Electronic Colloquium on Computational Complexity - Reports Series 1996 - available via:

P FTP: ftp.eccc.uni-trier.de:/pub/eccc/
Revision 01 of
S0 O 0 WWW: http://www.eccc.uni-trier.de/eccc/

ECCC TR96-010 Email: ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

A Reducibility Concept for Problems Defined in Terms of

Ordered Binary Decision Diagrams *

Christoph Meinel

FB IV-Informatik, Universitat Trier, D-54286 Trier, Germany
1.

meinel@uni-trier.de

Anna Slobodova
ITWM-Trier, Bahnhofstr. 30-32, D-54292 Trier, Germany

anna@trier.itwm.fhg.de

Abstract

Reducibility concepts are fundamental in complexity theory. Usually, they are defined as follows:
A problem Il is reducible to a problem ¥ if Il can be computed using a program or device for X
as a subroutine. However, this approach has its limitations if restricted computational models are
considered. In the case of ordered binary decision diagrams (OBDDs), it allows merely to use the
almost unmodified original program for the subroutine.

Here we propose a new reducibility concept for OBDDs: We say that IT is reducible to ¥ if an
OBDD for II can be constructed by applying a sequence of elementary operations to an OBDD for
3. In contrast to traditional reducibility notions, the newly introduced reduction is able to reflect
the real needs of a reducibility concept in the context of OBDD-based complexity classes: it allows to
reduce those problems to each other which are computable with the same amount of OBDD-resources
and it gives a tool to carry over lower and upper bounds.

1 Introduction

Reducibility is one of the most basic notions in complexity theory. It provides a fundamental tool for
comparing the computational complexity of different problems. The key idea is to use a program for a
device that solves one problem Y as a subroutine within the computation of another problem II. If this is
possible, TI is said to be reducible to ¥. Reductions provide the possiblity to derive upper bound results
on the computational complexity of problem IT and lower bounds for X, if one insists that the program
for IT designed around the subroutine for X respects certain resource complexity bounds of interest.

In the past, a great variety of different reducibility notions has been investigated in order to get a
better understanding of the different computational paradigms and/or resource bounds. Here we only
mention polynomial-time Turing reducibility, log-space reducibility, polynomial projection reducibility,
and N Cl-reducibility (see, e.g., [Lee90], [BDG88]). This great variety of different reducibility notions is
a consequence of the fact that the computational power available to the reduction must not be stronger
than the computational power of the complexity class under consideration. Otherwise, the possibility
of hiding some essential computations within the reduction is a threat to the relevance of the obtained
results. For example, polynomial-time reducibility does not give any insight into the computational
complexity of logarithmic-time bounded computations.

*The authors are grateful to DAAD ACCIONES INTEGRADAS, grant Nr. 322-ai-e-dr
talternatively, ITWM-Trier, Bahnhofstr. 30-32, D-54292 Trier, Germany

The computational power implementable in a reducibility notion for complexity classes defined in terms
of very restricted computational models (e.g., eraser Turing machines [KMW&8], real-time branching
programs [KW8T7], or ordered binary decision diagrams [Bry86]) becomes extremely limited, since in
general, almost all of the resources are consumed already by the programs which are used as subroutines
in the reductions. Hence, the traditional approach results in reducibility concepts which enable to relate
merely highly similar problems (e.g., [BW96]). Since complexity classes defined by such restricted models
are interesting for the theory — they occur in connection with our limited abilities in proving lower bounds
[e.g., KMW88, KW87, Mei89] — and of practical importance — ordered binary decision diagrams are the
state of the art data structure for computer aided circuit design [Bry86] — it is highly desirable to develop
more powerful reducibility concepts.

Here, we consider the case of complexity classes defined by ordered binary decision diagrams (OBDDs,
i.e., read-once binary decision diagrams with a fixed variable ordering). We attempt to overcome the
difficulties mentioned above by introducing a new reducibility concept that is based on the following
idea: A problem IT is reducible to a problem ¥ if an OBDD for TI can be constructed from a given
OBDD for X by applying a sequence of elementary operations (here ‘elementary’ means ‘performable in
constant time’). In contrast to previous reducibility notions the newly introduced reduction notion is
able to reflect the real needs of a reducibility concept in the context of OBDD-based complexity classes:
Firstly, it allows to reduce those problems to each other which are computable with the same amount of

OBDD-resources, and, secondly, it allows to carry over lower and upper bounds.

Although well-motivated, a reducibility based on sequences of elementary operations is difficult to describe
and to handle since it has to deal with permanently changing OBDDs. We develop a formalism (called
OBDD-transformer) for a more ‘static’ description of the reduction process. We prove that the size of
an OBDD which is obtained by the application of a sequence of elementary operations can be estimated
in terms of the sizes of the original OBDD and of the corresponding OBDD-transformer. Hence, this

formalism gives a solid basis for complexity theoretic investigations.

2 Notations and Preliminaries

Let X,, denote the set {z1, 29, ..., z,} of Boolean variables. A wvariable ordering on X, is a total order on
X, and is described by a permutation of the index set I, = {1,...,n}, i.e. z; < z; iff #71(d) < 7#~'(j).
Throughout the paper, we will work with the extension of an ordering to constants false and true which
are defined to be maximal (false and true become incomparable). Identity defines the so-called natural
ordering. Two orderings (possibly defined on different variable sets) are said to be consistent if there is
no pair (z;, x;) such that z; precedes z; in one ordering and z; precedes z; in the other.

By functions, we mean Boolean functions {false, true}” — {false, true}. The standard representation
of false and trueis 0 and 1, respectively. However, it will be more convenient for us to represent false by
—1 and true by 1. = is used for the isomorphism of labeled graphs.

Definition.
An ordered binary decision diagram (OBDD) over X,, is a connected acyclic directed graph with the
following properties:

(i) There is one distinguished node without incoming edges, called root.

(ii) Nodes without outgoing edges (called sinks) are labeled by —1 or 1.

(i11) FEach non-sink node s labeled by a variable from X, . The labeling fulfills the read-once property,
.., on each root-to-sink path, any variable appears at most once.

(iv) Each non-sink node has two outgoing edges that are called true- and false-edge and are labeled by 1
and —1, respectively.
(v) Each node has a negation mark —1 or 1.

(vi) All variable orderings defined by the occurence of variables on root-to-sink paths are consistent.

The nodes that are labeled by the same variables form a level. Let 7 be a variable ordering. An ordered
binary decision diagram is a fOBDD if all variable orderings defined by the occurence of variables on
root-to-sink paths are consistent with m. The size of an OBDD P is defined as the number of its nodes
and is denoted by size(P).

In order to make figures more compact, we omit the labels of the edges and use solid lines for the
true-edges and dotted lines for the false-edges of an OBDD. The negation mark 1 is usually omitted.

Let v be a node of an OBDD. Each input assignment o = (ay, ..., a,) uniquely determines a v-to-sink
path p, () according to the following rule: At an inner node with label z;, the outgoing edge with
label a; is chosen. Let sgn, () denote the product of the negation marks on the nodes on p, () and
sink, (@) be the label of the sink on p,(«). The Boolean function which is represented by v is defined
by fu(a) = sgn,(a) - sink,(a), for any input «. The function represented by an OBDD is the function
represented by its root. We will not distinguish between an OBDD and its root as long as it introduces
no ambiguity. In this sense, the successors of a node are the nodes reachable via edges starting in the

node as well as the subOBDDs rooted in these nodes. An OBDD (respectively, a tOBDD) for a function
f is denoted by OBDD(f) (respectively, TOBDD(f)).

The defined OBDD model slightly differs from the one usually used. The introduction of negated nodes
is motivated by existing OBDD-implementations [e.g., BRB90, Lon93, Som96], where the use of negated
edges allows to save up to half the size of the representation. If P is an OBDD, then P denotes the OBDD
obtained from P by multiplying the negation mark of the root by —1. Two OBDDs are (functionally)
equivalent (denoted by =) if they represent the same function. An OBDD is called reduced if all nodes
have negation mark 1 and no two subgraphs represent equivalent OBDDs. We remark that OBDDs
can be reduced in linear time [SW93]. For a fixed variable ordering m, the representation of a Boolean
function in terms of reduced wOBDD is uniquely determined [Bry86].

The subject of this paper is the development of a reducibility concept usable for complexity investigation
of OBDDs. Unfortunately, in the context of OBDDs, the notions ‘reduce’ and ‘reduction’ have a fixed
meaning in the sense mentioned above. Speaking about reductions in the complexity theoretical sense,
we avoid the terminological ambiguity by using the term ‘OBDD-transformation’ instead of ‘OBDD-
reduction’.

The non-uniformity of OBDDs and the sensitivity of the structure and the size of an OBDD to a variable
ordering have to be taken into account in the definition of a ‘problem’ in this context. Due to the former
attribute, we work with a family of functions. The latter makes differences among representations of a
function with respect to different orderings. Indeed, the differences in sizes of equivalent OBDDs with
respect to different variable orderings may be exponential.

Definition.

A problem (f, m) is a sequence of pairs ((fn, 7))o=y, where f, : {false, true}™ — {false, true} is a
Boolean function and m, is a permutation which defines a variable ordering for f,. For each n, (fn,)
1s called an instance of the problem.

For each problem (f, 7), there is a uniquely determined sequence (m, OBDD(f,))5%, of reduced OBDDs.

3 OBDD-Transformations

Our aim is to introduce a reducibility concept for complexity classes defined by OBDDs which reflects
the expense that arises if one constructs an OBDD P’ for one problem from a given OBDD P for another
problem. This expense is measured in the number of ‘elementary’ operations that are necessary for
constructing P’ from P. Here, an operation is considered ‘elementary’ if it can be performed in constant
time (under the unit cost measure).

Operation 1. Setting/deletion of the negation mark of a node, i.e. negating the subfunction computed in
this node (Fig. 1).
Operation 2. Exchange of outgoing edges of a node, i.e. negation of the label (Fig. 1).

Operation 3. Redirection of one outgoing edge towards the second one, i.e. replacing the label of this

node by the corresponding constant value (Fig. 1).

Original node Operation 1 Operation 2 Operation 3
v v v v v
m . —m m o o
or
J g b Y9 A
U1 V2 U1 V2 U1 V2 U1 V2

Figure 1: Application of Operations 1, 2 and 3.

Operation 4. Replacing a node by a sink, i.e. replacing the subfunction computed in this node by a trivial

constant function (Fig. 2).

or or or
-1

Figure 2: Operation 4.

Operation 5. Node splitting, i.e. redirection of an edge to a newly created equivalent node (Fig. 3).

Uy Usp

U1 U2

or

w1y

U1 V2 U1 VU2

Figure 3: Operation 5.

Operation 6. Introduction of a dummy node labeled with a variable that is consistent with the given
variable ordering (Fig. 4, 2; < z; < 2y).

u
€T
u v s w
X ij & o
v w v
TL <} Ty \/
& o &

v1] v1 V3

Figure 4: Operation 6.

Considering the usual representation of an OBDD, where each node stores its label, its mark and two
pointers to its sons, all operations are performable in constant time.

The operations defined above have clear semantics. The first operation negates the subfunction defined
in a node, the second operation negates the evaluation of the checked variable, the third one corresponds
to the restriction, and the fourth operation provides a replacement of a subfunction by a trivial function.
Unlike the first four operations, which may change the functionality of an OBDD, the last two allow
to turn to unreduced OBDDs and to perform the subsequent operations merely on some distinguished
subgraphs/subfunctions.

It is quite natural to have the possibility to rename variables. Among other things, it allows to move
from from one variable set to another and from variable ordering to another. In order to preserve the
‘read-once property’, we have to insist that renaming does not identify any two different variables.

Definition.

A problem (f, m) is an (OBDD-)transformation of a problem (g, o) (written as (f,7) <oppp (g,0)), if for
each n, there is an m such that the reduced m, OBDD(f,,) can be obtained from the reduced o,,, OBDD(g,,)
by a sequence of elementary operations completed by reduction and a renaming of variables (i.e., appli-
cation of a bijective mapping on the set of variables that occur in the reduced OBDD).

Example A.
The following example illustrates an OBDD-transformation defined by means of the application of a
sequence of elementary operations. We show that, for any variable ordering |

n n
(\/ Iiaﬂ-) SOBDD (/\Iiaﬂ-)
i=1 i=1

n
We start with an OBDD that computes A z;. First, applying Operation 2 on each node, we obtain an
i=1

1=

OBDD that computes A ;. Then we apply Operation 1 to the root of this OBDD. We obtain an OBDD
i=1

1=

n n n

that computes A Z; . Since, by DeMorgan’s rules, A Z; = \/ z; the constructed OBDD is the desired
i=1 i=1 i=1

one. For case n = 2 and natural variable ordering, the transformation is shown in Fig. 5.

Operation 2 Operation 2 Operation 1 Reduction

T T T T -1
o Q

-1 1 -1 1 -1 1 -1 1 1 -1
Figure 5: Application of elementary operations.

It is noteworthy that the functions considered in the example are not reducible by means of read-once
projections [BW96]. O

The description of more complex and interesting (OBDD) transformation in terms of sequences of elemen-
tary operations which have to be applied on permanently changing OBDDs may be quite cumbersome.
In order to overcome these difficulties, we develop a formalism for the description of the transformations,
which is more ‘static’ and easy to manipulate . The basic idea of this formalism is to encode a sequence
of elementary operations by a certain OBDD-like graph structure, the so-called transformer. Then the
application of a sequence of elementary operations to a given OBDD is realized by means of an algorithm
Derive which computes the desired OBDD from the given one and a corresponding transformer.

Using this formalism it becomes much easier to get transformations like (MOD-2,7) <oppp (MOD-2!),
(MOD-2! 7)) <oppp (MOD-2,r),or (SQU,7) <oppp (MUL,r') which show the power of the introduced
reduction concept in comparison with the formerly mentioned read-once-projections.

Moreover, since we prove that the size of a transformed OBDD can be estimated in terms of the sizes of the
original OBDD and of the transformer, our formalism opens a way for complexity theoretic investigations.

4 Alternative Description of OBDD-Transformations

In the following we develop an alternative more ‘static’ description of OBDD-transformations.

4.1 OBDD-Transformer

An OBBD-transformer is an OBDD-like structure with an extended labeling of the nodes.

Definition. ~

For any variable set X,,, we define X, = X,, U{z|r € X, }U{l]z € Xp}U {1 |z € X,,}U{-1,1, 1}
A mapping from X,, to X,, U{—1,1} is defined by z — |z|, where

(i) |zi = 17| = |1z,
(ii) |—1]=-1
(iii) |1 =] 1| =1
An OBDD-transformer (or simply transformer) T' over X, is a graph whose nodes are labeled by elements
from X,, such that the graph obtained from T by replacing each node label x by |z| is an OBDD over X,,.

==l ==

A 7OBDD-transformer is an OBDD-transformer where the orderings of the variables associated with
the labels of the nodes on the root-to-sink paths are consistent with . Particularly, each 7#OBDD is a
7OBDD-transformer. The size of a transformer T is defined as the number of its nodes and is denoted
by size(T).

4.2 The Algorithm Derive

The correspondence between OBDD-transformers and OBDD-transformations is defined in terms of the
algorithm Derive that gives an interpretation to the given OBDD-transformer. Let P be a TfOBDD and
T a tTOBDD-transformer. The result of Derive(P,T) is denoted by POT. The algorithm starts in the
roots of P and 7', scans the graphs in parallel, and creates the result recursively. The information in the
root of T describes the required changes in the root of P. Instead of modifying P, we create a new graph
as the result. The mark —1 corresponds to Operation 1, the negative variable to Operation 2, labels 1,
and —1, to Operation 3, and the sink node to Operation 4.

We explain this idea in detail. If is a label (of the root) of T', then, for each constant § € {—1,1}, (the
root of) T|z|=s denotes the d-successor (of the root) of T'. Similarly, P,=s is the d-successor of P.

Trivial case:

(i) If T is a sink labeled by L, then POT is a graph isomorphic to P but its mark beeing the product
of the marks of P and T.

(ii) If T is a sink labeled by a constant, then POT is isomorphic to 7.

Nontrwial case:
Let x be the label of P and y the label of 7. The program continues according to the ordering relation
of z and |y|.

(i) If z < |y|, then a node is created with the same label and mark as P has and with true-successor
P,_1OT and false-successor P,—_1OT.

(i) If > |y|, then a node is created, labeled by |y|, with the same mark as 7" and with the true-successor
P<>T|y|=1 and false-successor P<>T|y|=_1.

(i1) If = |y|, then a node labeled by z is created. The mark of the node will be the product of the
marks of P and T. The true- and false-successor of the node depend on y:

true-successor false-successor

y== : Ppo1OTpz1 Ppe10Tp=_1
y==x : P 1 OTp—q P OTp= 1
Yy = lz : P$:1<>Tz:1 P$:1<>T =—1
Yy = —lx : Pz=_1<>Tz=1 PZ:_1<>T =—1

O
Particularly, if 7" is an OBDD, then for each OBDD P it holds POT = T'. In this case, all paths in 7'
terminate in a sink labeled by a constant. This forces all paths in POT to terminate in the same manner.

The reduction running in parallel is easy to implement in the algorithm without changing its asymptotic
time and space performance. W.l.o.g. we assume that the result of Derive is a reduced OBDD.

Proposition 1.
Let P be a mOBDD and T a wOBDD-transformer. The time as well as the space complexity of the

algorithm Derive on an input (P,T) is bounded by O(size(P) - size(T)). The size of the output is bounded
by size(P) - size(T).

Proof.
The main observation in the complexity analysis of the algorithm is that for each pair of nodes (u,v),
where u € P and v € T, at most two recursive calls to Derive_step will be generated. O

Derive is extendable on any pair consisting of a 71OBDD and a myOBDD-transformer as long as m
and w9 are consistent. In that case, there is a common order that is defined over all variables that
appear in the OBDD and the transformer, and is consistent with both orders. Since this ordering is not
uniquely defined, but has substantial influence on the result it should be explicitly given as the third
input parameter. If the variable orderings in 7" and P are not consistent, P<{T remains undefined.

4.3 The Algorithm Compose

The algorithm Compose computes the composition of two transformers that reflects the ‘concatenation’
of two OBDD-transformations. The reduced result of Compose(Ti,T5) is denoted by Ty o Ty. Like in
the case of Derive, an implementation of the reduction within Compose is straightforward and causes no
additional costs. Compose is closely related to Derive. It is designed in such a way that (POT1)<OT is
isomorphic to P<(Th oTh), which corresponds to the idea of the composition of two transformations. For
details, see the pseudocode of the algorithm given in Appendix. The complexity analysis of Compose is
based on the same arguments as the analysis of Derive.

Proposition 2.

Let Ty and Ty be mOBDD-transformers. The time as well as the space complexity of the algorithm
Compose on an input (T1,Ts) is bounded by O(size(T}) - size(Ts)). The size of the output is bounded by
size(Th) - size(Ts).

Proof.

The main observation in the complexity analysis of the algorithm is that for each pair of nodes (u,v),
where u € T1 and v € Ty, Compose_step generates at most two recursive calls. O

Proposition 3.
Let P be a TOBDD and Ty, Ty w1 OBDD-transformers. It holds: P<O(Th o To) =2 (POTY)OTs.

Sketch of the proof:

The design of Compose was exactly aimed to fulfill the property in the proposition. Indeed, the correctness
of PO(Ty o Ty) = (POT,)OT, can be easily shown by induction on the priority of the top variable of the
triple (P, Ty, Ts) (i.e., on the position of the smallest variable associated with the labels of the roots of
P, Ty, and Ty with respect to). The basis of the induction is the case when all arguments are sinks.
Deriwve_step and Compose_step always generate recursive calls with a smaller top variable that allows
to use the inductive hypothesis. The proof is then reduced to the consideration of all possible cases of
different relative positions of the top variables of arguments. O

Like in the case of Derive, Compose is extendable to any pair of OBDD-transformers as long as their
variable orderings are consistent. Otherwise, the result of o is undefined.

4.4 Transformers vs. Sequences of Elementary Operations

Now we prove that any sequence of elementary operations performed on a given OBDD P can be simulated
by applying the algorithm Derive on P and a suitable transformer 7. Moreover, we show that also the
reverse is true: any transformer describes a particular OBDD-transformation. Hence, transformer gives
an equivalent ‘static’ description of the ‘dynamical’ transformation process.

Theorem 4.

(f,m) = (fn, ™))%y is an OBDD-transformation of (9,0) = (gn, 0n)3%1, if and only if, for every n, there
is an m and an OBDD-transformer T,, such that m, OBDD(f,) and ¢,, OBDD(g,,)>T,, are equivalent up
to a renaming of the variables.

We say that the sequence of OBDD-transformers (7,)5%; of the theorem realizes an OBDD-transfor-

n=1

mation (f, 7) <opnn (9, 7). Note that there is nothing said about the number of variables in T,, yet.

The proof of Theorem 4 1s the consequence of the following two lemmas.

Lemma 5.
Let T' be a wmOBDD-transformer and let P be a tOBDD. Then POT is a transformation of P, i.e., it
can be obtained from P by applying a suitable sequence of elementary operations.

Proof.

In order to prove the statement, we show that, for each P and 7', there is a P’ derivable from P by a
sequence of elementary operations such that P/ = P<T. The proof is done by induction on the depth of
T (i.e., on the length of the longest path in T').

Basis: depth(7)=1.

T' consists of a sink labeled by —1,1,or L. Let the negation mark of 7" be 1. In the first two cases,
POT 2 T and we obtain 7" from P by applying Operation 4. In the last case, when T consists of the
sink labeled by L, POT = P If the negation mark of 7" is —1, then we use Operation 1 as well.
Inductive step: Let the statement hold for all transformers of depth less than &k, k£ > 1.

The information in a node is represented by a tuple [var,true-successor, false-successor, negation mark].
Let P = [zp, P, Pt,mp] and T = [xp, T}, T, mr).
a) ¢p = |zp| ==
There are several subcases that correspond to zp. If mp = —1, we change the negation mark of
P. Applying Operation 5, we separate the subgraphs P; and Py, i.e., we derive from P an OBDD
Q = [x,Q:, Qf, mp * my] such that Q; = P, Q; = Py and Q; and @) are disjunct.

i) zp ==z

According to Derive, POT = [z, P,OT,, PyOTy,mp x myp]. POT, 2 Q0T and PrOTy =
Qs<OTy. Since 1y and Ty are transformers of depth less than k, we can use the inductive
hypothesis on Q;<T; and Q<OTy. Thereis a P/ (P}) derivable from @; (@) and, hence, from
P, (P¢) by applying elementary operations such that P/ = P,OT; (P} = PrOTy).
According to Derive, POT = [z, P;OTy, PoOTy, mp * myp]. Applying Operation 2 to @, we
obtain an OBDD R = [z,Qy, Q¢, mp * mp]. Since T; and Ty are transformers of depth less
than k, we can use the a P/ (P}) derivable from @ (Q;) and, hence, from P; (P;) by applying
elementary operations such that P/ = PyOT; (P} = P,OTy).

i) zpr =1,
According to Derive, POT = [z, BOTy, P,OTy, mp + mp]. Applying Operation 3 on @Q, we
modify Q to R = [z, Q:, Q:, mp*my]. Since T; and T are transformers of depth less than k, we
can use the inductive hypothesis on @, OT; and Q;OTy. There is a P/ and PJ{ derivable from @
and, hence, from P; by applying elementary operations such that P/ = P,OT; (P} = P,OTy).

iv) zp = -1,
According to Derive, POT = [x, Py<OTy, PrOTy, mp * mr]. @ is modified by Operation 3 to
R=[z,Q¢,Q¢, mp *mp]. Then we proceed similarly as in the previous case.

In all subcases we obtain P’ = [z, P/, PJ’,, mp * mr] which is equivalent to POT.

b) zp > ||
P can be expanded by multiple application of Operation 6 to an equivalent OBDD P’ with the
variable z7 on the top. Then we have the case a).

c) zp < |z7|
Let 7' := [zp,T,T,1]. According to Derive, POT' = [xp, P,OT, PrOT, mp] = POT. A similar
“unfolding” can be done recursively in P,OT, resp. PyOT, until the restrictions of P with top
variables greater or equal to z7 are reached. Thus, the top part of POT will be isomorphic to P
and the bottom part consists of OBDDs P;OT, 1 < @ < r, for respective restrictions Py, ..., P, of P.
Each of them fulfills the assumption of case a) or b). O

Lemma 6.
Let P be a tOBDD. If P’ is a tOBDD obtained from P by applying a sequence of elementary operations,
then there is a m OBDD-transformer T such that P’ is equivalent to POT.

Proof.

The corresponding transformer is constructed inductively, with respect to the number of elementary
operations that are applied to transform P into P’.

Basis: k = 1.

Let v be a node of P which is modified by an elementary operation. Since Operations 5 and 6 do not
change the functionality of P, the trivial transformer (a sink labeled by L with negation mark 1) is the
solution. In the other cases, the transformer T is constructed as follows. We start with a graph Ttop
isomorphic with the subgraph of P that consists of all root-to-v paths in P. Then we change all negations
marks in Ttop to 1. The node v/ in T that corresponds to v is changed according to the used

Let ¢ be a sink node labeled by 1 with negation mark equal to 1.

i) Operation 1: v/ has the inverse negation mark of v and its true- and false-edges enter ¢.
p))
(ii) Operation 2: v’ is labeled by the negated variable of v and the true- and false-edges enter ¢.

(iit) Operation 3: If the true- (false-) edge of v should be redirected to the false- (true-) successor of v,
then o' is labeled by —1, (respectively, 1;), and both successors are ¢.

(iv) Operation 4: v' will be the respective sink.

All other edges (according to the definition, each non-sink node of a transformer has two outgoing edges)
enter .

The correctness of the construction can be shown by induction on the index of the top variable of T'.

Inductive step: Let Py, P1, ..., Pk, Px41 be the sequence of OBDDs such that for 1 <7 < k holds that P;q
is obtained from P; via one elementary operation (applied to one node), and let Py = P. According to
the inductive hypothesis, there are transformers T and 7" such that POT, = P and Py OT' = Pggs.
Applying Proposition 3, we get PO(TpoT") = (POTE)OT! = PrOT' = Py, ie., T oT' is a transformer
that transforms P into Pyyi. O

Example B:

A transformer for the transformation described in Fig. 5 has three nodes. The root is labeled by Z7 and
has negation mark —1. Tts both outgoing edges enter the same node labeled by Z3 with the negation
mark 1. The outgoing edges of this second node enter the same sink labeled by L.

5 Examples of OBDD-Transformations

According to Theorem 4 and Proposition 1 and 2, transformers provide an alternative formalism for
OBDD-transformations which is supported by the output-efficient algorithms Deriwve and Compose. The
effect of this formalism can be illustrated by several interesting examples.

First, we construct transformers for OBDD-transformations between MOD2! and MOD2 functions. As
observed in [BW96], MOD-2 is not reducible to MOD-4 via read-once projections.

10

Formally, MOD-2i (21, ..., 2,) = 1 iff Z;.Lzl z; MOD 2! = 0. The presented transformations between

MOD-2! and MOD-2 are constructed with respect to the natural variable ordering. The change to any
other ordering is straightforward.

Example C: (MOD-2,7) <oppp (MOD-4,)

The idea behind the construction of the transformer for the transformation is based on the observation
that MOD-2, (21, ...,2z,) =1 iff 37", #; MOD 4 equals 0 or 2. The corresponding transformer should
force the paths for which 7 | 2; MOD 4 equals 2 to terminate in a sink labeled by 1. The transformer
for n = 6 is shown in Fig. 6. P4 is an OBDD for MOD-4¢ and P2 is an OBDD for MOD-25. We leave
the OBDDs unreduced since it is easier to see what happens.

P4 T P2

X1 T

Ne DN
N N

.

3 ¥ \(;D 3 3 H
24 x\k«k 24 24 |

935:

e
\

Ts5

Figure 6: P4OT = P2.

Example D: (MOD-2,7) <oppp (MOD-4,)

Another idea how to realize an OBDD-transformation of (MOD-2,7) to (MOD-4,) is based on the
observation that MOD-2, (a1, as, ..., a,) = MOD-44, (a1, a1, as, as, ..., ay, a,) holds for all a € {0,1}",

a=(a1,as, ..., an).

Q4 = P4
S

T I
Zs9 Zo xo \9 Z2
3 T3 N\, T3 x3
T4 T4 N T4y, T4 T4 \ hoTa
z5 >< 5Ny TN Ty T
Te i>§§ < L6 L6 \

Figure 7: Q405 = Q2.

11

For each n, we construct a transformer with 2n variables, where each variable with even index is forced to
be set to the same value as the previous variable. The implementation of this idea for n = 3 and natural
variable ordering is shown in Fig. 7. Transformer S applied on an OBDD for MOD-4¢ yields an OBDD
for MOD-23, e.g., Q4GS = Q2. After reduction, we obtain an OBDD for MOD-2 over the variables

{21, 23, 26}. This construction can be easily generalized to transformers that realize the transformation

MOD-2 <oppp MOD-2¢, for any i.

Example E: (MOD-4,7) <oppp (MOD-2,)

Figure 8: R4 = R2OU.

R2 in Fig. 8 is an OBDD for MOD-24, U is a transformer and R4 = R2OU. red(R4) is obtained from
R4 by elimination of the redundant nodes. It is easy to see that MOD-2! <pgpp MOD?2, for any i.

Example F: Redirection of an Edge.

Another example is related to the problem of redirecting an edge
of an OBDD P to another node of P. Although it looks like an
elementary operation, it is not. In order to illustrate this obser-
vation, let us consider the situation sketched in Fig. 9. Let u, v
and w be nodes of P, v be J-successor of u. We want to redirect
the d-edge of u to w as shown by the dotted line. Neither u nor
v has information about the position of w. A transformer T' that
simulates this operation on P is constructed as follows. In order
to describe the operation, we have to specify which edge should be
redirected and towards which node. The idea is the same as in the
basis of the proof of Lemma 6. The top part of T is constructed
as an isomorphic copy of all root-to-u paths of P. All other edges
enter a sink labeled by L with negation mark 1. The d-edge of
u enters a root of an OBDD that is isomorphic with the OBDD
rooted in w.

12

Figure 9: Redirection of an edge.

6 Complexity-Bounded OBDD-Transformations

It is easy to see that the relation <pppp defined via OBDD-transformations is reflexive and transitive.
Even more, we can show that <pppp is symmetric, too, and, hence, that all problems are equivalent
with respect to unbounded OBDD-transformations. This is neither surprising nor disturbing, as long as
we allow to apply any sequence of elementary operations, no matter how long it is.

Proposition 7.
Fach problem (f, 7) is transformable to (1,0), where o is any variable ordering and, vice versa, (1,0) is
transformable to any given problem (f,).

Proof.

The proof is based on the application of algorithm Derive. Each OBDD P can be seen as an OBDD-
transformer that fulfills the relation 1OGP = P and PO1 = 1, where 1 denotes the reduced OBDD for
the constant function 1. O

Corollary 8.
Any two problems are OBDD-transformable to each other. O

6.1 Complexity Measure

In order to use OBDD-transformations for the investigation of complexity theoretic properties of OBDDs;,
we have to restrict their computational resources in an appropriate manner. As already mentioned, the
complexity measure of interest is the OBDD-size. Since, due to Propositions 1 together with Theorem 4,
the size of the OBDD constructed by an OBDD-transformation can be estimated in terms of the size
of the corresponding transformer, for results of complexity theoretic relevance, it suffices to concentrate
consideration on the size-bounded transformers.

Definition.
Let v(n) be a function on the natural numbers. A problem (f,n) is called an r(n)-bounded OBDD-

transformation of (g,), denoted by (f,) g’;)(,’?;,),m (g,0), if there is a sequence of OBDD-transformers
(T) such that

(i) for each n there is an m such that m, OBDD(f,) and oy, OBDD(gn,)<T, are equivalent up to a
renaming of the variables, and

(ii) the sequence of transformers (T,,)o%, is r(n)-bounded, i.e., it holds size(T,) < r(n) for each n.

If C is a class of functions, then the problem (f,m) is a C-OBDD-transformation of the problem (g,0),
denoted by (f,7) <Sgpp (9,0), if there is a function r € C such that (f,) STO(EJDD (g,0).

6.2 Basic Properties

The transformations described in Examples C, D and E of Section 5 are linearly bounded. Unlike that,
the operation described in Example F provides a transformation that may be exponential with respect to
the number of variables, depending on the position of the redirected edge. The observation that the size of
P is not increased by the application of the transformer 7" on it, may be a reason for the question whether
the bounded transformation is well-defined. The size of the transformer gives us only an upper bound on
the growth of the resulting OBDD. If 7" is exponential in the number of variables, then by application of
T on some OBDDs (e.g., on the one-node OBDD for a constant function) may grow exponentially.

No matter how much we restrict the size of the transformers, the corresponding transformations remain
reflexive in any case. The transitivity is a more sensitive property. According to Propositions 1 and
2, transitivity is fulfilled in the cases of e.g., constantly, polylogarithmically, or polynomially bounded

13

transformations. The transformation might not be transitive e.g. in the case of linearly bounded ones.
Generally, we have

Proposition 9.
For every class of functions C, C-OBDD-transformations are transitive if and only if, for every ri,rs € C,
there is an r € C, such that r > rirsy.

Proof.
The transitivity follows from Propositions 1 and 2 combined with renaming of variables. 0O

A noteworthy phenomenon is that the symmetry property of unbounded transformations of Corollary 8
is no more true if one considers bounded transformations. For example, if one cuts out an exponentially
large subOBDD by Operation 4, then an exponentially large transformer is needed to ‘repair’ this.

Example G: Inversion of Operation 4.

Let P be an OBDD and let u be a node of P. The
replacement of the d-successor of u by the false-sink can
be realized by means of a transformer 7" whose top part
is isomorphic to the subgraph of P which is defined by
all root-to-u paths. Node u' in 1" that corresponds to
u in this isomorphism has the negation mark 1. Its
d-successor 1s the sink with label —1, —§-successor is
the sink with label L. All omitted edges enter the sink
labeled by L and negation mark 1.

The transformer T—! realizes the transformation which
is inverse to the transformation realized by T on P.
The whole OBDD P’ rooted in the d-successor of u
has to be reconstructed. This OBDD P’ is a part of
T='. Hence, it can be exponential in the number of

variables, if this is true for P’. Figure 10: (POT)OT-1=P

T—]

5/ —6)

6.3 Polynomial OBDD-Transformations

Size bounded transformers provide a relevant reduction tool for the investigation of complexity classes
defined in terms of OBDDs. Remember, if C is a class of functions, then the complexity class Copnn
is defined to consist of all problems (f,) for which there is some r € C such that, for every n, the
size of the reduced m,OBDD(f,) is bounded by r(n). Particularly, Poppp denotes the set of problems
representable by means of polynomially bounded OBDDs; i.e.,

Poepp = {(f,7) | there is a polynomial p(n) such that size(m,OBDD(f,)) < p(n) for all n }.

Now, let <, ;, denote the relation defined by means of polynomially bounded OBDD-transformations.
Two problems IT and X are said to be equivalent withe respect to polynomial OBDD-transformation
(denoted by T =4, , ,, L) if T <8, 5, ¥ and X <P, 11

The next proposition is the consequence of Proposition 9.

Proposition 10.
The relation <V, 5, is transitive.

Poppp 1s the basic class in the hierarchy of complexity classes defined by polynomially bounded OBDD-
transformation.

Proposition 11.
Let 1 be a problem from Pogpp and ¢ any variable ordering. Then M=, (1,0).

14

Proof.
The construction of the transformers is the same as in the proof of Proposition 7. 0O

Corollary 12.
For any two problems 11 and ¥ from Pogpp it holds T =4, 5 .

Polynomially bounded OBDD-transformations provide an adequate reduction tool for the investigation
of the membership in the class Poppp, which can be very useful in practical applications of OBDDs.

Corollary 13.
If NM<hpnp T then X € Poppp implies 1 € Poppp and 11 & Poppp implies ¥ € Poppp. O

6.4 Polynomial OBDD-Transformations vs. Read-once Projections

According to the definition in [BW96], f = (f,) is a read-once projection of g = (g,,) if there is a
polynomially bounded sequence (p,) such that for each n:

fn(xl; sy .l‘n) = gpn(yla ceny ypn)
where

(i) yie {-1,1}UX,U{Z;|z; € X,,} for each 1 <i < p,, and
(i2) for any i and j, ¢ # j, y;i € {®,, %7} implies y; € {x,, T} (the so-called read-once property).

The problems considered in [BW96] are defined in terms of sequences of Boolean functions, unlike to this
paper, where the variable ordering is taken in consideration as an important attribute of the problem.
Roughly spoken, f is a read-once projection of g means that for each sequence m = (m,) of variable
orderings for f there is a sequence ¢ = (¢y,) of variable orderings for g such that =, OBDD(f,) and
0mOBDD(g,,) are related as it is described in the definition. Hence, fine relations between the functions
that are visible only with respect to some subset of orderings cannot be expressed in terms of read-once
projections (see Example H). On the other hand, the extension of the notion of OBDD-transformations
to problems defined as in [BW96] is possible, but it exceeds the aim of this paper.

Proposition 14.

If f = (fu)oXy is a read-once projection of g = (9n)o2+, then for each sequence m = (m,)22, of orderings
on variables in the support of f and g, it holds (f,) Slg%)DD (g,m), where p(n) is a polynomial bound
for the sequence (p,) used in the read-once projection.

Proof.
Let p, and the y;’s have the same meaning as in the definition of the read-once projections. An OBDD(f,,)
can be obtained from an OBDD(g,,) by applying elementary operations of one type on each particular
level of nodes according to the rules described below, completed by the reduction of equivalent nodes and
by a certain renaming. The operations as well as the renaming depend on the read-once projection as
follows:

(i) If y; = 1, or —1, then Operation 3 is performed on each node v labeled by y;.
(ii) If y; = x;, then y; will be renamed to z; in all occurences.

(iii) Tf y; = F;, then Operation 2 is performed on each node labeled by y;, and y; is renamed to z;.

The nodes modified by Operation 3 are redundant and are removed in the reduction. The read-once
property assures the injectiveness of the renaming. O

Corollary 15.
A read-once projection defined by a sequence of equalities f,(21,...,2,) = gp, (Y1, ..., Yp,,) can be realized
by means of a sequence of OBDD-transformers (T,,) with size(T,,) = p, + 1.

15

Proof.

Following the proof of Proposition 14, we construct the transformer 7;, which consists of a sequence of
(pn + 1) nodes labeled by the literals consistently with the natural order. Depending on the read-once
projection, the following cases can occur, for any 1 < i < n:

yi = l(respectively, —1): The i—th node is labeled by 1,, (resp., —1,,) and both outgoing edges enter
the (¢ + 1)-st node.

yi = xj(respectively, Z;): The i—th node is labeled by y; (resp., 7;) and has two outgoing edges, both
enter the (¢ + 1)-st node.

The (pn + 1)-st node is a sink labeled by L with the negation mark 1. O

Examples C, D and E are witnesses that there are linearly bounded OBDD-transformations that are
not read-once projections. There are even constantly bounded OBDD-transformations that can not
be obtained via any read-once projection. Hence, polynomially bounded OBDD-transformations are
definitely stronger than read-once-projections.

Proposition 16.

There are OBDD-transformations which can be realized by means of a single elementary operation, or
alternatively, by a constant-bounded OBDD-transformation, but cannot be obtained via any read-once
projection.

Proof.

Let us consider the constant functions —1 and 1. Obviously, none of the functions is a read-once projection
of the other. On the other side, independently from the variable ordering, the OBDD for —1 can be
obtained from an OBDD for 1 (and vice versa) by applying Operation 1 on the root.

Generalizing the OBDDs to multi-rooted OBDDs, we obtain an appropriate representation of multi-
valued Boolean functions, i.e., the mappings {true, false}” — {true, false}™, where all output bits are
represented at once. OBDD-transformations for this generalized type of OBDDs can be defined in the
similar way as in the case of single-rooted OBDDs. A problem TI is reducible to problem X if, for each
instance I1,, its OBDD-representation can be obtained from the OBDD-representation of some instance
Y. Formally, (f, 7) <oppp (9, 0) if and only if, for each n, there is an m and a multirooted transformer
T = (T}, ..., TE) such that for all i there are j, k with

Fi = TFOGY,

(up to a renaming of the variables), where F} is the TOBDD for the i-th output bit of f,,, 7%, is the k-th
root, of the transformer 7', and GY, is the cOBDD of the j—th output bit of g,.

The most surprising result obtained for read-once projections in [BW96] was the non-reducibility of
SQUaring to MULtiplication. We show that this result is not a witness of the higher complexity of the
SQUaring. In contrary, it is an additional argument for the need of a more adequate notion of reducibility
in the context of restricted complexity classes.

Example H: (SQU,r) <0, 5p,p (MUL,7’), where 75, = (7(1),7(1) +n, 7(2),7(2) +n, ..., 7(n), 7(n) + n)

Transformers for this transformation can be built following the same principle as described in Example D.
For every n, we can construct a 5 OBDD-transformer that transforms a 7, OBDD for MUL into a
TOBDD for SQU?, for each i,1 < i < n. For each j, 1 < j < n, the 7}, OBDD-transformer contains
one node labeled by ;). The true-successor (respectively, the false-successor) of this node is labeled
by Lo i gm (resp., by —1 Figure 11 shows the transformer with respect to the natural variable
ordering.

fw(j)+n)'

16

_1$n+1 1$n+1
_1:cn+2 1£Cn+2
_1x2n_1 150271—1
_1x2n 11‘271

Figure 11: T, realizes (SQU,r) <0,ppp (MUL,7)

6.5 Deriving Exponential Lower Bounds by Polynomial OBDD-Transformation

In the following, we sketch an example which shows how OBDD-transformations can be used for deriving
exponential lower bounds on the OBDD-size.

Example I: (PERM,n) <lppp (MAG-2,)

Let PERM, be the test whether a given n x n matrix M with coefficients from {0, 1} is a permutation
matrix, i.e., if there is exactly one 1 in each row and in each column. Let MAG-2,, denote the test whether
a given n x n matrix M over Z5 is a magic square, i.e. whether the sum (XOR) of the elements in each
row and the sum of each column agree. W.l.o.g, the functions PERM,, and MAG-2,, are assumed to be
defined over the same set of variables X,, = {z;|1 <i < m = n?} and that zero is encoded by —1.

Proposition 17.
For any sequence of variable orderings m = (m,) over Xy, respectively, it holds

(PERM,) <V opnp (MAG-2,7)
Proof.
The transformation is based on the following observation: A given matrix is a permutation matrix if and
only if it is a magic matrix with n ones whose row sum and column sum over Z, (i.e. parity) is equal
to 1. The left-to-right implication of this statement is clear. Let us consider a magic matrix with the
given properties. Since the parity of each row and column coincide and is equal to 1, there is no row or
column consisting merely of zeroes. On the other hand, the existence of exactly n ones assures that no
row and/or column has more than one 1. Otherwise, there would be at least one row or column with
zeroes only.
In order to illustrate how comfortable can be the work with transformers, we describe the desired trans-
formation via the composition of two transformers which filter out those inputs from MAG-2 that have
not the desired properties mentioned above.

17

The transformer T} allows those inputs from MAG-2,,, where exactly n variables are 1. Transformer T2
checks the parity in one chosen row or column. (Since the inputs accepted by MAG-2 have equal row
and column sums, any row or column can be chosen.) The transformers are shown in Fig. 12. Since
the labels of variables in one level coincide, only the leftmost nodes are labeled in the figure. Variables
i1, L9, -, Tin 1N Tg that correspond to the coefficients in the chosen row occur consistently with .

T} and T? are both m,-transformers and we can build a transformer 7,, = 7}} o T2 which excludes all
matrices from MAG-2, that have either more or less than n ones, or have a row whose sum is distinct
from 1. The size of 7T;, is bounded by the product of the sizes of T} and 7;? which is O(n?®). Due to the
observation that the application of Compose on (T}, T?) at most doubled the number of nodes on each

n?’ n
level of T/}, we can improve the estimation of the size(T},) to O(n?).

The resulting transformer 7;, can be constructed directly by the following top-down procedure: The nodes
of T,, form (m + 1) levels. Each node corresponds to some triple (i, j, k), where 0 < i < n, j € {0,1},
and 1 < k < m. The meaning of the first element of the triple is the sum of ones read so far, the
second element represents the parity of the coefficients in the chosen row that have been already read,
and the third element represents the level. Level 0 of T}, consists of one node — the root that corresponds
to a triple (0,0,1). The nodes on level k, 1 < k < m, are labeled by z,, (x). If 1, (&) is a variable
from the chosen row, then, for the node that corresponds to (7,7, k), two nodes in level (k + 1) are
constructed. The one that corresponds to (i, j, k + 1) becomes its false-son, the other that corresponds
to (14 1,7 @ 1,k + 1) becomes its true-son. If z,, (x) does not belong to the chosen row, then the sons
of the node that corresponds to (4,7, k) are the nodes (i, 4,k + 1) as then-son, and (i + 1,4,k + 1) as
the false-son. All nodes on the bottom level are sinks labeled by —1 with exception of the node that
correspond to (n, 1, m + 1) which is labeled by L.

Applying 7,, on an 7, OBDD(MAG-2,,) P,, we obtain a 7, OBDD(PERM,) S,. Since T, has no sinks
labeled by 1, the inputs accepted by P, could be accepted by S, too.

On the other hand, all inputs with the sum of ones differing from n are forced to terminate in a sink
labeled by —1. The remaining inputs not considered yet are the inputs from MAG-2, with exactly n
ones. They are accepted only in the case that the row sum is equal to 1. Those inputs are in PERM,,,
too. O

T} T2

Li3
L4

]
B
3
=

Figure 12: T)! o T? is a m,OBDD-Transformer for (PERM,) <l ppp (MAG-2, 7).

18

In [KMW8&8], it was proven that the function PERM requires exponentially large OBDDs for any variable
ordering. (This lower bound holds even for a more general model). Due to this fact, the described OBDD-
transformation proves an exponential lower bound for the magic square problem.

Corollary 18.
For any variable ordering =, tOBDDs for the functions MAG-2, have size 2%(").

References

[BRBI0] K. S. Brace, R. L. Rudell, R. E. Bryant: Efficient Implementation of a BDD Package.
Proc. of 27th ACM/IEEE Design Automation Conference, 1990, 40-45.

[Bry86] R. E. Bryant: Graph-based Algorithms for Boolean Function Manipulation.
IEEE Trans. Comput. c-35, 6 (1986), 677-691.

[BW96] B. Bollig, I. Wegener: Read-Once Projections and Formal Circuit Verification with Binary
Decision Diagrams.

Proc. STACS96 (1996), 91-502.

[BDGS8S8] J. I.. Balcazar, J. Diaz, J. Gabarrd: Structural Complexity I.
Springer Verlag, 1988.

[Lee90] J. van Leeuwen gedit.): Handbook of Theoretical Computer Science.
The MIT Press, 1990.

[KW87] K. Kriegel, S. Waack: Exponential Lower Bounds for Real-time Branching Programs.
Proc. FCT’87, LNCS 278 (1987), 263-367.

[KMW88] M. Krause, Ch. Meinel, S. Waack: Separating the Eraser Turing Machine Classes L., N'L., co—
L. and P..
Proc. MFCS’88, LNCS 324 (1988), 405-413.

[Lon93] D. Long: BDD-Package, CMU.

[Mei89] Ch. Meinel: Modified Branching Programs and Their Computational Power.
LNCS 370, Springer Verlag, 1989.

[Som96] Somenzi: CUDD: CU Decision Diagram Package (Release 1.1.1). University of Colorado at
Boulder. June 1996.

[SV81] S. Skyum, L. G. Valiant: A Complexity Theory Based on Boolean Algebra.
Proc. 22" [EEE FOCS (1981), 244-253.

[SW93] D. Sieling, I. Wegener: Reduction of BDDs in linear time.
Information Processing Letters 48 (1993), 139-144.

Appendix

Pseudo-Code Descriptions for the Algorithms Derive and Compose

The following notions are used: OBDDs and OBDD-transformers are referred to by their root. A node
stores the information about its label (var), two successors (true and false), and the negation mark (mark).
Sinks have no successors and store only their labels (1, -1, L) that are (for sake of uniformity) denoted

as var, too. Command ‘select’ performs only the commands that follows after the first true condition.
SINK(v) is true if v is a sink.

19

Derive:

imput: TOBDD G, sOBDD-transformer 7.

output: tOBDD H.

begin
input(G);input(7');
ROOT(H)=Derive_step(ROOT(G),ROOT(T));
output(H);

end

Derive_step(u, v)
begin
if computed(u,v) then return result;
if SINK(v) {
if (v.ivar ==1){
[u, v].var=u.var;
[u, v].mark=u.mark *v.mark;
[u, v].true=u.true;
[u, v].false=u.false;
} else{[u, v].var=v.var;
[u, v].mark=v.mark;
[u, v].true=v.true;
[u, v].false=v.false;

}
} else {
if (u.var < |v.ar|) {
[u, v].var=u.var;
[u, v].mark=u.mark;
[u, v].true=Derive_step(u.true,v);
[u, v].false=Derive_step(u.false,v)
} else {
[u, v].var= |v.var;
select {
u.var > |v.var|:
[u, v].mark=v.mark;
[u, v].true=Derive_step(u, v.true);
[

u, v].false=Derive_step(u,v.false)
|u.var| == |v.var:

[u, v].mark=u.mark *v.mark;

z = |v.van;

select {

v.var == x:
u, v].true=Derive_step(u.true,v.true);
u, v].false=Derive_step(u.false,v.false);
v.var == x:
u, v].true=Derive_step(u.false,v.irue);
u, v].false=Derive_step(u.true,v.false);
v.var== 1,
u, v|.lrue= Derl’ue_step(u,true,U,true);
u, v].false=Derive_step(u.true,v.false);
v.ovar == —1,:
u, v].true=Derive_step(u.false,v.true);
u, v].false= Derive_step(u.false,v.false);
* end of select *)

} (* end of select *)

} } store_and_return([u, v]);
end

Compose:

input: tOBDD-transformer T1,7T5.

output: TfOBDD-transformer 7.

begin
input(71);input(7);
ROOT(1T)=Compose_step(ROOT(T7),ROO0T(T3));
output(7);

end

Compose_step(u,v)
begin
if computediu,v) then return result;
if SINK(v)
if (v.var ==1){
[u, v].var=u.var;
[u, v].mark=u.mark*v.mark;
[u, v].true=u.true; [u, v].false=u.false;
} else{ [u, v].var=v.var;
[u, v].mark=v.mark;
[u, v].true=v.true; [u, v].false=wv.false;

} else { select {
|u.var] < |v.vanr:
u, v].var=u.var;
u, v].mark=u.mark;
u, v].true= Compose_step(u.true,v);
u, v|.false=Compose_step(u.false,v)
|u.var| > |v.var:
u, v].var=v.var;
u, v].mark=v.mark;
u, v].true= Compose_step(u,v.true);
u, v].false= Compose_step(u,v.false);
|u.varl == |v.var:
[u, v].mark=u.mark*v.mark;
x = |v.varl;
select, {
v.var == x:
[u, v].var=u.var;
[u, v].true=Compose_step(u.true,v.true);
[u, v].false=Compose_step(u.false,v.false);

v.var == 1:

select {
u.var == z: [u, v].var = v.var;
w.var == x: |[u,v].var = x;

true: [u,v].var = u.var; }

u, v].true=Compose_step(u.false,v.true);
k) p p 1 ‘7

u, v|.false=Compose_step(u.true,v.false);
) p p] b

v.var == 1,:

select {
u.var == z: [u, v].var = v.var;
w.var == x: [u,v].var = —1g;

true: [u,v].var = u.var; }
[u, v].true=Compose_step(u.true,v.true);
[u, v].false=Compose_step(u.true,v.false);

vovar == —1,:

select {
u.var == z: [u, v].var = v.var;
u.var == x: [u,v].var = 1;

true: [u,v].var = u.var; } .
[u, v].true=Compose_step(u.false,v.true);
[u, v].false= Compose_step(u.false,v.false);

} store_and_return([u, v]);
end

