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1 Introduction

Since the class P of polynomial-time-recognizable sets was formally introduced in the
1960’s [8, 17, 22, 37] many complexity theorists have considered it a good formalization
of the notion of feasible computation [19]. Arguments for this view include the robustness
of P—it is largely independent of machine model, and is closed under composition and
Boolean operations—and its many machine-independent, logical characterizations (e.g.
[7, 13, 15, 28, 29, 31, 24, 33, 34, 40, 41, 45, 51]). Unfortunately, general polynomials are
too large to be considered feasible. A program that runs in time ©(n'") has little practical
value.

Many classes within P have been studied, including those defined by circuit complexity,
or those defined on Turing machines or RAM models by tightly bounding the polynomial
time bound. But many of these classes lack robustness. For example, quadratic time is
not closed under composition, and linear time, while closed under composition, is highly
sensitive to details of the computational model such as number of tapes. Furthermore,
linear time does not seem to suffice for such basic problems as multiplication and sorting.
We draw particular attention to sorting, since many simple, natural problems can sort as
a by-product of their operations, and sorting itself is an extremely useful technique for
problems that do not explicitly require it. (For complexity-theoretic examples, see [12, 23,
30, 49] and section 2.2 below.)

Recently, several approaches have been considered for complexity classes slightly larger
than linear time. Schnorr [49] and Gurevich and Shelah [30] have considered quasilinear
and nearly linear time classes (QL and NLT'), defined as DTIME(O(n logo(l) n)) on multi-
tape Turing machines and on random-access machines, respectively. These classes are
closed under composition, and are relatively machine-independent— QL is invariant under
obliviousness assumptions [23] and the number of tapes of a multi-tape TM, while NQL
is equivalent under five different random-access models. It is an open question whether
QL = NLT. In the current paper, we focus primarily on the Turing-machine model (QL).
We denote (’)(nlogo(l) n)) by Q(n).

If one takes quasilinear time (of any flavor) as a definition of efficient computation, it is
natural to ask what problems have no efficient solutions. What makes a polynomial-time
algorithm inefficient? Given a polynomial-time decision algorithm, we may distinguish
between two possible sources of complexity: is it performing an inherently time-consuming
test, or is it merely testing a large number of possible candidates for problem solution? For
example, a naive algorithm to determine whether a graph contains a k-clique takes time
O(n*) (or slightly more, depending on the precise model). Most of the time cost comes
from the loop over all possible k-vertex subgraphs, a cost we could eliminate with klogn
bits of nondeterminism. This observation was developed by Buss and Goldsmith [12], who
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extended QL with sharply bounded existential quantifiers (of the form “Jyly| < log |z|”).
They developed a structure theory for these classes and showed that if the hierarchy
contains all of P then P # NP.

Many natural polynomial-time problems seem to require more than just sharply bounded
existential quantifiers and quasilinear-time predicates. In this paper we examine the im-
plications of mixing sharply bounded universal (‘5’) and existential (él) quantification over
a quasilinear-time test. The resulting hierarchy of complexity classes, extending the Buss-
Goldsmith hierarchy but still contained within P, we call the Sharply Bounded Hierarchy
over Quasilinear Time and denote by SBH(QL) or (when the time bound is clear from
context) SBH.

The Sharply Bounded Hierarchy is partly inspired by Wrathall’s linear-time hierarchy
(LTH) [52]. Like her, we define a hierarchy based on bounded quantifiers over a small time-
bounded class within P, and then give other characterizations of the hierarchy and the
classes therein. There are several important differences, however. By allowing quasilinear-
time predicates, we give our classes more machine independence. By sharply bounding our
quantifiers, we keep our entire hierarchy within P. The sharp bounds apparently add to the
intricacy of the hierarchy, because strings of the same quantifier do not obviously collapse
(in fact, we give oracles relative to which they separate). Thus, the SBH(QL) does not
mirror the polynomial-time hierarchy as neatly as does the LTH. (The “quasilinear-time
hierarchy” of Naik, Regan and Sivakumar [43] differs from SBH(QL) by allowing larger
quantifiers and mimics LTH more closely.)

Results of Gradel and McColm, showing that a quantifier-defined hierarchy within NL
is proper [26], give us hope of showing that the SBH(QL) does not collapse. Their classes
are defined by alternations of 3* and V* quantifiers, which model the transitive closure
operator and its dual in Immerman’s characterization of NL [34]. This connection also
motivates our interest in logical characterizations of the SBH (QL).

In the next section, we give definitions of the relevant complexity classes. We then
present a variety of problems in the SBH (L), define a notion of completeness, and show
that some of the problems considered yield quasilinear-complete sets for classes in the hier-
archy. We also define function classes based on the sharply bounded hierarchies over linear
and quasilinear time, and show that these function classes are appropriate generalizations
of the relation classes. Later sections discuss the structure of the SBH(QL), including
upward collapse theorems, and show that if SBH((QL) contains a non-trivial amount of P,
then P # PSPACE. We present characterizations of both SBH(QL) and SBH(linear) in
terms of a variant of alternating Turing machines, and in terms of first-order definability.
We also present machine-independent characterizations of both the relation and the func-
tion classes of both SBH(QL) and SBH(linear), using recursion-theoretic methods. We

conclude with some open problems.
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2 Definitions and Example Problems

2.1 The Basic Classes

Schnorr [49] introduced the classes QL and NQL, where QL = U, DTIME(n log" n) and
NQL = Uy NTIME(n log" n), with respect to multi-tape Turing machines. We will use the
notation of Buss and Goldsmith [12] and refer to these classes as P; and NP, respectively.
Similarly, we define P, = |, DTIME(n" log" n).

We define classes in the Sharply Bounded Hierarchy over Quasilinear Time, SBH(QL),
by means of sharply bounded quantifiers over quasilinear-time predicates. A sharply bounded
quantifier is one of the form Jy |y| < log |z| or Yy |y| < log |z|. We write these as 3 and
V.IfSis a string of sharply bounded quantifiers (such as ‘V’El‘v"v’) then A € SP; iff there is
a P; relation R so that © € A & Sy[R(z,v)]. The notation SBH(QL), or SBH for short,
can mean either the collection of classes {SP; : S € {i%’}*} or the single class which is
the union of them; which we mean in a particular instance should be clear from context.

Note that the strings of quantifiers in the above may contain repetitions. Unlike the
classes defined by bounded quantifiers, there is no evidence that iterations of a quantifier
(%, for example) can be collapsed to a single quantifier. Note also that, if S is a string of
r sharply bounded quantifiers, then SP; C P,,;. Hence SBH C PN QLSPACE.

We also consider function classes in Sections 2.4 and 5. We denote the functions btt-
reducible in quasilinear time to SBH relations by FQLBH(@L)

analogous classes with quasilinear time replaced by linear time, in both the relation class
and the reduction. These classes we denote by FLSBH(near) anq ppSBH (linear)[1]

[, Furthermore, we consider

2.2 Languages in the Classes

Buss and Goldsmith [12] have given various examples of problems in the classes 3% P;. Many
of the problems they considered are fixed-parameter variants of NP-complete problems.
For instance, they consider CSAT(k), a restriction of the circuit satisfiability problem. A
Boolean circuit C' with klogn inputs and n total gates is in CSAT (k) if there is an input
string that causes it to output a 1. CSAT(0), the Circuit Value Problem, was shown to
be in P; by Pippenger [47]. Buss and Goldsmith showed that CSAT (k) is complete for
3+ P, (for all k); we observe that there are variants of this problem in all classes of SBH.
For example, a Boolean circuit C' is in IVCSAT if it has n gates, 2log n of which are input
gates, and there is a string @; of length log n such that for any string x4 of length logn, C
on input xx, outputs a 1.

The following examples include some P-complete problems [27]. Some are also complete
for classes in the SBH, but we do not immediately get P C SBH because they are P-
complete under apparently different reductions, such as LOGSPACE or NC'. We also
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mention a P-complete problem that seems inherently sequential, and appears not to be in
SBH(QL).

MATRIX MULTIPLICATION TESTING is in VP;: given three v/n X \/n matrices A, B,
and C,18 A-B=C"

ToTAL UNARY ORDERED GENERATOR is complete for VP given an ordered context-
free grammar G and a set T' of terminal symbols, does G generate a string in 7* for each
7 € T? (A grammar is ordered if, for each nonterminal A in G, each occurrence of A in
the lefthand side of a production occurs before any occurrence of A on the righthand side
of a production.) Buss and Goldsmith [12] show that the set of ordered unary generators
is complete for IP;; this variant follows easily from their proof.

The following five examples come from Fellows and Downey’s work on fixed-parameter
intractibility [21].

PERFECT CODE(k) is in Fk=1p;: given a graph G, does G have a k-element perfect
code; i.e., is there a set V' of k vertices such that for all vertices v € G, v has a unique
neighbor in V'? The algorithm nondeterministically chooses all but one of the vertices;
the last must have a neighborhood equal to the vertices not in the neighborhoods of the
chosen vertices.

WEIGHT(k) SAT is in F*P;: given a Boolean formula F in CNF, is there a weight-k
satisfying assignment, i.e., a satisfying truth assignment with exactly k 1's?

WEIGHT (k) EXAcT SAT is in F*P,: given a Boolean formula F in CNF, is there a
weight-k satisfying assignment that assigns exactly one “true” to each clause?

UNIQUE WEIGHT(k) SAT is in R P, given a Boolean formula F' in CNF, is there
exactly one weight-k satisfying assignment for F'?

LEXICOGRAPHICALLY FIRST CSAT(k) is in F*~'V*P;: given a topologically sorted
circuit description of size n, with klogn input gates, and a string y of length logn, does
the lexicographically first satisfying assignment to the circuit include y as one of the k
blocks of size log n?

The AW{[*]-complete problems SHORT GEOGRAPHY and SHORT NODE KAYLES [1]
give examples of alternating quantifiers. Both model two-player games on a graph. In the
geography game on a graph G, the players alternately pick nodes of a simple path; the first
player unable to extend the path to a new node loses. A graph is in SHORT GEOGRAPHY (k)
if the player moving first has a winning strategy of & moves or less. One can easily show
that SHORT GEOGRAPHY(2k 4 1) is in (3V)*P;. Likewise, SHORT NODE KAYLES(2k) is
in (él‘%’)k Py. We refer the reader to Abrahamson, et al. [1] for more details on these problems
and the class AW [«].

In many cases, quantifiers in a problem specification can be eliminated by enhancing
the quasilinear-time test. One such example is testing the Vapnik-Chervonenkis dimension
of a set, which is defined as a X3 property.
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V-C DIMENSION(k) [50, 42]: given a family of subsets C = {C4,...,C,}, drawn from
a finite universe U = {x1,...,%m}, is the Vapnik-Chervonenkis (V-C) dimension of C at
least k? That is, is there a set S C U, with |S| = k, such that for all subsets T' of S, there
1sa C; €Csuchthat SNC; =717

We assume that each subset C; 1s specified in the input by an m-bit binary string, so
that the total input size is n = rm. The V-C dimension of family C can be at most logr.

A simple algorithm puts V-C DIMENSION(k) in FPy: given C (of size rm), guess S
using klogm < klogn bits. Compute for each ¢ < r the set D; = C; N S. Sort the strings
representing D; and verify that there are 2% distinct values.

To show that V-C DIMENSION(k) € F=1P,, we guess a set R of k — 1 elements, and
determine in quasilinear time if there is some z such that § = RU{xz} meets the conditions
of the problem. In order for such an  to exist, there must exist 2¥~1 distinct sets of the
form R N C;. In addition, each such intersection must be realizable in two (or more)
different ways; there must be two subsets C; and C; of C such that RN C; = RN C; and
z is a member of exactly one of C; and C;.

To determine the subsets of C, on a new tape write for each 7 a 2m-bit string, the first
m bits representing D; = C; N R and the second m representing C;. Sort these r strings
by their first halves, using time Q(n). Each group of strings with identical first halves
represents all ways of forming one intersection set. For each group p, compute a string s,
of length m with a 1 in position j if ; appears in some but not all the sets C; in group p.
The required time for a group is proportional to the number of bits in the group strings.
Finally, in time O(m2*~') = O(mr), compute the bitwise AND of these s,. Each 1 in the
final string indicates a possible z.

The entire algorithm uses time quasilinear in the size of C.

Some P-complete problems do not appear to be in SBH. One example is the funda-
mental problem UNIT RESOLUTION [36], which is clearly in P,, but not apparently in
quasilinear time, even with the help of sharply bounded quantifiers.
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2.3 Complete Sets

The notion of quasilinear-time computation can also be applied to transducer Turing
machines. Since all of the classes in SBH are closed under quasilinear-time functions,
it is natural to define a notion of quasilinear-time, many-one complete sets for these
classes [12, 30, 49]. Schnorr [49] showed that SAT is <%-complete for nondeterministic

quasilinear time (NQL, a.k.a. NP;). The same techniques apply to alternating quantifiers.

Theorem 1 QBF, the set of true quantified Boolean formulas, is <% -hard for any class
in SBH.

Buss and Goldsmith gave various problems that are complete for classes of the form
4% P;, and Cai and Chen [14] have recently shown that the “weight < k CSAT” problem is
also complete for 3* P;. Variants of some of these problems can be shown to be <%-complete

for classes higher in SBH. For all S in {él,‘%’}*, we define the following two problems.

S-CSAT: Given a Boolean circuit C with |S|log |C| inputs, does SZ[C' on input & outputs
a 1] hold?

S-SHORTSAT: Given a Boolean formula B with at least |S|log |C| variables, does Si[the
assignment of Z to the first |.S|log |C| variables causes B to unravel] hold? (A partial
assignment of truth values to variables in the formula may induce values on other
variables if the formula is to be true: if B is in 3CNF, and (a1 V a; V a3) is a clause,
and all but one of the a;’s are false, then the remaining variable is induced to assume
the value true; if one variable a; is true, then the clause is true, and no additional
assignment 1s induced. If this procedure can be applied iteratively until all clauses
evaluate to true, then we say the original partial assignment caused the formula to
unravel.)

Theorem 2 For all S in {3,V}*, S-CSAT and S-SHORTSAT are complete for SP;.
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2.4 Function Classes

One can define function classes that correspond in a natural way to the levels of the SBH,
or to the union of the whole hierarchy. In Section 2.1, we defined classes that correspond
to the union of the hierarchies (over L and linear). We demonstrate here that the
recursion-theoretic characterizations give very closely related classes. The theorems in
Section 5 reinforce this.

Let FL and FQL denote respectively the functions computable in linear and quasilinear
deterministic time. Let B(-) denote the closure of a class under Boolean operations.

Theorem 3 For any S € {3,V}*, a 0/1-valued function is in FQLST'U if and only if it is
the characteristic function of a B(SP1) relation.

Since B(SBH) = SBH, it follows immediately that

Corollary 4 A 0/1-valued function is in FQLSBEQUUL if und only if it is the characteristic
function of an SBH relation.

Proof: Suppose f € FQL*D M and is 0/1-valued. Then f can be computed by generating
some constant number ¢ of quasilinear-length queries to SP;, and then doing ()L work on
the results. By standard techniques, ¢ adaptive queries can be simulated by 2° nonadaptive
queries. The work after the queries can equally well be done before them, at the cost of a
22" factor of time to handle each possible outcome of the queries. Thus f can be computed
by doing QL work, asking constantly many queries in parallel, and computing a Boolean
function of the results; i.e., f is the characteristic function of a B(SP;) relation.

Conversely, suppose f is the characteristic function of a B(SP;) relation; i.e., f is
Boolean function applied to constantly many SP; queries, each generated in QL time. It
is then straightforward to compute f in FQLD [,

The proof for SBH is similar. |

An analogous theorem and corollary hold with quasilinear time replaced by linear time
throughout.
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3 The Structure of the Classes

Like most hierarchies of complexity classes, SBH exhibits upward collapse/downward sep-
aration. Some of the collapses presented in this section concern the compression of like
quantifiers (from 33 to 3, for instance), as well as (or instead of) the quantifier-swapping
we expect of collapsing results.

Theorem 5 If C is a class in SBH, and 3C C C, then for all m >0, 3"C C C.
The proof is a simple induction on m.

Theorem 6 If C is a class in SBH, closed under complement, and k > k', and FC C
V¥ C, then for all m >k, 3*C C I C.

Proof: If 3*C' C V¥ C, then dually V*C' C 3¥C. Since C is closed under complement by

assumption, all four classes are equal. The result follows by Theorem 5.

Note that Theorem 6 and its proof do not allow the case k = k'; that is, we derive no
consequences from the closure of 3*C' under complement. Unlike the case of unbounded
quantifiers, closure under complement does not translate easily to a larger number of
quantifiers.

If the classes 3*P; are all closed under complement, then SBH is contained in the
Buss-Goldsmith existential hierarchy. This would certainly simplify SBH, but would it
simplify it right down to QL? In the presence of an oracle, not necessarily. The following
result is analogous to recent work on the 3 hierarchy [4]. We assume that a query to the
oracle erases the query string from the tape.

Theorem 7 There is an oracle A such that for all k > 0 and h > 0,
o élkP,f1 + §|k+1P,;4 and
o 3*PA = \kPA

Proof: Let {E}(l%i,k}h,i,k enumerate the élkP}E) machines. Assume the (h, 4, k)-th machine

is explicitly clocked to run for at most pp;(n) = n” logi n steps for all input lengths n > 1.
We design the oracle A to satisfy the following conditions.

Coding: For every h, i, k, and x, machine E}/Ll,i,k accepts z if and only if A does not contain
a code for E;ﬁi’k(:c), namely a string of the form 0P»(1)108@ni([#) L pti ket x4ty with
ly| = klog |z|.
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Diagonalization: For every h, 1 and k, the language Di?,k+1 ={z| (§|k+1y)1|“’|hwy € A}is
not accepted by Eﬁi7k.
Let (-, +,+) be a bijection from triples of positive integers to positive integers. We will

write E{}L7i7k> to mean Ef:i’k.

The only important strings are those mentioned above—codes for a computation and
witnesses for a diagonalization language. We fix all other strings out of A. We consider
the important strings in stages; at stage s we determine oracle membership for all strings
of length s, and perhaps some longer strings. Set s = d = b = 1; s is the stage number,
E# is the next machine we will diagonalize against, and b is a lower bound on the lengths
of strings eligible for diagonalization.

Stage s:

Stage s begins by fixing the codes of length s in or out of A. For each w of length s,
if w is a code for some Ef); (), then Ej}; (z) queries only strings of lengths less than s.
Thus, at the beginning of stage s, the value of E;ﬁi’k(m) is already determined. If A(w)
was fixed in a previous stage, it has a suitable value; otherwise, set A(w) = 1 if and only
if E,{:l’i’k(a:) = 0.

Let I = s/?. If [ is an integer such that I > b and log"l < I, then do the following
diagonalization. Otherwise, proceed immediately to the next stage by incrementing s.

The current diagonalization condition is d = (h,i,k). We wish to guarantee that
E,ﬁi7k(ll) # Dfikﬂ(ll). Note that D;‘ikﬂ(ll) has [¥+1 witness strings, each of length greater
than I*. We describe how to simulate the computation of E;:i’k(ll) (and other computations
in the process) to meet the following condition: over all queries of witness strings during

the simulation, the total number of bits is less than [P+F+!,

Hence some witness string
for Df}’ k +1(1l) is not queried during the simulation and remains available to complete the
diagonalizaton.

The computation Eﬁi’k(ll) has I* branches, each running for at most I"log’l steps.
Thus it can directly query at most I*+"log® I bits. Furthermore, each query has length at
most 1"log® . If the machine queries a witness string for D,‘ik_l_l(ll), we restrain that string
from A; this direct computation won’t force D,‘ik_l_l(ll) = 0. However, E;:i’k(ll) may query
codes whose membership in A is not yet determined; we must fix them suitably in order to
complete the diagonalization. In most cases, the queried string is one of many unfixed codes
for the corresponding computation, and we simply fix the string out of A without harm.
If, however, the queried string is the last remaining code for its computation, we must
ensure that it codes the computation correctly. We therefore simulate the computation to
determine its acceptance or rejection; when we know the correct answer, we continue the
previous computation. The new computation may itself query codes, creating a recursive
tree of codes and their computations. We will term the codes which require recursion

crucial codes. For a crucial code p, we denote by C), the computation coded by p.
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To count the number of bits queried in the entire recursion, we consider a directed graph
whose nodes are the crucial codes. The graph has an edge from p to ¢ if the computation
Cp queries any code of C, (crucial or not). The graph has no cycles, and the longest path
has length at most .

Suppose that crucial code ¢ has computation C, = EZ2, (z). C, has |z|* codes, each

s,t,u
of length more than s|z|*log"™" |z|. Thus the predecessors of ¢ used s|z|*t*log™™ |z| bits
|“ branches of length at most |z|* log® |z|

and thus queries strings totalling at most |z|***log® |«| bits.

querying codes of C,. Computation C, itself has |z

Since creating a crucial query requires more query bits than the coded computation
itself queries, the number of bits in queries of witness strings is at most the original
number I¥+%1og" I. We only do a diagonalization when log’! < I; hence some witness string
for D}y .1 (1') remains unfixed after the simulation of Ef; ,(1'). We fix that string in A if
E,iii’k(ll) = 0 and out otherwise.

Finally, set b to the length of the longest witness string fixed during the simulation,
and increment d and s.

End of stage s.

The union of all the stages defines a consistent oracle A that satifies all the required
conditions.

Placing the SBH with respect to deterministic computation would have significant
consequences.

Theorem 8 If for alll, SBH ¢ P, then P #+ PSPACE.

Proof: Suppose P = PSPACE. Then QBF € P, and hence QBF € P, for some [ > 1.
But then SBH C P,. g

Theorem 9 If for some rational r > 1, P, C SBH, then P # PSPACE.

Proof: Since P, has a complete set [12], the inclusion P, C SBH implies that P, C SPy,
for some string S of sharply bounded quantifiers.

Lemma 10 If P, C SP; for some string S of sharply-bounded quantifiers and some r > 1,
then P.. C SSP;.

Let A€ P2 and B ={y |y = z10l#"=l?=* Az ¢ A}, Then B € P,, and thus in SP; by
assumption. To decide A(xz), in time Q(n"), write y = 210Uz =1=1=1 "and decide (in time
Q(|z|"), with quantifiers S), if y € B. In other words, A € SP, C SSP;.

Iterating the lemma, we get that P, C SBH implies P C SBH C SPACE(Q(n)) and

hence P # PSPACE.



4 CHARACTERIZATIONS OF THE CLASSES 11

4 Characterizations of the Classes

Many people have argued that the class P is natural, based on the great variety of appar-
ently different characterizations of the class. We present several characterizations of the
SBH here. We begin with what is perhaps the most obvious characterization, namely by
alternating Turing machines. We then show that, like P, the SBH can be characterized
in terms of first order definability, or in terms of function algebras. Finally, we consider
functions as well as relations within the SBH.

The definition of SBH in section 2.1 uses the apparently arbitrary bound of log n on
the length of a quantified variable. In this section and the next, we show several equivalent
definitions that do not depend on an arbitrary bound on nondeterminism.

4.1 An Alternating Machine Model

Our first characterization comes from a modified alternating machine, which allows “blocks”
of nondeterminism in a simple, natural way. The standard model of an alternating Turing
machine [15] chooses (existentially or universally) one of two possible “next states” at each
step. However, alternation can also be achieved by existentially or universally choosing a
head position. This provides the desired (log n)-bit blocks of nondeterminism.

Definition 11 A length-alternating Turing machine is a multi-tape Turing machine whose
states are partitioned into universal, existential, and deterministic states. (We shall refer to
universal and existential states collectively as indeterministic states.) Each state, whether
deterministic or not, has a single next state. Each indeterministic state s has an associated
tape k,; when the machine reaches state s, it jumps the head on tape k, to an arbitrary
nonblank square, and changes to the next state. This transition counts as a single step of
the computation.

Acceptance and rejection are determined for each possible configuration of a length-
alternating Turing machine in the same way as for standard alternating machines [15].

The indeterminism depth of a configuration in an LATM computation tree is the number
of its ancestor configurations in the tree which are indeterministic. The indeterminism
depth of an entire LATM computation tree is the maximum indeterminism depth of all its
configurations.

The time bound of an LATM computation tree 1s the depth of the tree, counting de-
terministic as well as indeterministic configurations.

Theorem 12 A relation R(Z) C (X*)* is in SBH (QL) if and only if there are a constant
¢, a quasilinear function q, and a length-alternating Turing machine such that for all

1—3' c (2*)k}
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e the machine accepts on input ¥ if and only if R(Z) holds,
o the indeterminism depth of the computation tree is at most ¢, and

o the time bound of the computation tree is at most q(max(|Z])).

Proof: Suppose R(Z) is in SBH(QL). A machine with the required properties can
compute R as follows. Assume that each input z; is written on the i-th tape. For each
quantifier (Qy; < ¢;(|Z])) in turn, construct a string of length ¢;(|Z|) on an additional tape
(one extra tape for each of constantly many quantifiers), indeterministically choose a head
position on that tape, and in time O(g;(|Z|)) count how far the head is from the right-hand
end, writing the result in binary on another tape. Subsequent computation then treats the
contents of this latter tape as y;.

Conversely, suppose relation R(&) is computed by a machine M satisfying the conditions
of the theorem. We show by induction on ¢ that R is in SBH(QL).

If ¢ = 0, then M is a deterministic machine; hence we have R € QL C SBH(QL).

If ¢ > 0, let the “deterministic frontier” of M on input & be the set of configurations
reachable from the start state without passing through an indeterministic state. Let g(|Z])
be the (quasilinear) maximum number of steps along any computation path in this frontier.
(We assume without loss of generality that ¢ is of the form max(|Z|) - p(max(||Z||)) + d,
for some polynomial p; || - || represents the iterated length operator.) Upon reaching any
indeterministic configuration on the frontier, at most ¢(|Z|) squares can have been written
and so tape 1 has at most |z1| 4+ ¢(|#]) nonblank squares.

Define a machine M’ with inputs Z, z., z, as follows. The new machine M’ simulates M
until it reaches its first indeterministic state. If this state is existential, it deterministically
moves the head on tape 1 to the position whose binary representation is z.; if universal, it
uses z,. It then checks the validity of z. or z, by testing whether the head is on a blank
square; if so, it “abstains” by rejecting in the existential case and accepting in the universal

case. Otherwise, it subsequently acts exactly like M after the indeterministic state.
Define relation S(&, z, z,) to be the accept/reject decision of M’. Then R(&) holds iff

(3z]2.] < log(la| + q(1)) (Va2 < log(loa] + q(1]))) S(, 2, 2).

Since machine M’ reaches fewer than ¢ indeterministic configurations on any given branch,

the induction hypothesis implies S € SBH(QL). Since R is defined by sharply-bounded
quantification from S, we have R € SBH(QL) as well.

An exactly analogous characterization can be given of SBH(linear), the closure of lin-
ear time (on Turing machines with fixed but arbitrary numbers of tapes) under sharply
bounded quantifiers.
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4.2 First-Order Definability

The SBH has several clear analogues, including the polynomial hierarchy. The quantifiers
of SBH have the same length as those of the log-time hierarchy, which is equivalent to
logtime-uniform AC°. The most elegant characterization of uniform AC? is in terms of
first-order definability, as discovered by Immerman [3, 34, 35]. The SBH can be character-
ized similarly, by generalizing Immerman’s definition of first-order definability to treat an
arbitrary class of relations as atomic. We show that when QL is used as the atomic class,

the result is precisely SBH(QL).

Definition 13 Let C be a class of relations on N. A relation R(z1,...xz) ts first-order
definable from C, denoted R € FO(C), if there is a relation S(Z,y) € C such that for all
z €N,

R(Z) <= (Qiyr <n)(Qaya <)+ (QumYm < n)S(Z, ),

where each @ is either 3 or ¥V, and n = max(|Z|).

Note that the quantifiers range over y < n rather than |y| <logn as in the definition
of SBH(QL). The latter criterion is slightly more restrictive, but the two differ by at most
one bit of nondeterminism, which can be simulated in a constant factor of time.

The following lemma shows Definition 13 to be a generalization of Immerman’s defini-
tion. Define the Boolean function BIT (n,m) to equal the m® bit of n.

Lemma 14 Let Cy be the set of (the natural interpretations of ) atomic formulas
{yi =Y, Y: S Yi, BIT(yzayJ)7 BIT(!/M"’) | 7’)] € N}a

and let C be their closure under binary Boolean operators. Then a unary relation R(z) is

in FO if and only if it is in FO(C).

The proof follows Immerman’s [34, 35| straightforwardly, and we omit it here.
A different special case of Definition 13 is obtained by letting C be the set of QL
relations on Z, y; the result can naturally be written FO(QL).

Theorem 15 FO(QL) = SBH(QL)
Proof: A FO(QL) formula (Jy < n)¢(Z,y) can be rewritten with sharply-bounded

quantifiers as )
(3y)(¢(£, y) V qb(.’l_f, Y + 2|_10gnj))

which is clearly in SBH(QL). (The two copies of ¢ simulate existentially guessing the
aforementioned one additional bit.) Universal quantifiers are handled similarly.
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For the reverse containment, any existential quantifier in an SBH definition, e.g.
(Fyly| < logn)R(y), can be written in FO form as (3y < n)(ly|] < |»|] — 1 A R(y)),
because |y| <logn < |y| < [logn| < |y| < |r| — 1. The test |y| < |n| —1is in QL, and
QL is closed under A, so this is a legitimate FO(QL) formula. Universal quantifiers can
be handled similarly.

Thus SBH ( QL) relations can be thought of as those relations definable by first-order for-
mulas with atomic relations in QL, and in which the domain of quantification is {0,1...n—
1}. Alternatively, an SBH(QL) relation can be thought of as a uniform AC® relation com-
posed with a QL relation (which takes an extra input provided by the AC uniformity
condition).

The characterization of SBH(linear) as the closure of linear time under linear quantifica-
tion is analogous, and one can similarly characterize the SBH closure of other time-bounded
classes.
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5 Function-Algebraic Characterizations

Our next characterization of SBH is based on characterizations of P by function classes.
Early function-algebraic characterizations of P, such as Cobham’s [17], relied on explicit
polynomial bounds on recursion; more recent work [5, 7, 10, 39] has used the notion
of safe, or tiered, recursion to replace such artificial bounds with more foundationally
justifiable limitations. In this section, we present the relevant notions of safe recursion,
prove function-algebraic characterizations of both linear and quasilinear time, and modify
these characterizations to characterize the SBH function classes defined earlier.

5.1 Safe Parameters

Bellantoni and Cook [7] define a scheme of “safe recursion on notation” that resembles
Cobham’s “bounded recursion on notation” [17] but replaces Cobham’s growth-rate bounds
by syntactic restrictions on the use of parameters. They consider each function to take
two kinds of parameters, called “normal” and “safe”; the latter are subject to only a
restricted set of operations. They distinguish the two kinds syntactically by listing a
function’s normal parameters first, separated from its safe parameters with a semicolon, e.gq.
f(z1, @25y, 21, z2). (A similar notion appeared, more or less independently, in Leivant [39].)

Safe and normal parameters differ in two important ways: first, a safe parameter may
not be used to control the depth of a recursion; and second, a safe parameter to a function
cannot be used as normal within the computation of that function, nor in any way affect
a value used as normal within the computation of that function. Normal parameters,
however, may be used as safe—there is a “one-way door” between the two.

To enforce these constraints, Bellantoni and Cook define function-constructor opera-
tions called “safe composition” and “safe recursion on notation”, and show that closing a
set of simple base functions under these constructors captures exactly polynomial time.

Characterizing linear or quasilinear time requires an additional technique. In particular,
one cannot freely use as many copies of a parameter as one wishes; making copies of a linear-
length value takes linear time and cannot be allowed inside any kind of loop. Accordingly,
we impose a third distinction between safe and normal parameters, one reminiscent of
linear logic: a function may use only one copy of each safe parameter, but may make
unlimited copies of normal parameters.

We shall work with tuple-valued functions, which take j normal and k safe parameters
and produce as output a tuple of m values. (The values of j, k, and m are fixed for any
given function.) Such a tuple is thought of not as a distinct object with boundaries—
tuple concatenation is associative—but rather as a sequence of values corresponding to the
parameters of a subsequent composed function. Given a tuple, & = (z1,...,z,), the arity
of Z is n; the length-vector of &, written |Z|, is the tuple (|z1|,..., |z.]).
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The tuples will allow us to define sufficiently powerful compositions without copying
safe parameters. For example, if fi(;z), f2(;z) and g(; z,y) are defined, one might wish
to define h(;z) = g(; f1(;z), f2(;¢)), but this entails copying . If f; and f, happen to be
such that both can easily be computed from a single copy of  (e.g. fi(;x) = = mod 4,
fa(Gz) = |z/4]), then the tuple-valued function f(;z) = (fi(; ), f2(; z)) will be definable,
and the composition h(;z) = g(; f(; z)) will be legal.

We start with the following set of BASE functions.

e The constant 0 function;
e The function Half (;y) = |y/2];

e The function so(;y) = 2y;

The function s;(;y) = 2y + 1; and

Any fixed permutation of any fixed subset of j normal and k safe parameters, for all
7 and k.

The first four BASE functions return arity 1; only the last can return a nontrivial tuple.

Bellantoni and Cook also included a conditional function among their BASE functions.
In practice, such a conditional function tends to be used in composition with other functions
that take the same parameters, e.g. f(;z,y) = Cond(;x, so(;y),s1(;y)). This example is
syntactically illegal in our composition scheme, since it uses the safe parameter y more
than once. Semantically, however, it is harmless, since only one copy of y is actually used
in computing any particular instance of f(;z,y). We therefore define the conditional not
as a BASE function but as another constructor.

Definition 16 The function f(Z;y) is defined by cases on the i-th parameter from func-
tions go, g1, and gs if

—

go(Z; if the i-th parameter of ©,vy is 0

v)
f(&9) =< gi(&;9)  if the i-th parameter of &,y is odd
7)

]| 8B 8

—

g2(Z;Y)  if the i-th parameter of ¥,y is positive and even.

A function definable from the base functions using any fixed number of applications
of definition by cases can be computed in constant time on a multi-tape Turing machine
using an appropriate representation for input and output. The machine has one tape for
each input string (and possibly others); each has its head at the right (low-order) end of
the string. We use the states of the machine to store, among other things, a permutation of
the constantly many tapes, so (for example) any fixed permutation can be computed in one
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step of the machine. In one step, the machine makes the necessary change to one input and
changes state to record the output permutation. Our proofs will use this representation
for intermediate computations; any reasonable input-output convention can be converted
to and from this one in linear time at the start and end of a computation.

Definition 17 The function f(Z;y) is defined by safe composition from functions g,
U, . .., w5, and vy, ..., vy if for some fized partition of the safe parameters § into y1,Ys, . .., Y,

F(#9) = g(ua(&;), ..., u(

:Ea )7 vl(i; _‘1)7 s ,’Uk(il_ﬁ‘; _‘k))

Partitioning the safe parameters avoids implicit copying. Normal parameters, however,
may be copied freely: each of the constantly many « and v functions gets its own copy
of the normal parameters . Note that, in order for this definition to make sense, f must
return a tuple of the same arity as g, ¢ must take a number of normal parameters equal
to the sum of the arities returned by u4,...,u;, and g must likewise take a number of safe
parameters equal to the sum of the arities returned by vy, ..., vg.

Functions defined from BASE using only safe composition and cases are still very
simple. If such a definition doesn’t use multiple copies of its normal parameters (e.g. if
it takes no normal parameters at all), then it can likewise be computed in constant time
using the above input/output convention.

Most interesting functions require some form of iteration or recursion. We define a
restricted form of recursion as follows.

Definition 18 The function f(z,%;v) is defined by very safe recursion on notation from
functions h(;w)and g(Z;y) if

L [9(@9) if 2 =0
f(z,m,y)—{h(; (LZ/QJ’;E,:J)) if z > 0.

The variable of recursion is always a normal parameter to f, while the iterated function h
takes no normal parameters.

Using very safe recursion and safe composition, one can define functions of any linear
growth rate (measured as usual in terms of the length of the arguments and output). For
example, let Succy(;y) be the k-th iterate of s;1(;y); then the function

0 ifz=0
o) = {Succk(;f(tw/%)) if 2 >0

satisfies | f(z; )| = k-|@|. We shall show in the next section that no function with superlinear

growth can be defined.
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Bellantoni has speculated on the effects of loosening in various ways the prohibition
that no safe parameter may in any way affect a normal parameter. One such change allows
the length of a safe parameter to be used as normal; Bellantoni [5] shows that this makes
no difference to his characterization of F'P. In our setting, however, it makes the difference
between linear and quasilinear time, as we shall see in Theorem 24. To formalize the
change we will replace the above schema of safe composition by the following variant.

Definition 19 The function f(Z;y) is defined by length composition from functions g,
U1, ... w5, and vy, ..., v if for some fized partition of the safe parameters y into 41, s, . . ., Yr,

—

f(£7 g) = g(ul(a_{v |',_Ij|, )7 ce 7uj(£7 |:'j|a );(Ul(:za |27|;171), cee 7vk($7 |y|;yk))'

Combining length recursion with very safe recursion can lead to superlinear growth
rates. Let

y if z=0
wlzy) = {50(;qo(LZ/2J;y)) if z >0,
and for all k£ > 1,
r(Gy) = a-1(lyliy)

and

' (y ifz=0
a(zy) = {Tk(;Qk(LZ/2J;y)) if z > 0.

For each k, the value of gx(z; z) has length O(]z| logh™? |z|).

5.2 Characterizing Linear and Quasilinear Time

In this section, we characterize linear and quasilinear time on multi-tape Turing machines
by the use of safe parameters. Versions of Theorem 21 were conjectured simultaneously
and independently by Bloch, by Bellantoni, and by Leivant, but to our knowledge neither

Theorem 24 nor a precise statement or proof of Theorem 21 has appeared in the literature.!

Definition 20 The function class D is the closure of the set BASE under the operations
of definition by cases, safe composition and very safe recursion on notation.

Theorem 21 A function f(Z) is computable by a linear-time multi-tape Turing machine

if and only if f(Z;) € D.

10tto [44] has given a category-theoretic characterization of these classes inspired by an earlier version
of this section.
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Proof: For any function and inputs f(Z;y), we denote by T f(Z;y) the time required
to compute f at ;¥ on a multi-tape Turing machine using the input-output convention
defined in the previous section. If f(#;) € D, we bound its growth rate and required
computation time by induction on its definition.

Lemma 22 For all f in D, there are constants ly and cs such that for all & and 7,
|f(Z;9)] <l (1+ max(|Z])) + max(|y])
and
TH(E§) < e - (1+ max(|])).

(In particular, seemingly simple functions like f(;z) =  + 1 cannot be defined with only
safe parameters.)

We prove the lemma by induction on the D definition of f.

If f is in BASE, we can take [y =1 and ¢y = 2.

If f(#;y) is defined by cases from go(Z;9y), ¢1(Z;y), and g+(Z;y), we can take Iy =
max;(ly;) and ¢y = max;{cy} + 2.

If f(#;9) is defined by safe composition, i.e.

F(&9) = g(un(Z;), ... ui(25); 01 (25 91), - .o o(E5 k),

then we have

(% 9)|

IN

Ly - (1 + max(fus(#)])) + ma(|os(7: )
< (l - (1 + max(l,) + max(L,)) - (14 max(|])) + max({7)).

so we may take I; =1, - (1 + max,( u;) + max;(l,,)).
To compute f(&;y), make j+k copies of £ (on new tapes), then compute u(Z; ), ¥(Z; y)
)i

and finally g(u(Z;); (Z;y)). Thus
Tf(#y) < max(]#]) + max Tui(Z; ) + max Toi(; i) + Tg(a(; ); (75 9))
< max([#]) + (1 + max|7]) - (max cu, + max s, ) + (14 max (7))
< (1 + max|Z]) - (1 + (mzaxcui + max ey, +(1+ m?x(lui)) -cg>> )

Hence we may take ¢; = 1 4+ (max; ¢,; + max; ¢,; + (1 + max;(L;)) - ¢4)-
If f(£;9) is defined by very safe recursion on notation, i.e.

Lo [ g(# ) if z=0
f(z’m’y)_{h(;f(LZ/QJ,f;:J)) if z >0,
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then Th(w) is constant and |h(;w)| < |w| + I,. Thus

f(zZ9) < g(@ 9]+ |2 - 1n
< (ly+1p) - (1 4+ max(|z|, |Z])) + max(|y]).

and
Tf(z%y) < Tg(@y)+ |z Th( f(|2/2]. %:9))
< ¢+ (1 4+ max|Z]) + |2| - cn.
Hence we may take Iy = [, + I}, and ¢; = ¢, + cp.
The lemma follows by induction. Thus functions in D with only normal parameters
are computable in linear time with any reasonable input-output convention.

For the other direction of Theorem 21, let M be a k-tape Turing machine with a binary
tape alphabet, using the standard input-output convention. We represent a configuration
of M by a (2k + 1)-tuple of the form (g, L1, R:,. .. Ly, Rg), comprising the state and the
left and right halves of each tape. We define a function NEXT which takes 2k + 1 safe
parameters and outputs a (2k+1)-tuple representing the next configuration of the machine.
The NEXT function can be defined by composition and cases alone from BASE functions,
and hence needs no normal parameters.

As demonstrated in the previous section, D contains a function f(#;) whose length
bounds the run time of M(z). The function f(:E,) = (f(&), %), defined from f by safe
composition, computes the run-time bound while preserving the input for simulating M.

Once the run-time bound is computed, we apply very safe recursion on notation, using
the bound and the NEXT function above, to define the value of the state and of each tape
at the end of the computation of M. By constantly many steps of definition by cases,
we can then determine which tape contains the desired function value, and extract it by
projection. |

Definition 23 The function class D' is the closure of the set BASE under the operations
of definition by cases, length composition and very safe recursion on notation.

Theorem 24 A function f(Z) is computable by a quasilinear-time multi-tape Turing ma-

chine if and only if f(&£;) € D'.

Proof: This proof is similar to that of Theorem 21, but the growth rates become more
complicated. To state the analogue of Lemma 22 cleanly, we enhance the Turing machine
model with a unit-time length-replacement operation. In one step, the length-replacement
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operation replaces the current contents of any one tape with the length of the non-blank

string on another tape, written in binary. For the duration of the following lemma, the

notation 7T'f represents time on this model.

A standard Turing machine can easily simulate a Turing machine with length replace-

ment by doubling the number of tapes. Initially, the length of each input tape is computed

and written in binary on a new tape. At each step, the lengths are updated to reflect head

motion of the original machine. A length replacement copies the appropriate counter and

computes its length. Each original step requires at most logarithmic time in the simulation;

hence, quasilinear time is preserved.

Lemma 25 For all f in D', there are polynomials ly and py such that for all & and y,

(@ 9)] < (14 max(|])) - L;(||2]], [[4]]) + max(ly])

and
T f(#;y) < (max(|£]) + 1) - pr([[2]], [|4]])

on Turing machines with length replacement.

The proof is again an induction of the definition of a function. The BASE functions all

clearly satisfy the lemma. Definition by cases also preserves the conditions, since the set

of growth rates defined in the lemma is closed under max.
Suppose f is defined by length composition, ¢.e.,

f(£7 g) = g(ul(a_{v |',_Ij|, )7 HE 7uj(£7 |:'j|a );(Ul(:za |27|;171), R 7vk(£7 |g|;:'jk));

By the induction hypothesis, there are polynomials Iy, [,;, and [,; such that

lg(ii; @) < (1 + max(|il)) - (|J4]], ||5]]) + max(|7])
ui(2,Y5)| < (1+ max(|Z], [Y])) - L, (||Z]], |[Y]])
and
i@, V5 55)| < (14 max(|Z], [YV])) - L, ([|Z]], [V ]], [15]]) + max(|3)
Then
F(@)] < g, 15];); 92, 1§ 9)))|
< (max(|], ||1]) + 1) - max(L, (12|, [151]1))) - (|1, 155 )11, 115

+ max([ui(7, 171 7))
(maux([]) + 1) - L ([17]], 17]]) + max(| )

IN

Z, g1 9)])



5 FUNCTION-ALGEBRAIC CHARACTERIZATIONS 22

for some polynomial l¢, as desired.

To compute the composition, first compute the needed lengths of safe parameters in
a single length-replacement step, then make the needed copies of the normal parameters
and lengths, compute @ and ¢ (in parallel, on constantly many tapes) and finally compute
g. The time satisfies

Tf(@:y) < max|z]+max|y]] + max(Tus(, [y];)) + max (Tvi(7, |g]; 3:))
+ Tg(u(Z, |g]; ); 9(Z,19; %))
< (max(|2], [|g]]) + 1) - (1 + max (pu;(

1<i<)
I+ 1) - py([a
< (max(|Z], ||y]]) + 1) - pr(11Z]], ||9]]

&1, 1171 11:11))))

11 19111) + s (s

2, [91)1], [19(2, [91; 9)11)

S
)|

—_~

+ (max |1Z(:E
)

~—

for a polynomial p; depending on 1, L, p., p, and p,.
Suppose now that f is defined by very safe recursion on notation, i.e.

- oo [ 9(@:y) if z=0
1z )_{h(;f(tz/%i;y”)) if 2 > 0.

By the induction hypothesis, there are polynomials I, and I; such that
l9(@ 9 < (max(|Z]) + 1) - L(|[€]], [[9]]) + max(]g])
and
[RGa)l < In([]4]]) + max(|4]).

Assuming without loss of generality that |h(; «)| is nondecreasing in |u|, we have for all
z >0,
(17 ([2/2]; & 9)) + max (| f (|2/2], %5 9)])
W (IF (L2/2], 2 9)1) - |2] + max(|£(0, 2; 5)[)

(If the notation “max(|f(0,;y)|)” seems odd, remember that f is tuple-valued.)
We now prove the existence of a polynomial /¢ such that for all z, Z, v,

<
<

[F(z @ 9)| < Lp(l[z[], [[2]], [19]]) - (max(|z], [#]) + 1) + max(|y]).

Since f(0,%;y) = g(#;y) for all i, the polynomial I, works for all 4 so long as z = 0.
Now assume inductively that some polynomial [ satisfies the lemma for all Z,4 and all
z < zp. We shall find sufficient conditions on I to still satisfy the lemma at zy; then if a
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particular polynomial /¢ meets the conditions for all zy, the induction proof goes through
and l; satisfies the requirements of the lemma. We have

F(z0. &) < W (lIf ([20/2), 2 5)]]) - |20] + max(|£(0, % 7))

< b (g (1Lz0/2)11 1&]], 137]) - max(|2o], |#]) + max(|g])]) - 20|
+ max(|£(0, & 7))

< I (Jor(ly) - | max(zo, 7 )" - max(|20], |7]) + max(|§])|) - ||
+ max(|£(0, & 7))

< In(lt(ly)| + deg(ly) - ||| max(zo, Z P)||| + || max(zo, @)|| + || max(7)]]) - ||
+ max(|£(0, # 7))

< bu([te(lp)| + (2 + deg(ly)) - || max(zo, &, 7)) - |2o]
+ max((max(|7]) + 1) - Ly(||Z]], ||§]]) + max(]71))

< (B(Jtx(ly)| + (2 + deg(ly)) - || max(z0, 7)) - |20] + Ly(112]], 1711))

+ (max(|zol, [£]) + 1)
+ max(|y]).

It would suffice, therefore, to find a I such that, for all z, Z, v,

L=l | 11211 [[911) = Tn(lbr(l5)] + (2 + deg(ly)) - || max(zo, £, 9)|1) + L ([[Z]], [[4]])-

Such a polynomial can be constructed as follows. Assume that all the coefficients of [, and
I}, are nonnegative, and let Iy = I, + [;,. If the inequality holds with Iy plugged in for I;,
we're done. Otherwise, consider the effect of plugging in 2™ . [ for l;. Multiplying I, by
2™ multiplies all the coeflicients on the left by 2™, while on the right hand side it merely
adds m to |tr(ly)|, and therefore adds a polynomial whose coefficients are polynomial in
m. So for all sufficiently large m, the inequality is formally true (i.e., each coefficient on
the left is greater than or equal to the corresponding coefficient on the right), and hence
true for all positive values of |z|. Choose Iy = 2™ - [ for some such m, and the induction
goes through.

In computing f, the function % is iterated |z| times on arguments of length at most
|f(z,%;9)|; hence

Tf(255) < Tg(@q)+ |2l pa (|1 + max((e],170)) - 1 (112I] 13]],[71]) + ma |7
< (14 max([e], 7)) - p, (11211 12]]. [17])

+ |z[ - pn ([1 4 max(|z], [£])[ + [Le([|2]], [|£]], [[9]])] + max][g]])
< (L4 max(|z], [Z])) - ps (=[] 1211, [191])
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for some polynomial py.
The lemma follows by induction, and the first half of the theorem is proved.

For the reverse direction of Theorem 24, the machine encoding proceeds as in the
linear case, but 1s iterated over a quasilinear time bound rather than a linear one, using
the functions ¢ of the previous section. |
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5.3 Characterizing SBH

We now characterize SBH(QL) and SBH(linear) by adding one additional schema to the
tiered function algebras of Section 5.2. The 0/1-valued functions definable with the new
schema will be the characteristic functions of SBH(QL) and SBH(linear) relations. Ar-

bitrary (0/1-valued or not) definable functions are the functions in FQLSBH(QL)]
FLSBH(l'inea'r) (1] ]

and

Definition 26 A function f is defined by normal-bounded zero-detection from g if

L 0 i (Y < J2])(g(
Fz @) = { 1 i (Fw < |z|)(g(

w, Z; ) = 0)
w, &3 1) > 0)

Definition 27

o The function class D™ is the closure of the BASE functions under safe composition,
very safe recursion on notation, and normal-bounded zero-detection.

o The function class D™ is the closure of the BASE functions under length composi-
tion, very safe recursion on notation, and normal-bounded zero-detection.

In the spirit of the previous sections, we select a machine model suitable for reasoning
about the definable functions. The natural model for FQL*BH QU 5 an oracle machine: a
quasilinear-time deterministic computation with a constant number of queries to an oracle
in SBH. By Theorem 12, the oracle set is computable by an LATM in quasilinear time
with constant indeterminism depth. In order to obtain clean time bounds in the inductive
proofs below, we shall want to avoid copying strings to special oracle tapes. We therefore
use a “self-query” machine, which combines the machine that queries the oracle with the
machine that recognizes the oracle set.

A “self-query” state ¢ designates three states g, ¢,, and g,, called “test”, “yes”, and
“no” respectively. The test state g; is the start of the computation of the oracle set. If the
computation from ¢; accepts, the answer to the query is yes, and the successor of query
state ¢ 1s ¢,. If the computation from ¢, rejects, then answer to the query is no, and the
successor of q is ¢,. Note that the self-query state has only one actual successor and is
thus a deterministic state.

To treat this oracle machine and its query set as a single LATM with self-queries requires
several restrictions. First, to keep the deterministic part that queries the oracle separate
from the length-alternating part that decides the oracle, we require that query states may
not appear as descendants of test states, while indeterministic states may only appear as
descendants of test states. Second, the indeterminism depth of the whole computation tree
must (as in Theorem 12) be constant.
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Note that, since the time bound of an LATM is found by maximizing the length of
all its branches, any linear or quasilinear time bound we impose will apply to both the
deterministic and length-alternating parts.

With these restrictions, a self-querying LATM M using quasilinear time behaves essen-
tially as a deterministic quasilinear-time oracle machine with an oracle in SBH(QL), and
thus computes a function in F QLSBH(QL)[l]. The one difference is that M makes queries
without copying its configuration to a special oracle tape. Because M makes only a con-
stant number of queries, a standard oracle machine could compute the same result, with
copying of query strings, also in quasilinear time.

Similarly, linear time bounds on self-querying LATMs characterize exactly FL5BH (timear)[1]

Theorem 28 A function f(&) is in FLSBEnear)l] i ond only if f(#;) € D, Fur-
thermore, if f is 0/1-valued, i.e., f is the characteristic function of a relation Ry, then

R; € SBH (linear) if and only if f(%;) € D™,

Proof: To show the required time bounds, we prove by induction on the definition of f
that

o if f(%;9) € D", then f is computable on an self-querying multi-tape Turing ma-
chine in time O(|#|) with constantly many queries to an O(|Z|)-time, constant-depth

LATM, and

o if f(&;y) € D" is 0/1-valued, then Ry is computable by an O(|#])-time, constant-
depth LATM.

Corollary 4 implies that the former statement implies the latter.

The induction on the definition of f follows closely that of Theorem 21. The BASE
functions, definition by cases, and safe composition work exactly as in Lemma 22; the
property of using a constant number of self-queries is preserved by the computations.

If f(z,%;y) is defined by very safe recursion on notation from ¢(#;y) and h(;u), a
straightforward algorithm computes g(;y) and then applies h to the result |z| successive
times. Since h has no normal parameters, its definition cannot involve normal-bounded
zero-detection; hence h is computable in constant time without queries by Theorem 21.
Thus f(z,#;y) requires no more queries than does g(; ).

Now suppose f(z,#;y) is defined by normal-bounded zero-detection from g(w, #;v). f
may be equivalently defined from the 0/1-valued function § = max(1, g). By the induction
hypothesis, R; is computable by a linear-time LATM. To compute f, immediately make
a self-query. For the test computation, existentially guess a position w in z, and check if
Rs(w,Z;y). On a “yes” answer, output 1; on a “no” answer, output 0. The computation
makes a single query, and adds a constant factor to the time bounds of R,.
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Hence all functions in D™** have the required time bounds, by induction.

Now suppose R € SBH(linear). Write R(Z) as (glyl)(g’yz)---(glyk)S(i, y), where S
is in linear time. Then by Theorem 21, the characteristic function xs(,%;) is in D. A
normal-bounded zero-detection on xs gives the characteristic function of (Elyk)S (%,9). For
v quantifiers, simply rewrite them as =3—, negating a 0/1-valued function by composing it
with the function # — max(0,1 — ), whlch 1s easily definable in D by cases. By applying
k steps of zero-detection, with negations in between as required, we get xr(%;) € D",

Now if f(Z) € F [SBH(nean)l] e know f is computable in linear time with some con-
stant number of queries to some fixed SBH(linear) oracle R(y). By the previous paragraph,
xr(¥;) € D™**. Using standard techniques, we can move all the queries to be consecutive
and nonadaptive, at the cost of making exponentially more (but still constantly many)
queries. Thus the values given to the queries are g (&; ), ..., g.(&; ) for some ¢, where each
function g; is linear-time, and the value of f is a linear-time function F' of £ and the ¢
responses to the queries. By Theorem 21, the functions gy, ..., g., and F' are all in D;
therefore, we can define f(%;) € D" as F(:l: xr(91(Z;);), ..., xr(9:.(%;);)). 1

Theorem 29 A function f(Z) is in FQLSBHEQDNL if and only if f(&;) € D Py
thermore, if f is 0/1-valued, i.e., f is the characteristic function of a relation Ry, then
Ry € SBH(QL) if and only if f(&;) € D,

Proof Sketch: Again, we use induction on the definition of a function; however, we add
an extra requirement. Using length-replacement operations, if f(&;y) € D’ " then

e f is computable in time Q(|Z|, ||y]|) on a self-querying LATM,
¢ f(Z;y) is computable deterministically in time polynomial in |Z| and ||y]|, and

o if f is 0/1-valued, then Ry is computable by an Q(|Z|,||y]|)-time, constant-depth
LATM.

By the same argument as Corollary 4, the first part implies the last.

The induction on the definition of f requires only a few modifications to the others
above. For BASE functions, definition by cases, and length composition, the growth rates
and time bounds combine exactly as in Lemma 25; the number of queries (if any) remains
constant.

If f is defined by normal-bounded zero-detection, use the same computation as in
Theorem 28 for the bounds on self-querying LATMs. For deterministic computation,
simply test all possible zeroes, preserving polynomial time.
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If f is defined from g and A by very safe recursion, then A, having no normal parameters,
can be computed deterministically in polylogarithmic time by the inductive hypothesis.
Use this computation to iterate h for both the self-querying and deterministic computations
of f to obtain the required time and query bounds.

The required bounds hold for all functions in 2'™* by induction. Simulating the length-
replacement operations yields one direction of the theorem.

The reverse direction 1s almost identical to that in Theorem 28, replacing “linear” with
“quasilinear”, D with D', and Theorem 21 with Theorem 24.
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6 Further directions

We have characterized SBH in several ways; however, its relation to many other com-
plexity classes remains unclear. Theorems 8 and 9 suggest limits on our ability to prove
that SBH contains hard problems, but they allow some room to maneuver. Perhaps most
significantly, we would like to know whether SBH contains all problems solvable in deter-
ministic quasilinear time on a random-access machine (NLT'). Gurevich and Shelah [30]
show a complete problem for NLT'; if this one problem is in SBH, then SBH is the same
over random-access machines as over Turing machines. They show that all the machine
models considered yield the same class with respect to unbounded nondeterminism (i.e.,
NQL = NNLT).

Similarly, SBH might contain Gradel’s [25] class DTIME(n'"), which is strictly larger
than @QL, but is not large enough to apply our Lemma 10. Further, one could easily
define an analogous hierarchy over DTIME(n'") using the model of Section 4.1; would the
inclusion DTIME(n't) € SBH imply the collapse of the DTIME(n'*t) hierarchy?

One extension of this work is to classes defined by a polylogarithmic number of sharply
bounded quantifiers. These classes would be between P and PSPACE and might yield some
more concrete insight into the P =7 PSPACE question. A strictly nondeterministic version
of this hierarchy, known as the §-hierarchy, has been studied by various researchers [2, 4,
14, 38|.

A different direction would consider AQL[O(log(n))], the class of relations computable
in quasilinear time with O(log(n)) bits of quantification but no bound on alternations. This
class is still within P and contains ALOGTIME; thusif AQL[O(log(n))] # P then a fortiori
ALOGTIME # P. On the other hand, if AQL[O(log(n))] = P, then all polynomial-
time computations can be parallelized down to quasilinear time using polynomially many
processors. Such a collapse would answer a question of Condon [18] by showing that
essentially all problems in P have polynomial parallel speedup.

Recent work of Cai and Chen [14] presents a useful general framework for discussing
classes with limited amounts of nondeterminism. An obvious direction for further research
is to extend their framework to handle alternation of universal and existential quantifiers.
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