..., 7(n), 7(n)+n) T

For every m, we can construct a w5, OBDD-

transformer that transforms a m, OBDD for MULE,, S lonis
into a FfOBDD for SQU?,, for each i,1 < i < n. For "

each j, 1 < j < n, the w5, OBDD-transformer con- 1 . 1
tains one node labeled by 22;_1. Each node labeled T Tnt2 Tnt2

by x2;_1 has two successor nodes labelled by xs;.
The true-successor (respectively, the false-successor)
has one out-going edge labeled by +1 (resp., by —1).
The transformer for the naturaly ordered variables
is illustrated on Fig. 7. O
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Appendix

Pseudo-code descriptions for the algorithms Derive and Compose

We use the following notions and denotations: OBDDs and OBDD-transformers are referred to by their
root. A node stores the information about its label (var), its two successors (true and false), and its
negation mark (mark). Sinks have no successors (i.e., true and false are set to L which has a meaning of
NIL) and store only their labels (0, 1, L) that are (for sake of uniformity) denoted as var, too. The labels
of the variables are less than the labels of the sinks. Command ‘select’ performs only the commands that
follows after the first true condition.
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Derive:

input: 7fOBDD G, #OBDD-transformer 7'

output: 7fOBDD H.

begin
imput(G);input(7);
ROOT(H)=Derive_step(ROOT(G),ROOT(C));
output(H);

end

Derive_step(u, v)
begin
if computed(u,v) then return result;
if SINK(v) { (* SINK(v) is true if v is a sink. *)
if (v.owar ==1){
[u, v].var=u.var;
[u, v].mark=u.mark*v.mark;

[u, v].true=u.true;
[u, v].false=u.false;
} else{

u, v].mark=v.mark;

]

]

]

[u, v].var=v.var;
[

[ true=wv.true;
[

]
u, v]
u, v].false=v.false;
}
} else {

if (u.var < |v.varl) {
[u, v].var=u.var;
[u, v].mark=u.mark;
[u, v].true=Derive_step(u.true,v);
[u, v].false=Derive_step(u.false,v)
} else {
[u, v].var= |v.var;
select {
w.var > |v.var:
[u, v].mark=v.mark;
[u, v].true=Derive_step(u, v.true);
u, v].false=Derive_step(u,v.false)
|u.var| == |v.var|:
[u, v].mark=u.mark *v.mark;
z = |v.varl;
select {
v.var == x:
[u, v].true=Derive_step( u.true,v.true);
[u, v].false=Derive_step( u.false,v.false);
v.var == :
[u, v].true=Derive_step(u.false,v.true);
[u, v].false=Derive_step(u.true,v.false);
v.var == 1,:
[u, v].true=Derive_step(u.true,v.true);
[u, v].false=Derive_step(u.true,v.false);
vovar == —1z:
[u, v].true=Derive_step(u.false,v.true);
[u, v].false= Derive_step(u.false,v.false);
} (* end of select *)
} (* end of select *)
} } store_and_return([u, v]);
end

Compose:

mmput: TOBDD-transformer Cy, Cs.

output: TtOBDD-transformer T.

begin
input(C1 );input(Ch);
ROOT(C)=Compose_step(ROOT(C1),ROOT(C:));
output(7);

end

Compose_step(u,v)
begin
if computed(u,v) then return result;
if SINK(v) { (* SINK(v) is true if v is a sink. *)
if (v.var ==1){
[u, v].var=u.var;
[u, v].mark=u.mark*v.mark;
[u, v].true=u.true; [u, v].false=u.false;
} else{ [u, v].var=v.var;
[u, v].mark=v.mark;
[u, v].true=v.true; [u,v].false=v.false;

} else { select
|u.var| < |v.var|: {
[u, v].var=u.var;
[u, v].mark=u.mark;
[u, v].true=Compose_step(u.true,v);
[u, v].false= Compose_step(u.false,v) }
|u.uar| > |U.Uar|:
[u, v].var=v.var;
[u, v].mark=v.mark;
[u, v].true=Compose_step(u,v.true);
[u, v].false= Compose_step(u,v.false); }
|u.var| == |v.var]:
[u, v].mark=u.mark*v.mark;
z = |v.var];
select {
v.owar ==z: {
[u, v].var=u.var;
[u, v].true=Compose_step(u.true,v.true);
[u, v].false=Compose_step(u.false,v.false);

}

v.var == I:

{select {
u.var == z: [u,v].var = v.var,
u.var == 7: [u,v].var=x;

true: [u,v].var = u.var; }
[u, v].true=Compose_step(u.false,v.true);
[u, v].false= Compose_step(u.true,v.false); }

}

v.ovar == 1,:

{select {
u.var == z: [u,v].var = v.var,
u.var == x: [u,v].var= —1g;

true: [u,v].var = u.var; }
[u, v].true=Compose_step(u.true,v.true);
[u, v].false=Compose_step(u.true,v.false);

}

v.var == —1,:

{select {
u.var == z: [u,v].var = v.var,
u.var == x: [u,v].var= 1g;

true: [u,v].var = u.var; }
[u, v].true=Compose_step(u.false,v.true);
[u, v].false=Compose_step(u.false,v.false);
}
}

} store_and_return([u,v]);
end



