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Abstract

A visual cryptography scheme for a set P of n participants is a method to encode
a secret image ST into n shadow images called shares, where each participant in P
receives one share. Certain qualified subsets of participants can “visually” recover the
secret image, but other, forbidden, sets of participants have no information (in an
information-theoretic sense) on SI. A “visual” recovery for a set X C P consists of
xeroxing the shares given to the participants in X onto transparencies, and then stacking
them. The participants in a qualified set X will be able to see the secret image without
any knowledge of cryptography and without performing any cryptographic computation.
This cryptographic paradigm has been introduced by Naor and Shamir [7].

In this paper we propose two techniques to construct visual cryptography schemes
for general access structures. We analyze the structure of visual cryptography schemes
and we prove bounds on the size of the shares distributed to the participants in the
scheme. We provide a novel technique to realize k out of n threshold visual cryptography
schemes. Finally, we consider graph-based access structures, i.e., access structures in
which any qualified set of participants contains at least an edge of a given graph whose
vertices represent the participants of the scheme.

1 Introduction

A visual cryptography scheme for a set P of n participants is a method to encode a secret
image ST into n shadow images called shares, where each participant in P receives one
share. Certain qualified subsets of participants can “visually” recover the secret image,
but other, forbidden, sets of participants have no information (in an information-theoretic
sense) on ST. A “visual” recovery for a set X C P consists of xeroxing the shares given to
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the participants in X onto transparencies, and then stacking them. The participants in a
qualified set X will be able to see the secret image without any knowledge of cryptography
and without performing any cryptographic computation.

The best way to understand visual cryptography is by resorting to an example. Suppose
that there are four participants, that is P = {1,2, 3,4}, and that the qualified sets are all
subsets of P containing at least one of the three sets {1,2}, {2,3}, or {3,4}. Hence, the
family of qualified sets is

FQUal = {{17 2}7 {2?3}7 {37 4}7 {17 27 3}7 {17 2?4}? {17 374}? {2? 374}7 {1?27 3? 4}}'

We will stipulate that all remaining subsets of P are forbidden.

We want to encode the secret image “ECCC”. The four shares generated by a visual
cryptography scheme for A are given in Appendix. They look like random patterns and, in-
deed, no individual share provides any information, even to an infinitely powerful computer,
on the original image. To decrypt the secret image the reader should xerox each pattern
on a separate transparency, stack together the trasparencies associated to participants in
any qualified set, and project the result with an overhead projector. If the transparencies
are aligned carefully, then the reader will get the images showed in the remaining part of
Appendix.

This new cryptographic paradigm has been recently introduced by Naor and Shamir [7].
They analyzed the case of a k out of n threshold visual cryptography scheme, in which the
secret image is visible if and only if any k transparencies are stacked together.

A possible application, mentioned in [7], is the following. The 2 out of 2 visual cryp-
tography scheme can be thought of as a private key cryptosystem. We encode the secret
printed message into two random looking shares. One of the two shares will be a printed
page of ciphertext which can be sent by mail or fax, whereas the other share serves as the
secret key. The original image is revealed by stacking together the two transparencies. This
system is similar to the one-time pad, as each page of ciphertext is decoded by using a
different transparency. However, it does not require any cryptographic computation — the
decoding is done by the human visual system.

In this paper we extend Naor and Shamir’s model to general access structures, where an
access structure is a specification of all qualified and forbidden subsets of participants. We
propose two different techniques to construct visual cryptography schemes for any access
structure. We analyze the structure of visual cryptography schemes and we prove bounds
on the size of the shares distributed to the participants in the scheme. We provide a
novel technique to realize k out of n threshold visual cryptography schemes. Also, we
consider graph-based access structures, i.e., access structures in which any qualified set
of participants contains at least one edge of a given graph whose vertices represent the
participants of the scheme.

2 The Model

Let P = {1,...,n} be a set of elements called participants, and let 27 denote the set of
all subsets of P. Let FQuaI C 2% and FEorp € 273, where FQuaI NTEorp = (. We refer to
members of I'q,| as qualified sels and we call members of ['p,y, forbidden sets. The pair
(I'Qual UForb) 1s called the access structure of the scheme.

Define I'y to consist of all the minimal qualified sets:

To={AelQual: A" ¢ TQual forall A" C A, A" # A}.



A participant P € P is an essential participant if there exists a set X C P such that
X U{P} € I'qual but X ¢ Tqual- If a participant P is not essential then we can construct
a visual cryptography scheme giving him nothing as his or her share. In fact, a non-
essential participant does not need to participate “actively” in the reconstruction of the
image, since the information he has is not needed by any set in P in order to recover the
shared image. In any VCS having non-essential participants, these participants do not
require any information in their shares. Therefore, we assume throughout this paper that
all participants are essential.

In the case where I'q,,| is monotone increasing, I'pqp is monotone decreasing, and
FQualY T Forb = 27 the access structure is said to be strong, and I'g is termed a basis. (This
situation is the usual setting for traditional secret sharing.) In a strong access structure,

T'Qual ={C CP:BCC for some B € 'y},

and we say that I'q,,| is the closure of Tg.

For sets X and Y and for elements z and y, to avoid overburdening the notation, we
often will write z for {z}, 2y for {z,y}, 2Y for {z}UY, and XY for X UY.

We assume that the message consists of a collection of black and white pixels. Each pixel
appears in n versions called shares, one for each transparency. Each share is a collection of m
black and white subpixels. The resulting structure can be described by an n x m Boolean
matrix S = [s;;] where s;; = 1 iff the j-th subpixel in the i-th transparency is black.
Therefore the grey level of the combined share, obtained by stacking the transparencies
i1,...,1s, is proportional to the Hamming weight w (V') of the m-vector V.= OR(r;,,...,ri,)
where r;,,...,r; are the rows of S associated with the transparencies we stack. This grey
level is interpreted by the visual system of the users as black or as white in according with
some rule of contrast.

Definition 2.1 Let (I'Qual; 'Forb) be an access structure on a set of n participants. A
(T'Quals [Forbs m)-VCS (visual cryptography scheme) consisls of two collections (multisets)
of n x m boolean matrices Cy and Cy satisfying:

1. Any (qualified) set X = {i1,42,...,7,} € I'Qual can recover the shared image by
stacking their transparencies.
Formally, for any M € Cqy, the “or” V of rows iy,ia,...,1i, satisfies w(V) < tx —
a(m) - m; whereas, for any M € Cy it results that w(V) > tx.

2. Any (forbidden) set X = {iy,42,...,%} € ['Fop has no information on the shared

image.
Formally, the two collections of p x m matrices Dy, with t € {0,1}, obtained by
restricling each n X m matriz in C; lo rows i1,1a,...,t, are indislinguishable in the

sense that they contain the same malrices with the same frequencies.

Each pixel of the original image will be encoded into n pixels, each of which consists of
m subpixels. To share a white (black, resp.) pixel, the dealer randomly chooses one of the
matrices in Cy (Cq, resp.), and distributes row ¢ to participant ¢. The chosen matrix defines
the m subpixels in each of the n transparencies. Observe that the size of the collections Cq
and C; does not need to be the same.

The first property is related to the contrast of the image. It states that when a qualified
set of users stack their transparencies they can correctly recover the image shared by the



dealer. The value a(m) is called relative difference and the number a(m) - m is referred to
as the contrast of the image. We want the contrast to be as large as possible and at least
one, that is, a(m) > 1/m. The second property is called security, since it implies that, even
by inspecting all their shares, a forbidden set of participants cannot gain any information
in deciding whether the shared pixel was white or black.

There are few differences between the model of visual cryptography we propose and the
one presented by Naor and Shamir [7]. Our model is a generalization of the one proposed in
[7], since with each set X € I'q,, we associate a (possibly) different threshold ¢x. Further,
the access structure is not required to be strong in our model.

Notice that if a set of participants X is a superset of a qualified set X', then they can
recover the shared image by considering only the shares of the set X’. This does not in
itself rule out the possibility that stacking all the transparencies of the participants in X
does not reveal any information about the shared image.

We make a couple of observations about the structure of I'q,) and gy in light of
the above definition. First, it is clear that any subset of a forbidden subset is forbidden,
50 I'Forp is necessarily monotone decreasing. Second, it is also easy to see that no superset
of a qualified subset is forbidden. Hence, a strong access structure is simply one in which
I'Qual is monotone increasing and I'qya U l'porp = 27,

Notice also that, given an (admissible) access structure (I'qQqa); I'Forb), We can “embed”
it in a strong access structure (F/Qual’F/Forb) in which I'qqa C F/Qu | and Tpgy C© Tk
One way to so this is to take (FQuaI’ FForb) to be the strong access structure having as basis
Lo, where I'g consists of the minimal sets in I'qy,,|, as usual.

In view of the above observations, it suffices to construct VCS for strong access struc-
tures. However, we will sometimes give constructions for arbitrary access structures as
well.

2.1 The Size of the Collections C; and C;

In this paper we consider only VCS in which the collections Cy and Cq have the same size, i.e.,
|Co| = |C1| = r. Actually, this is not a restriction at all. Indeed, given an access structure
(P'Quals I'Forb); We will show how to obtain, from an arbitrary VCS for (I'qual [Forp), @
VCS having the same parameters m and «(m), with equally sized Cy and C;.

Let M be a matrix in the collection Co U Cy of a (I'Qual [Forps m)-VCS on a set of
participants P. For X C P, let My denote the m-vector obtained by considering the or of
the vectors corresponding to participants in X; whereas M[X] denotes the | X'| x m matrix
obtained from M by considering only the rows corresponding to participants in X.

Now, suppose that |Co| = rg and [C1| = r1 # ro. Let X € I'popp and let M € CoUC;. For
t € {0,1}, let n% denote the number of times that the matrix M[X] appears in the collection
{A[X]: A € C;}. From Property 2. of Definition 2.1 we have that n%/ro = n%/ri. We
construct the collections C and Ci of a new ('qa); I'forb: m)-VCS, X', by taking ry copies of
each set in Cg and rg copies of each set in Cy, respectively, obtaining |C)| = |Ci| = r = ro-r1.

We have to show that Properties 1 and 2 of Definition 2.1 are satisfied. Clearly, Property
1 of Definition 2.1 holds. Let X € T'g,,p, and let M € CLUC]. Fort € {0,1}, let p’; denote
the number of times that the matrix M[X] appears in the collection {A[X]: A € C{}. It
results that % = % - r and pk = n% - ro. Therefore,

0 0 0 1 1 1
Hxy _Nx "™ _Nx _Nx _Nx To _ HKx

r o"T To ™ ™ -To r



Thus, Property 2. of Definition 2.1 is satisfied. It is worthwhile to notice that the relative
difference a(m) does not change when we go from ¥ to ¥'. Hence, without loss of generality,
in this paper we restrict our attention to VCS in which the collections Cy and C; have the
same size.

2.2 Basis Matrices

Most of the constructions in this paper are realized using two n x m matrices, S© and S*
called basis matrices satisfying the following definition.

Definition 2.2 Let (U'Qual; [Forb) be an access structure on a set of n participants. A
(TQuals TForbs m)-VCS is realized using the basis matrices S® and S* if the following two
conditions hold.

LIf X = {ir,i2,...,ip} € TQual (i-e., if X is a qualified set), then the “or” V of rows
i1,19, ..y 1p of SO satisfies w(V) < tx — a(m) - m; whereas, for S it results that
’LU(V) >tx.

2. If X = {ix,i2,...,0p} € Upopp (i-e., if X is a forbidden set), then the two p X m
matrices oblained by resiricting S° and S* to rows iy,143,...,1, are equal up to a
column permutation.

The collections Cy and Cy are obtained by permuting the columns of the corresponding basis
matrix (SY for Cg, and S! for Cy) in all possible ways. Note that, in this case, the size of the
collections Cy and Cy is the same and it is denoted by r. This technique has been introduced
in [7]. The algorithm for the VCS based on the previous construction of the collections Cq
and C; has small memory requirements (it keeps only the basis matrices S° and S!') and
it is efficient (to choose a matrix in Cy (Cy, resp.) it only generates a permutation of the
columns of S? (S, resp.)).
We give an example to illustrate the definitions and the use of basis matrices.

Example 2.3 Suppose n =4, so P = {1,2,3,4}. Define

PQual = {11, 2},{2,3}, {3,4},{1,2,3}}

and

Trorb = 1113, {2}, {3}, {4}, {1, 3}, {1, 4}, {2,4}}.
Then Ty = {{1,2}, {2,3},{3,4}}.

We will construct a (I'qua|s I'Forbs 3)-VCS using basis matrices. The basis matrices S0
and S are as follows:

S0 = st =

= e
o O O
o O O =
_— 0 = O
—_— o o
c O

In this scheme, a(m) = 1/3, so the contrast is one. Let’s first look at the qualified subsets.
It is easy to check that the following values hold with regard to property 1:

t{1,2} — 3



t{2,3} = 2
t{3,4} = 3, and

tiesy = 3

Property 2 is easily verified for the forbidden sets. Finally, the sets {1,2,4}, {1,3,4},
{2,3,4}, and {1,2,3,4} are neither forbidden nor qualified, so the scheme is not a scheme
for a strong access structure. A

3 An (n,n)-Threshold Scheme

A (k,n)-threshold VCS realizes the strong access structure with basis

To={BCP:|Bl=k}.

Thus, the original message is visible if any k of n participants stack their transparencies, but
totally invisible if fewer than k transparencies are stacked together or analysed by any other
method. In this section we recall some of the results presented in [7] for (n,n)-threshold
VCS. In such a scheme, the original message is visible if and only if all » transparencies are
stacked together, but totally invisible if fewer than n transparencies are stacked together or
analysed by any other method.

The construction of an (n, n)-threshold VCS is obtained by means of the construction
of the basis matrices S® and S! defined as follows: S° is the matrix whose columns are all
the boolean n-vectors having an even number of ‘1’s, and S! is the matrix whose columns
are all the boolean n-vectors having an odd number of ‘1’s.

Lemma 3.1 [7] The above scheme is an (n,n)-threshold VCS with parameters m = 2771,
a(m) =1/2""" and r = 271!

Example 3.2 Let n = 4. Then, the two basis matrices are:

00001111 00001111
G0 001 10011 gl — 00110011
01010101 0101 0101
01101001 10010110

A

The scheme realized using the previous construction is optimal with respect to the values
of m and «(m), as stated in the next theorem due to Naor and Shamir.

Theorem 3.3 [7] In any (n,n)-threshold VCS, a(m) < 1/2"71 and m > 2771,

In general, we will be interested in minimizing m for a given access structure. Hence,
we define m*(C'Qua|s [Forp) to be the smallest value m such that an (Cqyq|s [Forp, m)-VCS
exists.



Let (FQualv I'Forp) be an access structure on a set P of participants. Given a subset of
participants P’ C P, we define the access structure induced by P’ to be the families of sets
defined as follows:

I[P lQual = {X €lQual: X C P}, and
F[73/]Forb = {X¢ Crorp : X C 73/}.

The following lemma is immediate.

Lemma 3.4 Let (I'Qual, [Forb) be an access structure on a set P of participants, and let
(LIPlQual, [P lForb) be the induced access structure on the subset of participants P'. Then

m* (F[pl]Qual’ F[7)/]Forb) < m*(FQuaI’ FForb)'
The next corollary is a consequence of Theorem 3.3 and Lemma 3.4.

Corollary 3.5 Let (FQuaIvFForb) be an access structure. Suppose that X € T'qu,l, and
suppose that Y € T'pqp, for allY C X, Y # X. Then m*(U'Qual, ['Forb) = 2l XI-1,

4 General Constructions

In this section we will present two construction techniques to realize visual cryptography
schemes for any access structure.

4.1 A Construction for VCS Using Cumulative Arrays

The first construction we consider is based on the cumulative array method introduced in [9].
Let (I'Qual; ['Forb) be a strong access structure on the set of participants P = {1,2,...,n}.
Let Zps denote the collection of the maximal forbidden sets of IT':

Znv = A{B € Tpgpp : BU{i} € [quq for all {i} € P\ B}.

A cumulative map (B, T) for ['qq) is a finite set T along with a mapping 8 : P — 2T such
that for @ C P we have that

U B(e) =T <= Q € ' qual-

a€Q
We can construct a cumulative map (3,T) for any I'Qual by using the collection of the
maximal forbidden sets Zy; = {F},..., F;} as follows. Let T = {T},...,T;} and for any
1€ P let

pli) =AT; i ¢ F;,1 <j <t} (1)

It is easy to see that for any X € I' we have

U B8G) =T;

1€X

whereas any set X € I'g,,p, will be missing at least one F; € T'.

From a cumulative mapping for I'q,,|, we can obtain a cumulative array for I'q,),
as follows. A cumulative array is a |P| x |T| boolean matrix, denoted by C'A, such that
CA(i,7) = 01if and only if ¢ ¢ T}.



Example 4.1 Let P = {1,2,3,4},T¢ = {{1,2}, 12,3}, {3,4}}, and Zy = {{1,4}, (1,3}, {2,4}}.
Therefore, |T| = 3. The cumulative array for I'q, is the following:

CA=

S = = o
_ o = O
S = 2 =

A

At this point we can realize a visual cryptography scheme for any strong access structure.
Our technique is based on the (n,n)-threshold VCS of Section 3. Let Zjs be set of the
maximal forbidden sets and let ¢ = |Zp/[. Let C'A be the cumulative array for I'g,,] obtained
using the cumulative map (1). Let 5° and S! be the basis matrices for a (£, )-threshold
VCS. The basis matrices S° and St for a VCS for the access structure (T'Qual, [Forb) can
be constructed as follows. For any fixed 4 let j;i,...,7i4, be the integers j such that
CA(i,7) = 1. The i-th row of S (S, resp.) consists of the or of the rows j;1,...,jig of
50 (§1, resp.). An example will help in illustrating this technique.

Example 4.1 (cont.) Let P = {1,2,3,4}, [y = {{1,2},{2,3},{3,4}}, and Zy; =
{{1,4}7 {1,3},{2,4}}. Hence, |T| = 3. Let S° and S* be

-~

S0 =

~

01 1 11
1 01 St=11 0
110 10

o o o
o = O

0
0
1

The basis matrices S° and S! in a VCS realizing the strong access structure with basis I'g
are:

S0 = St =

o oo

1
1
1
1

O = =
—_ == O
— = =
o = = O
—_c = o
o~ O

The second row of S is the or of rows 1 and 2 of go’ that is,
(0,1,1,1)=(0,1,1,0) or (0,1,0,1),

and the third row of S is the or of rows 1 and 3 of S°. The first and the fourth rows of S°
are equal to rows 3 and 2 of S°, respectively, and similarly for S!.

A
The next theorem holds.

Theorem 4.2 Let (I'Qua|s IForp) be a strong access structure, and let Zy be the family
of the mazimal forbidden sets in I'gy,,. Then lhere exisls a (FQuahFForbam)'VCS with

m = 21%m=Y gnd tx = m for any X € L'qual-



4.2 Constructing VCS from Smaller Schemes

In this section we present a construction for visual cryptography schemes using small
schemes as building blocks in the construction of larger schemes.

Let (TQuat T'Forb) @0 (FQuals IForp) be two access structures on a set of n participants
P. Suppose there exist a (T’ /Qual’ ['Eorpy ™)-VCS and a (F/({,)ual’ ['Eorpr m")-VCS with basis
matrices RY, R! and TY, T, respectlvely We will show how to construct a VCS for the
access structure (I'qual; ['Forb) = (I Qual ¥ FQuaI’F/FoArb ﬁAF’Iéorb). FroT the matrices RV,
R', T° and T' we construct two pairs of matrices, (R°, Rl)A'and (T°,T"), each consisting
of n rows, as follows. Let us first show how to construct RY. For i = 1,...,n, the i-th

row of R has all zeroes as entries if the participant ¢ is not an essential participant of
(r /Qual’ ['ko,p); otherwise, it is the row of RO corresponding to participant 7. The matrices

R1 T0 and T' are constructed similarly. Finally, the basis matrices S° (S, resp) for
(FQuaIv FForb) will be realized by concatenating the matrices £° and T° (R1 and T, resp. ).

(That is, S° = ROoT and S' = R'o T1 where o denotes the operator “concatenation” of
two matrlces.) In Theorem 4.4 we will prove that the scheme obtained using this method
realizes a VCS. An example will help in illustrating the previous technique.

Exmnpb¢L3IﬁtP::{L2ﬁh&5}mﬁlaIb::HLQL{Z3L{&4L{£5L{L5L{ZB§.
We can construct a visual cryptography scheme for the strong access structure (FQuaI’ Crorb)

having basis ['g by using VCS for the strong access structures with bases 'y = {{1, 2}, {1, 5}}
and 'y = {{2, 3},{3,4},{4,5}, {2,5}}, respectively.

RO=|10|,R'=[01]| and T°= , Tt =
10 01 10 10
10 01

From the above matrices we obtain the matrices R%, R, T°, and 1.

10 10 00 00
10 01 10 10
RO=100|,R'=]|00]| and T°=| 10|, T =] 01
00 00 10 10
10 01 10 01

Concatenating the matrix RO with T° and the matrix B! with fl, we obtain the following
basis matrices S and S for a visual cryptography scheme for the strong access structure
with basis ['g:

1000 1000
1010 0110
S% =1 0010 St =1 0001
0010 0010
1010 0101



The next theorem holds.

The.OI.‘em 4.4 Let ( IQual’F/Forb? and (U, TEorp) be two access structures on a set of n
participants P. Suppose there exist a (F/Qual’ Teop ™)-VCS and a (F/(/Qual’ o m")-VCS
with basis matrices R®, R' and T°, T, respectively. Then the previous construction yields
a (F/Qual U F/(/Qua_l’ e N Fjéorb’ m' + m")-VCS. If the original access structures are both
strong, then so is the resulting access structure.

Proof. Let m = m' + m". Let {ty} (X € F/Qual) and {t%} (X € F/(/)ual) be the thresholds
satisfying Definition 2.2 for the access structures (F/Qual’ ['ko,p) and (FI(IQuaI’ ['Eo,p)s Tespec-
tively. Finally, let o/(m’) and o (m”) be the relative difference of the two VCSs. Define
a(m) to be

min{a/(m/) . m/’ a//(/m//) . ,m//}

a(m) =
(m) L
We have to show that the matrices S° and S, constructed using the previously described
technique, are basis matrices for the access structure (I'qya|, [Forb) = (F/(QuaIUF/(/QuaI’ INNe
F// )

Forb

Let X be a subset of participants. First, suppose that X € FIQuaI N F/(/Qual and let tx =

ts + t%%. It results that

~

w(sy) = w(ByoT)
= w(B%) +w(T§)
w(RY) + w(T§)

"

<ty —ad(m)-m' + % - ' (m")-m
< tx —a(m)-m,
whereas
w(Sk) = w(BxoTx)
= w(Ry)+w(T})
> tx +tk
= tx.

If X € Tqual\['Quals then let tx =t + w(TY). Tt results that

w(%) = w(kyoTR)
w(R%) + w(Tx)

<ty —al(m) - m' 4 w(T)
< —a(m) - mo+ w(7)
= tx —a(m)-m,
whereas
w(Sy) = w(RyoTy)

w(RY) + w(T)
ty +w(T)

v +w(Tg)

tx.

v

10



If X ¢ FI(IQuaI\FIQuaI’ then let tx =t + w(]A%g{) We can prove that w(S%) <tx — a(m) -
m and w(S%) > tx. Using the reasoning applied to the previous case, Property 1. of
Definition 2.2 is satisfied.

Now, suppose that X € I't_, NT'{_ . We have to show that S9[X] = S'[X] up to a column
permutation. We have that

S°[X] = R°[X]oT°[X]
= R'X]oT'[X]
= S'X],

where the second equality is satisfied up to a column permutation. Hence, Property 2. of
Definition 2.2 is satisfied, too. It is easy to see that if the original access structures are
strong, then so is the resulting access structure. Therefore, the theorem holds. 0

The construction technique employed in the proof of Theorem 4.4 does not work for
general VCS (i.e., if they are not constructed from basis matrices). That is, given a
( /Qual’ I'Eorp: ™)-VCS and a (F/(/Qual’ ['E iy m")-VCS the “concatenation” of the matrices
of the two schemes does not give rise to a (I'g,) U TQuap Trerp N TFopp, ' + m")-VCS.
Indeed, consider the collections Cy and Cy of a possible (2,2)-threshold VCS, ¥, obtained

as follows. The collection Cy is realized considering the matrices obtained by permuting the

columns of the matrices
100 110
010 110

whereas the collection C; is obtained by considering the matrices obtained by permuting

100 110
011 001 |~

Suppose that we use ¥ to realize VCS for the strong access structures having bases {{1,2}}
and {{2,3}}. To construct the collections Cy and C; of a VCS for the strong access structure
having basis {{1,2},{2,3}} we cannot just “concatenate” the matrices of the two schemes.
Indeed, it is easy to see that

the columns of the matrices

110000 110000
M= 110110 | €Cy and M'=| 001100 | € C;.
000110 000011

Hence, we get w(Mj,) = w(Mj,) = 4 contradicting Property 1. of Definition 2.1. Therefore,
the construction technique employed in the proof of Theorem 4.4 does not work for general

VCSs.
It is not difficult to see that given a (I'y .1, T'opp, m)-VCS and a (UG 515 Do, m")-VCS
the “concatenation” of all matrices of the two schemes gives rise to a (I'y, [ UTA, .1, TEop M
Qual Qual’ * Forb

Eorb: ' 4+ m')-VCS if and only if for all X € F/Qual U TG, the following condition is
satisfied.
min w(Mx)+ min w(Mx) > max w(Mx)+ max w(Mx).
Mec Mecy Mec " Mec

Recall that, for M € Cy U Cy, M is the matrix in which the i-th row has all zeroes as
entries if the participant ¢ is not an essential participant; otherwise, it is the row of M
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corresponding to participant ¢, as defined at the beginning of Section 4.2. The previous
condition states that for any X € P/Qual U F/(/,)ual and for any M € C; and M’ € Cy it results
that w(Mx) > w(MY). Therefore, there will be always a difference between a white and a
black pixel. That is, the relative difference will be positive. More precisely, let m = m'+m"
and let

m(X) = min w(ﬁx) + min w(MX)

Mec Mecy
and . .
M(X) = max w(Mx) + max w(My).
Mec; Mecy
The contrast a(m) is equal to
X)-M((X
a(m) = , min_ M
XEFQuaIUFQuaI m

The next corollary is an immediate consequence of Theorem 4.4.

Corollary 4.5 Let (I'Qual, I'forb) be an access structure. IfTqual = UiLiI'; Qualy: I'Forb =
M1 T Forby, and, for i =1,...,w, there exisls a (F(z',QuaI)’ ' Forbys m;)-VCS constructed
using basis matrices, then there exists a (UQual, ['Forb, m)-VCS constructed using basis ma-
trices, where m = "2, m;. If the m original access structures are strong then so is the
resulting access structure.

From Theorem 3.1 and Corollary 4.5 the following theorem holds.

Theorem 4.6 Let (FQuaIv UForp) be a strong access structure having basis I'y. There exists

a (TQuals UForbs M)~ VCS where m = Y 21XI=L,
Xely

The previous theorem states a general result on the existence of VCS for any strong
access structure. For special classes of access structures it is possible to achieve a smaller
value of m, as we will show in Section 6 for threshold access structures, and in Section 7
for graph-based access structures.

5 Omn the Structure of VCS

In this section we provide some useful properties of VCS. First, we investigate the case of
“isolated” participants. Then, we show how to construct VCS for any non-connected access
structure using VCS for its connected parts. Finally, we prove that any matrix M in the
collection Cp UCy has to contain some predefined sub-matrices, which we call “unavoidable
patterns”.

5.1 Isolated Participants

In this section we show that we do not need to consider access structures containing “iso-
lated” participants, i.e., we can suppose that |X| > 2 for any X € LQual-

This is shown as follows. Suppose that (FQuaI’ I'Forp) 1s an access structure on partic-
ipant set P, and suppose that z € P. Let Cy and C; be the collections of matrices in a
(FQualv I'kor, m)-VCS.

First, we show how to construct a VCS for the access structure (I'qua U{{z}}, [Forb)-

12



Lemma 5.1 Let (FQuah rorp) be an access structure on a sel P of n participants, and lel
x ¢ P. If there exists a (TQual, ['Forb, m)- VCS, then there exists a (T'qualUi{e}}, TForb, m)-
VCS.

Proof. Let Cy and C; be the collections of matrices in a (I'Qual; ['Forb, m)-VCS. Then, for
any M € Cg, adjoin a new row (for participant z) consisting entirely of ‘0’s. Similarly, for
any M’ € Cy, adjoin a new row (for participant z) consisting entirely of ‘1’s. 0

Of course, Lemma 5.1 can be applied as many times as desired, if there is more than
one isolated participant.

We now give a modification of Lemma 5.1 which shows how to construct a VCS in which
every subset of participants containing z is qualified.

Lemma 5.2 Let (I'Qual; 'Forb) be an access structure on a set P of n participants, and let
x & P. If there exists a (LQuals [Forbs m)-VCS, then there exists a (F/Qualerorbam +1)-
VCS, where

F/Qual = FQua| U{XU{z}: X CP}

Proof. Let Cy and Cy be the collections of matrices in a (FQuaIv Loy m)-VCS. Then, for
any M € Cp, adjoin a new row (for participant z) consisting entirely of ‘0’s, and adjoin a
column of ‘0’s. Similarly, for any M’ € Cy, adjoin a new row (for participant z) consisting
entirely of ‘1’s, and a column of ‘0’s, except that the entry in row 2 and column m+ 1 is a
‘1°. 0

As with the previous lemma, Lemma 5.2 can be iterated.

5.2 Non-Connected Access Structures

An access structure (I'qya|, [Forp) On @ set of participants P is said to be connected if there
is no partition of P into two non-empty sets P’ and P” such that Ty C 27" U2P". The
next technical lemma will be used in the construction of VCS for non-connected access
structures, given VCS for its connected parts.

Lemma 5.3 Let (D'Qual; 'Forb) be an access structure on a set P of n participants. Let Co
and Cy be the matrices in a (UQual, ['Forb, m)-VCS and let D be any n x t boolean matriz.
The collections of matrices Cy = {M oD : M € Co} and C{ = {M o D : M € C1} comprise
a (FQuaI ' PForby m +1)-VCS.

Proof. Since we concatenate the same matrix D to any M € Co U Cy, then Properties
1. and 2. of Definition 2.1 are satisfied. Moreover, the frequencies of matrices associated
with forbidden sets do not change in going from Cy and C; to Cf and C{. Only the relative
difference o' (m’) changes, becoming o' (m’) = (a(m) - m)/(m +1). 0

The next example will help in illustrating the technique employed in the previous lemma.

Example 5.4 The following collections Cy and Cy represent a (2,2)-threshold VCS with

IR S A ]
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N , [l 1o1] [on ;)| 101 o1l
Sem“gD_ll]Wegetc@_{lwl]’lounandcl_{lon]’llol”'

The collections €} and C] constitute a 2 out of 2 threshold VCS with m = 3.
A

Let (F/QuaI’FIForb) and (F/(/Qual’ I'E.,p) be two access structures on disjoint sets of par-
ticipants P’ and P”, respectively. Define the sum of the two access structures to be
(FQuah FForb)v where

FQuaI = F/Qual U F/(/Qual
and

FFOYb = {)( U Y . )( € F/FOFb’Y S Flléorb}

If an access structure is not connected, then we can realize a VCS for it simply by
constructing VCS for its connected parts and then by putting together the schemes in a
suitable way, as shown in the next theorem.

Theorem 5.5 Let (I', ., ko) and (T ap o) be two access structures on disjoint
sets of participants P" and P", respectively, and let (T'Quqa|, I'Forb) be their sum. If there exist
a (F/Qual’ Forb: M')-VCS and a ( 6ua|’ Forb ") -VCS, then there is a (TQuals IFory m)-

VCS, where m = max{m’, m"}.

Proof. Let C}, C} and C{/, C{ be the collections of matrices in the VCS for access struc-
tures (FIQuaI’F/Forb) and (F/(/Qual’rlléorb)’ respectively. Without loss of generality, suppose

that |Ci| = |Cy| = ', |C{| = |C{] = r" and m' > m"”. From Lemma 5.3 there exists a
(F/(/.)ual’ [y m)-VCS. Let i and C{" be the collections of matrices in this (F/(/Qual’ [Eorpy ™)

VCS. The collections of matrices Co and Cy of a VCS for the access structure (I'qual, I'Forb)
are constructed as follows.

Co={M: M[P| €Cl, M[P"| €C"} and C, = {M: M[P| €, M[P"]ecC).

It is immediate to verify that Property 1. of Definition 2.1 is satisfied. Let’s verify Property
2. Let X € I'g ,, (X € I'f,p, resp.) and let M € CoUC] (M € Cf' UCY", resp.). By
n% (@Y, resp.), where t € {0,1}, we denote the number of times that the matrix M[X]
appears in the collection {A[X]: A € C}} ({A[X]: A € C/"}, resp.). From Property 2. of
Definition 2.1 we have that % = n% and p$ = pk . Finally, for M € CoUCy, let 7%, where
t € {0,1}, denote the number of times that the matrix M[X] appears in the collection
{A[X] : A € C;}. Tt results that |Co| = |C1] = r = v’ - r"". To prove that Property 2. of
Definition 2.1 is satisfied we have to show that for any X € T'g,p, it holds that v§ = ~v%.
Let X € T'popp- If X C P\P" (the case X C P"\'P' is analogous), then

! "

o _ .0 g1 N/ |
Yx="7x'"r =7Nx " =79Xx-

If X=YUZ whereY € F/Forb and Z € F/F/orb’ then

VX =M BY =T by = Tk

Hence the theorem follows. 0
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The next example will help in illustrating the technique employed in the previous theorem.

Example 5.6 Suppose thal (P/Qual’ [eoep) 8 @ (2,2)-threshold access structure on partici-
pant set P' = {1,2}, and (FI(IQuaI’ TEo ) 18 a (2,2)-threshold access structure on participant
set P'={3,4}. The sum of these two access structures is (I'qa|, I'Foyrp), where

FQual ={{1,2},{3,4}}

and

FForb = {{1}7 {2}7 {3}7 {4}7 {17 3}7 {17 4}7 {27 3}a {27 4}}
Let P = {1,2,3,4}. Consider the (strong) access structure I'q,,| with basis [ = {{1,2}, {3,4}}.
A VCS for the access structure (L'Qual, [Forp) is obtained by considering the following col-
lections Cqy and Cj.

[ 10 ] [ 01 | [ 10 ] o1 )
Cy— 10 01 10 01
10 |’ 01 |’ 01 |’ 10
| 10 | | 01 | | 01 | | 10 |
[ 10 ] [ 01 ] [ 10 ] [ 01 ]
01 10 01 10
Clz 3 3 3
10 10 01 01
| 01 | | 01 | | 10 | | 10 |

The access structure (I'Qual, ['Forb) has I'o = T'Qua|- It is interesting to observe that the
VCS constructed above is not a VCS for the strong access structure where I'q,| is the
closure of I'g, and by a result that we prove later (Theorem 5.12), it can be shown that
there is no VCS with m = 2 for the strong access structure having basis I'g. It can also be
shown that there is no VCS with m = 2 constructed from basis matrices with m = 2, for
the access structure (I'quals [Forp)- A

5.3 Unavoidable Patterns

Let M be a matrix in the collection CoUCy of a (I'Qua|s I'Forb, m)-VCS on a set of participants
P. Recall that, for X C P, Mx denotes the m-vector obtained considering the or of the rows
corresponding to participants in X; whereas M[X] denotes the |X| x m matrix obtained
from M by considering only the rows corresponding to participants in X.

Lemma 5.7 Let (FQualarForb) be an access structure on a set of participants P. Let
X, Y C P be two non-emply subsels of participants, such that X NY = 0, X € Tggp
and X UY € T'qual- Then in any (LQual; I'Forbs ) -VCS, for any matriz M € Cy it holds
that

w(Mxy) — w(Mx) > a(m) - m.

Proof. Let M be any matrix in C;. From Property 1. of Definition 2.1 we have that
w(Mxy) > txy. Since X € 'y, then from Property 2. of Definition 2.1, there is at least
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one matrix M’ € Cy such that M[X] = M'[X]. Therefore, we have
w (1MX) w (]\4}( )

w(Myy)
txy —a(m)-m

AN VAN VAN

w(Mxy) — a(m) -m,

where the second inequality of the above expression derives from Property 1. of Defini-
tion 2.1. Thus, the lemma is proved. 0

The matrices in CoUC; have to contain some predefined patterns which we call unavoud-
able patterns. For instance, suppose X € I'q,, and X\{i} € 'fop. Then for any M € Cy,
the matrix M[X] contains at least a(m) - m columns with a ‘1’ in the i-th row and ‘0’s in
the other rows. This is an immediate consequence of Lemma 5.7. Indeed, by considering
X =Y U {i} we get

w(MyU{Z-}) — w(My) > a(m) - m.
Therefore, there must be at least a(m) - m columns in M[X] with a ‘1" in row ¢ and ‘0’s in
the other rows.

Here is another example of an unavoidable pattern. Suppose X € I'q,,y; then, for any
M € Cy, the matrix M[X] contains at least o(m) - m columns with entries all equal to ‘0’.
In fact, from Property 1. of Definition 2.1 we have

w(Myx) <tx —a(m)-m <m-—a(m)- m.

The next corollaries are immediate consequences of the existence of unavoidable patterns.

Recall that a participant ¢ is an essential participant if there exists a set X C P such
that X U {i} € T'qua but X ¢ I'Qual- We say that ¢ is a strongly essential participant if
there exists a set X C P such that X U {7} € I'qyq and X € [fypp-
Corollary 5.8 Let (I'Qual, [Forb) be an access structure on a set of participants P. Sup-
pose that i is a strongly essential participant, and suppose that {i} € I'po,p. Then in any
(U'Quals ['Forb, m)-VCS, for any matriz M € Co U Cy it holds that

w(M;) > a(m) - m.

Proof. Let X be a subset such that X U {i} € I'q , and X € I'pyy,. For any matrix
M € Cyq, because of the unavoidable patterns (Lemma 5.7), the matrix M[X] contains at
least a(m) - m columns with a ‘1’ in the i-th row and ‘0’s in the other rows. Therefore,
w(M;) > a(m) - m. Since {i} € I'pop, the result also holds for any matrix M € Cy by
Property 2. of Definition 2.1. 0

Corollary 5.9 Let (FQuaIvFForb) be an access structure, Suppose that X € I'qu, and
X\{i} € Tpgpp Jor all i € X. Then, in any ('Quals I'Forbs m)-VCS', we have tx > |X]-
a(m) - m.

Proof. Let i € X, and define Y = X\{i}. Let M € Cy. From Property 1. of Definition 2.1
it results that w(My) < w(Mx) < tx — a(m) - m. From Property 2. of Definition 2.1 we
have that there exists at least a matrix M’ € Cy such that w(Mj) = w(My). Because of
the unavoidable patterns, we have that

w(My) 2 [Y]-a(m) -m = (|X] = D)a(m) - m.
Hence, we get that tx > | X |- a(m) - m. 0
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The next lemma states the existence of other unavoidable patterns in any matrix in Co UCy.
Basically, it says that for any Y € ['pq,p and for any M € CoUCy, the matrix M[Y] contains
at least a(m) - m columns whose entries are all equal to zero.

Lemma 5.10 Let (['qua|; [Forp) be a strong access structure, and suppose that Y € 'pgyp,-
Then, in any (T'Quals I'Forb, m)-VCS, for any matriz M € Co UCy it holds that

w(My) <min{tx : Y C X, X € [quq} — a(m)-m.

Proof. Because of Property 2. of Definition 2.1, we prove the lemma only for M € Cy. Let
X € I'Quals Y C X. From Property 1. of Definition 2.1 we get w(Mx) < tx — a(m) - m.
Since Y C X we have that w(My) < w(Mx), and the result follows. 0

The next lemma shows the existence of unavoidable patterns in any matrix M € Cq provided

that P € [Qual-

Lemma 5.11 Let (FQuaIvFForb) be an access structure on a set P of participants, where
P € LQual- Then, in any (TQuals UForby m)-VCS any malriz M € Co has at least a(m) - m
columns whose entries are all equal to zero.

Proof. From Property 1. of Definition 2.1, we have the following:
w(Mp) <tp —a(m)-m < m—a(m)-m.
Therefore, the lemma holds. 0

We now look at a consequence of the unavoidable patterns for (2, n)-threshold access struc-
tures. In a VCS for such an access structure, the rows of any matrix M € Cy represent a
Sperner family (see for example [5]). In fact, let M € C; be an n X m boolean matrix and
let G = {g1,...,9m} be a ground set. For ¢ = 1,...,n, row i of M represents the subset

l}and

A; = {gw : M(i,w) = 1} of G. Since any two rows of M contain the patterns [ 0

{ ? } , then the sets Aq,..., A, constitute a Sperner family in the ground set G. Therefore,

the rows of the matrix M represent a Sperner family. This will be exploited further in
Theorem 6.6 and in Section 7.

The next two theorems provide a characterization of VCS having m = 2 and of (3, 3)-
threshold VCS with m = 4. Both theorems are based on the existence of unavoidable
patterns.

Theorem 5.12 Let (FQualv Urorp) be a strong access structure containing no isolated par-
ticipants. If there exists a (FQua|, LEorb, 2)-VCS, then the basis g is the edge-set of complete
bipartite graph.

Proof. Suppose there exists a (I'Qual; ['Forb, 2)-VCS. Then for any X € T it results that
X| = 2. Indeed, there are no isolated participants, and hence |X| > 2. On the other
hand, | X| < 2, since otherwise Corollary 3.5 would imply that m > 4. Therefore, Iy is the

edge-set of some graph G.

We first show that the graph G is connected. Indeed, suppose by contradiction that there ex-
ists a (FQua|, I'Forp, 2)-VCS and that G is not connected. Therefore, there exists a partition
of P into two non-empty sets P’ and P” such that Ty C 27 U 27", Let {t,7y € LQual N 2P’
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and £ € P”. Because of the unavoidable patterns and since the access structure does not
contain isolated participants, we have that for any M € C; the matrix M[{i, j, (}] is equal,
up to a column permutation, to one of the following two matrices

M[i] 10 M 10
M' = M! []] = 01 M!" = M L]] = 01
M[d 01 M 10

Since the access structure is strong and w(My, . ) = w(M{; ; n) = 2, from Property 1. of

Definition 2.1, it result that for any M € Co the matrix iﬁ[XU {¢}] is equal, up to a column
permutation, to

In this case we have that w(M, ) > w(ﬁ{i,g}) and w(M{; ) > w(]\?{ﬂ}) contradicting
Property 2. of Definition 2.1 since {7,£} and {j, ¢} belong to I'r,,,. Therefore, I'g is the
edge-set of some connected graph G.
Now, suppose that GG is not a complete multipartite graph. Then from Theorem 4.2 in
[2], G contains an induced subgraph which is isomorphic either to H or to Ps;, where
V(H)=V(Ps) = {1,2,3,4}, E(H) = {12,23,34,24}, and E(Ps) = {12,23,34}.
First, suppose that G is isomorphic to H. The graph H contains K3 as induced subgraph
which can represent the basis of a (2, 3)-threshold. There does not exist a Sperner family
on a ground set of cardinality two (see [5] for details). Hence by consideration of the
unavoidable patterns and Lemma 3.4, it must be the case that m > 3.

!

Next, we prove that if G is isomorphic to Ps, then m > 3. Let FQuaI be the closure of
Iy = {{1, 2},{2,3},{3, 4}} Suppose by contradiction that there exists a (F/Qual’ [eorbr 2)-
VCS. Let M € Cy. Since {1,2}, {2,3}, {2,4} € T}, because of the unavoidable patterns

the matrix M has to be equal, up to a column permutation, to

10
01
10
01

1M =

From Property 2. of Definition 2.1 any row of any matrix M’ € Cq has weight 1. From
Property 1. of Definition 2.1, for any X € I'{j, we have that w(Mx) > w(MY). Hence, the
matrix M’ is equal, up to a column permutation, to

10
10
10
10

LM/ =

Considering the matrices M and M’ we have that w(Mj4) < w(Mj,) contradicting Property
2. of Definition 2.1 since {1,4} € T'r_ . Thus, there does not exist a (F/Qual’ Lo 2)-VCS
where PIQuaI is the closure of I'fyy = {{1, 2},{2,3}, {3,4}}.

Finally, suppose that G is a complete multipartite graph having at least three parts. The
graph GG contains K3 as induced subgraph, and, as above, m > 3.

Therefore, I'g is the edge-set of a complete bipartite graph.
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The condition of above theorem is necessary and sufficient. We will see in Theorem 7.5
that, for any strong access structure having as basis the edge-set of a complete bipartite
graph, there exists a visual cryptography scheme with m = 2.

By exploiting the unavoidable patterns the following theorem proves that in any (3, 3)-

threshold VCS with m = 4 all matrices have a (specified) unique form up to a column
permutation. To be specific, any matrix M € Cg has as its columns all the boolean 3-
vectors having an even number of ‘1’s; whereas, any matrix M’ € C; has as its columns all
the boolean 3-vectors having an odd number of ‘1’s.
Theorem 5.13 Lel (I'quals [Forb) be the access structure of a (3,3)-threshold VCS on the
set of participants P = {1,2,3}. In any (T'Qual, UForb; 4)-VCS all matrices have a unique
form up to a column permutation. That is, any malriz M € Cy and any matriz M' € Cq is
equal, up to a column permutation, (respectively) to

1001 0110
M = | 0101 M' =1 0101
0011 0011

Proof. First, let M € Cy;. Because of the unavoidable patterns we have that, up to a
column permutation,

where x denotes the presence of either a one or a zero. Assume that the fourth entry of a
row of M is zero: Without loss of generality, suppose that M[1] = (1,0,0,0). Because of
the unavoidable patterns (see Lemma 5.11), any matrix in Cy has a column with all entries
equal to zero. From Property 2. of Definition 2.1 there exists at least a matrix M’ € Cq
such that w(Mj) = 1. Therefore, the matrix M’, up to a column permutation, looks like

01 0 0
M=10 x x %
0 x % %

By consideration of two rows of M, it is immediate to see that other unavoidable patterns
of any matrix in the collection Cy are the following columns

1 1 * *
0 * 1 0
* 0 0 1

From Property 2. of Definition 2.1 and from the existence of the unavoidable patterns, the
matrix M’ has to be, up to a column permutation, the following

0100
M' = | 0010
0001

The matrix M’ and Property 2. of Definition 2.1 imply that any matrix M € C; with
w(My) = 1is equal, up to a column permutation, to

1000
M= 0100 |,
0010
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leading to a contradiction, i.e., w(Mjz3) = w(Mjy3) = 3. Therefore, any matrix M € C;
does not have a row of weight 1, and it is equal, up to a column permutation, to

1001
M =] 0101
0011

Hence, any matrix M’ € Cq is equal, up to column permutation, to

0110
M' = | 0101
0011

?

which proves that for any (3,3)-threshold VCS with m = 4, any matrix M € Cy has
as columns all the boolean 3-vectors having an even number of 1; whereas, any matrix
M’ € C; has as columns all the boolean 3-vectors having an odd number of 1. 0

6 Threshold Schemes

In this section, we study (k,n)-threshold VCS. We can construct such schemes by using
the two techniques described in Sections 4.1 and 4.2. By using the technique based on
cumulative arrays we obtain a (k,n)-threshold VCS in which m = 2(:2)=1 and Ix =m
for any set X of cardinality k; whereas by using the technique of Section 4.2 we obtain a
(k, n)-threshold VCS in which m = (}) - 2¥7! and tx has the same value for any set X of
cardinality k.

In the following section we describe a method to construct threshold VCSs achieving
better results.

6.1 A More Efficient Construction for Threshold Schemes

In this section we describe a construction for threshold VCSs based on perfect hashing
[4, 6, 1].

Definition 6.1 A starting matrix SM (n,{, k) is a n x £ matriz whose entries are elements
of a set {ay,...,ar}, with the property that, for any subset of k rows, there exists at least
one column such that the entries in the k given rows of that column are all distinct.

Given a matrix SM(n,(,k) we can construct a (k,n)-threshold VCS as follows: The
nx (- 2]“_1) basis matrices S and S! are constructed by replacing the symbols a1, ..., ax,
respectively, with the 1-st,..., k-th rows of the corresponding basis matrices of the (k,k)-
threshold VCS described in Section 3. The scheme obtained is a (k, n)-threshold VCS as

the following theorem shows.

Theorem 6.2 If there exists a SM(n,l, k) then there exists a (k,n)-threshold VCS with
m={-2F1,

Proof. Let S? and S} be basis matrices of the (k, k)-threshold VCS described in Section 3
and let SM(n, £, k) be a starting matrix whose entries are elements of a set {a1,...,ar}.
Finally, let My and M; be two n x (£-2*~1) matrices constructed by replacing the symbols
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ay,...,ar, with the 1-st,..., k-th rows of the basis matrices Sg and S,%, respectively. In the
previous construction, when we replace the symbols ay, ..., a; of SM with the rows of S
(S1, resp.) the column i of SM is expanded into an n x 28~ matrix referred to as the basic
block By,; (B, resp.). We will show that the matrices My and M are basis matrices of a
(k, n)-threshold VCS.

Fix any k rows of a basic block Bg; (B, resp.). Either these rows are the rows of SJ (S},
resp.) and thus their “or” has weight 28=1 — 1 (2%~  resp.), or they contain at most k — 1
distinct rows of S (S}, resp.) whose “or” has the same weight in both basic blocks By,
and Bj ;. Therefore, Property 1. of Definition 2.1 is satisfied.

To prove that Property 2. of Definition 2.1 is satisfied we have to show that for any set
X C {1,...,n} of cardinality at most & — 1, My[X] is equal to M{[X] up to a column
permutation. This is true since, for any 7 € {1,...,£}, it holds that By;[X] is equal to
By ;[X] up to a column permutation. 0

Example 6.3 To construct a (2, n)-threshold VCS consider the matrix SM(n, [logn],?2)

in which the [logn] entries in row 7 are equal to T NI FL NS LS where the
log n]—1

bits bj- are the coefficients in the binary representation of z — 1, that is
P 1= B B2 Bl 27081

The two basis matrices are constructed by substituting 01 for a; and ag in SM to obtain
S0 and 01 and 10 for a; and ay in SM to obtain S!, respectively.

The resulting scheme has m = 2 [log n| which is a considerable improvement compared
to the scheme proposed in [7] when m = n. However, we will provide in Section 7 an even
better construction, which is in fact optimal with respect to m.

Here is an example to illustrate. If n = 4 we obtain the two 4 x 4 matrices:

10 10 10 10
10 10 10 01

0 _ 1 _
5= 10 10 5= 01 10
10 10 01 01

If n = & we obtain the two 8 X 6 matrices:

[ 10 10 10 ] [ 10 10 10 ]
10 10 10 10 10 01
10 10 10 10 01 10
go_ | 10 10 10 gi_ | 10 01 01
10 10 10 01 10 10
10 10 10 01 10 01
10 10 10 01 01 10
| 10 10 10 | | 01 01 01 |

21



Example 6.4 A (3, 6)-threshold VCS can be constructed considering the matrix SM (6, 3, 3):

a10a2a3
ajagzaz
a2a1a3
20301
azayaz
a3a30a1

Substituting 0011, 0101, 0110 for a4, as, az in SM to obtain S® and 0011, 0101, 1001 for
ai,az,as in SM to obtain S we obtain the two 6 x 12 matrices:

S0 =

0011
0011
0101
0101
0110
0110

0101
0110
0011
0110
0011
0101

0110
0101
0110
0011
0101
0011

Sl

0011
0011
0101
0101
1001
1001

0101
1001
0011
1001
0011
0101

1001 7
0101
1001
0011
0101

0011

A

Example 6.5 A (3,9)-threshold visual cryptography scheme can be constructed consider-
ing the matrix SM(9,4,3):

SM =

aja1a1ay
a1a2a303
ajazazas
2014303
Aga2a20a1
20304142
43014202
asza2a1as3
aszagzazay

The above 9 x 4 matrix SM is described by Elias in [8] in a different context. (It is in
fact equivalent to the classical affine plane of order three, see for example [5], and is a special
case of a general construction given in [1].) Substituting 0011, 0101, 0110 for a4, ag, a3 in
SM to obtain S° and 0011, 0101, 1001 for ay, as, a3 in SM to obtain S we obtain the two

9 x 16 matrices:

0011
0011
0011
0101
S% =1 0101
0101
0110
0110
0110

0011
0101
0110
0011
0101
0110
0011
0101
0110

0011
0110
0101
0110
0101
0011
0101
0011
0110

0011
0101
0110
0110
0011
0101
0101
0110
0011
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0011
0011
0011
0101
0101
0101
1001
1001
1001

0011
0101
1001
0011
0101
1001
0011
0101
1001

0011
1001
0101
1001
0101
0011
0101
0011
1001

0011
0101
1001
1001
0011
0101
0101
1001
0011




A

The SM matrix is a representation of a Perfect Hash Family (or PHF). Fredman and
Komlés [4] proved that for any PHF it holds that [ = Q(k*~'/k!) log n. They also proved the
weaker but simpler bound [ = Q(1/logk) log n. Mehlhorn [6] proved that there exist PHF's
with [ = O(ke*) log n. These bounds are in general, non-constructive, but in [1] there can be
found some (constructive) recursive constructions for PHFs with { = O ((log n)log((g)ﬂ)) .

Naor and Shamir [7] showed that there exist (k, n)-threshold visual cryptography schemes
with m = 20(198%) . 1og . Our construction produces a smaller value of m than their con-
struction, but this has been achieved by relaxing the condition that all values tx are equal
as required in [7].

The theorem provides a lower bound on m for any (k, n)-threshold VCS.

Theorem 6.6 In any (k,n)-threshold VCS, it results that

(kfl) - (tmn}%)'

Proof. Let Cy and C; the collections of n X m boolean matrices of any (k,n)-threshold
VCS on the set P of n participants. Denote N = (kfl). Let X4,..., Xn denote the subsets
of P of cardinality &k — 1. Let M € C;. We construct an N X m matrix M’ as follows.
Fori=1,...,N, set M'[{] = Mx, (i.e., the row i of matrix M’ is the m-vector obtained
considering the “or” of the rows of M corresponding to participants in X;). Because of the
unavoidable patterns, for any Y C {1,...,n} of size k, the matrix M[X], for £ = 1,...,k,
contains at least a column with a ‘1’ in the £-th row and zeroes in the other rows. This
implies that any two rows of M’ contain the patterns { (1) } and { 0 } as any of its rows is

1
the “or” of k — 1 rows of M.
Let G={g1,...,9m} be a ground set. For £ =1,..., N, row £ of M’ represents the subset

Ay ={gw : M'({,w) = 1}. Since any two rows of M’ contain the patterns { (1) } and [ ? } ,
the rows of the matrix M’ represent a Sperner family in the ground set G. It is well-known

that the maximum size of a Sperner family, F, in a ground set GG of cardinality m is at most
(,,7,,). Hence, it has to be that N < (, ") which proves the theorem. 0
[m/2] [m/2]

Since (Lm”}%) < 2™ and (")) > (#£5)¥! we have that in any (k, n)-threshold VCS,
m = Q(klog(n/k)).

7 VCS for Graph Access Structures

In this section, we study access structures based on graphs. We first recall some terminology
from graph theory. Given a graph G = (V(G), E(G)) a vertex cover of G is a subset of
vertices A C V(G) such that every edge in E(G) is incident with at least one vertex
in A. The complete graph K, is the graph on n vertices in which any two vertices are
joined by an edge. A graph G' = (V(G'), E(G')) is a subgraph of a given graph G =
(V(G), E(G))if V(G") CV(G) and F(G") C E(G). A clique of a graph G is any complete
subgraph of G. The complete multipartite graph Ko, q,.... 4, 18 @ graph on Y i, a; vertices,
in which the vertex set is partitioned into subsets of size a; (1 < ¢ < n) called parts, such
that vw is an edge if and only if v and w are in different parts. An alternative way to
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characterize a complete multipartite graph is to say that the complementary graph is a
vertex-disjoint union of cliques. Note that the complete graph K, can be thought of as a
complete multipartite graph with n parts of size 1.

Let P denote the set of participants, and let G’ be a graph on vertex set V(G) =
P, having edge set E(G). From G, we can define a (strong) access structure ['(G) =
(T(G)Quals T'(G)Forb) by specifying that the basis is £/(G). Thus a subset X of participants
is qualified if the induced subgraph G[X] contains at least one edge (and X is forbidden,
otherwise). As is always the case, we are interested in the minimum value m for which such
a VCS exists. We will use the notation m*(G) to denote the value m*(I'(G)Qual; I'(G) Forb)
in this section.

Example 7.1 Consider the “prism” graph Gg on six vertices, depicted in Figure 1., having
edges 12, 13, 23, 14, 25, 36, 45, 46, and 56.

6 5
Figure 1: Graph G

Define SY and S! as follows:

S0 = and S'=

= = e
[Nl B e N
oo o oo
_—o O o = =
O~ O O
oSS = = = O

Then it is straightforward to verify that S° and S! are basis matrices for a VCS with strong
access structure I'(Gg). Hence, m*(Gg) < 3. A

In the case where G = K,, (a complete graph), we are talking about (2, n)-threshold
VCS. By Theorem 6.6, a (I'(K,,), m)-VCS implies the existence of a Sperner family of size
n over a ground set of size m, and hence n < (LEJ) A converse result is also true, as we

2

now show.

Theorem 7.2 Suppose that the sels By,..., B, form a Sperner family in a ground set
X =A{a1,...,2m} of cardinality m. Then m*(K,) < m.

Proof. We define basis matrices for a VCS with strong access structure I'(K,). For
1<i<n,1<75<m,define

o [ 1 if1<j<|By
S(”)_{o if |Bi| +1<j<m.
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Also, for 1 <1< n, 1 <j < m,define

S(W)—{o if 2; ¢ B.

It is easy to see that we obtain the desired VCS by this construction. 0

It is well-known that the maximum size of a Sperner family, F, in a ground set X of

size m is at most (| |); and equality occurs if and only if F consists of all subsets of X of
2

cardinality |Z] (or all all subsets of X of cardinality [%Z]). Hence, we have the following
result.

Theorem 7.3 The value m*(K,,) is the largest integer m such that n < (\_ZJ)
2

Thus m*(K,) = 2; m*(K3) = 3; m*(K,) = 4 for n = 4,5,6; m*(K,) = 4 for n =
7,8,9,10; etc.

Let w(() denote the maximum size of a clique in a graph G. The following result is an
immediate consequence of Lemma 3.4 and Theorem 6.6.

Theorem 7.4 Let G be a graph. Then there exists a (I'(G), m)-VCS only if w(G) < (l-%”-‘)

Recall the graph Gg considered in Example 7.1. It is easy to see that w(Gg) = 3, and
thus it follows that m*(Gg) = 3.

A modification of Theorem 7.3, using the well-known “splitting technique” from secret
sharing schemes [3], together with Theorem 7.4, can be used to prove the following result
for complete multipartite graphs.

Theorem 7.5 There exists a (Kq,,. q4,,m)-VCS if and only if n < (’-Tmn-‘)
2

Proof. Tet S° and S! be the basis matrices for a (I'(K,), m)-VCS, where n < ([zw)
: 2

Then for every r, 1 < r < n, replicate row r of S and S! a, times. The result is a
(I'(Kq,,....a,), m)-VCS.

Conversely, suppose that a (I'(Kg, .4, ), m)-VCS exists. It is easy to see that w(Kq, . 4,) =
n. Therefore it follows from Theorem 7.4 that n < ({ : 1) 0

For a graph G, let 3(G) denote the minimum cardinality of a vertex cover of G. Given
a graph GG on vertex set P, for any = € P, define

Inc(z)={y e P:z2y € E(G)}.

Inc(z) represents the set of all vertices adjacent to v. For any participant 2 € P, let

Gz = (Vi, E;) be the subgraph of G where
Ve ={z} U Ine(z)

and

E, ={zy € E(G)}.

We will refer to G as the star graph with centre z.
Exploiting the construction used in Theorem 4.4 we can prove the following theorem.
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Theorem 7.6 For any graph G, we have that m*(G) < 26(G).

Proof. Let X C P be a vertex cover of G having cardinality 3(G). For each « € X, there
exists a (I'(G), 2)-VCS by Theorem 7.5.

Note that Uzex £y = E(G), where E, C F(G) for all 2 € X. Hence, if we apply
Corollary 4.5, we obtain a (I'(G), 26(G))-VCS. 0

If G is bipartite, with bipartition (Vy,V3), we get the following corollary.

Corollary 7.7 Suppose G is a bipartite graph having bipartition (V1,V3). Then m*(G) <
2 x min{|V4[,|V5|}.

Proof. V; and V; are both vertex covers of G, so 3(G) < min{|Vy], [V2|}. Apply Theorem
7.6. 0

8 A Decomposition Construction to Achieve Higher Con-
trast

Given an access structure (['quals ['Forp), consider a (Cquals I'forbs 7)-VCS having con-
trast one, that is constructed using basis matrices S© and S'. To construct a VCS for
(P'Quals I'Forb) having higher contrast ¢ > 1, we could simply concatenate ¢ copies of S0 and
S* to get a (T'Quals DForbs m - €)-VCS with contrast c. In this section we describe a general
technique to construct VCS having any higher contrast, which provides better schemes with
respect to the value of m. This technique was introduced by Stinson [10] in the context of
secret sharing schemes and it is referred to as a (w, A)-decomposition.

For the rest of this section, we confine our attention to strong access structures. Let
(FQuaIvFForb) be a strong access structure having basis ['g and let A\, w > 1 be integers.
A (w, A)-decomposition of Ty consists of a collection {I'l,... T*} such that the following
properties are satisfied:

.T¢CIlgfor1 <¢<w

2. A\lg C Up_, r’ (i.e., the multiset union of the I'“’s contains every basis subset at least
A times).

The following theorem holds.

Theorem 8.1 Let 'y be the basis of a strong access structure ('Qual, I'forp) - L€t {rt, ..., rv}
be a (w, X)-decomposition of I'y. For 1 < i < w, let (FZQuaI’PZForb) be the access structure
having basis T*. Suppose, for i = 1,...,w, thal there is a (FiQuaI’FiForbvmi)'VCS con-
structed using basis matrices. Then there is a (FQuahFForbvm)'VCS} constructed from
basis malrices, having conlrast al least X, where m =3 ;Z; m;.

Proof. The construction used in the proof of this theorem is similar to the one employed
in Theorem 4.4. For i = 1,...,w, let S% and S!* be the basis matrices of a VCS for
the access structure (PZQuaI’PZForb)' From S%® and S%* we construct a pair of matrices,
(§O’i,§1*i), consisting of n rows. Let us show how to construct 504, For 7 =1,...,n, the
j-th row of S%* has all zeroes as entries if the participant j is not an essential participant of
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(/\Faual’ FiForb); otherwise, it is the row of Sor corresponding to participant j. The matrix
S is constructed similarly. Finally, the matrices S0 and St for T will be realized by
Concat/gnatlng the matrices %1, ..., S0% and the matrices St . Sb¥ respectively (i.e.,
S0 = S0l g...0 80w and §1 = 511 -0 Stw),

Let m = >7/2, m;. Fort :-1, e W let {tZX}Xng be the thresholds satisfying Definition 2.2
for the access structure (FZQuaI’ I'eorp)s and let a;(m;) be the relative difference of this VCS.
Define a(m) to be

a(m) = % . 1r<r121<nw{oz2(m,) m;}.
We have to show that the matrices S and S!, constructed using the previously described
technique, are basis matrices of a VCS for access structure (I'qqa|; [Forp), having contrast
at least A.

Let X € 'y be a set of participants. Let Y C {1,...,w} be the set of maximum cardinality
such that X € NieyTh. Since {I'',...,T%} is a (w, A)-decomposition of I'y, we have that
Y| > A Let W ={1,...,w}\Y and define

tx =3t + > w(Sy

€Y teW
It results that
w(S%) = w(S¥ o0 S8%"
= Y w(S¥) + Y w(SY)
€Y €W
Oz Oz
= > w(SY)+ D w(SyY)
€Y €W
< Z(tk —a;(my) - m;) + Z SO2
€Y €W
< Zt’, - mln{ozz(mZ )-mit+ Z )
€Y eEW
= tx —a(m)-m.
whereas,
w(Sx) = w(Sy'o---08y")
= Y w(Sx)+ Y w(Sy)
€Y €W
— Z Sl Z + Z S;{Z
€Y €W
> Z th + Z w(SY
€Y €W
= lIx.

Hence, Property 1. of Definition 2.2 is satisfied.

Now, suppose that X ¢ UX,T*. We have to show that S°[X] = S'[X] up to a column
permutation. Fori = 1,. .., w, up to a column permutation, we have that, S%[X] = S1{[X].
Hence, it results that

SO[X] = S%X]o---0 59V [X] = SV [X]o---0 STY[X] = S'[X],
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where the second equality is satisfied up to a column permutation. Hence, Property 2. of
Definition 2.2 is satisfied, too. It is immediate to see that the resulting scheme has contrast
at least . 0

Let G be a graph on vertex set P of cardinality n, and define the access structure I'(G)
as in Section 7. Recall also from Section 7 that G, is defined to be the star graph with
centre z, for z € P. It is not difficult to see that {G, : ¢ € P} is an (n,2)-decomposition
of G. Applying Theorem 8.1, we obtain a visual cryptography scheme for I'((G) having
contrast 2, with m = 2n and a(m) = 1. The next theorem holds.

Theorem 8.2 Let G be a graph on a set of n vertices. Then there exists a (I'(G), 2n)-VCS
with contrast equal to 2.

The previous theorem gives a (I'(G),2n)-VCS with contrast 2. Using two copies of
the VCS constructed in Theorem 7.6 we would get a (I'(G,43(G))-VCS with contrast 2,
where §(G) is the size of the minimum vertex cover of G. Therefore, for 3(G) > n/2 the
(n, 2)-decomposition provides a VCS with shorter shares.

Example 8.3 To demonstrate the techniques presented in Theorems 4.4 and 8.1, consider
the access structure I'(C),), where ), is a cycle on n vertices, and n > 5. From Theorem 7.6,
there is a (['(C),),2[n/2])-VCS with contrast one. Two copies of this scheme produce a
(['(Cy),4[n/2])-VCS with contrast two.

On the other hand, from Theorem 8.2 there exists a (I'(C),), 2n)-VCS with contrast two.
Therefore, for odd values of n > 5, the decomposition construction produces a VCS with

contrast two with shorter length of shares.

A

9 VCS for Strong Access Structures on at Most Four Par-
ticipants

In this section we give upper and lower bounds on the minimum value m*(I'qya|, ['Forb) for

all strong access structures on at most four participants. We consider only connected access

structures without isolated participants. The bounds on m* are summarized in Table 1.
The results are obtained as follows:

e Access structures 1,2,3,6,7,9,and 10 represent complete multipartite graphs and the
optimal value of m* is determined by Theorem 7.5.

e The optimal value of m* for access structures 4 and 18 is determined by Lemma 3.1
and Theorem 3.3.

e Since access structure 8 is an induced subgraph of the graph Gg, The upper bound
m* < 3 can be obtained from Example 7.1 by applying Lemma 3.4.

e For the all the remaining access structures the upper bounds on m* are obtained using
the basis matrices given in Table 2. For all the above schemes, we have a(m)-m = 1.

e The lower bound m* > 3 for the access structures 5 and 8 is determined by Lemma 5.12.
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e The lower bound m* > 4 for the access structures 11,13, and 14 comes from Corol-
lary 3.5.

e The lower bound m* > 5 for the access structure 12 comes from Theorem 9.2 (see

below).

e The lower bound m* > 5 for the access structures 15,16, and 17 comes from Theo-
rem 9.1 (see below).

| access structure || n | basis subsets | m* |
1 2 12 m* =2
2 3 12,23 m* =2
3 3 12,13,23 m* =3
4 3 123 m* =4
5 4 12,23,34 m* =3
6 4 12,13,14 m* =2
7 4 12,14, 23, 34 m* =2
8 4 12,23, 24, 34 m* =3
9 4 12,13,14,23,24 m* =3
10 41 12,13,14,23,24,34 m* =4
11 4 123, 14 m* =4
12 4 123, 14,34 m* =25
13 4 134,122, 23,24 m* =4
14 4 123,124 m* =4
15 4 124,134, 23 m* =5
16 4 123,124,134 5<m* <6
17 4 123,124,134,234 | 5<m* <6
18 4 1234 m* =8

Table 1: VCS for strong access structures on at most four participants.

Theorem 9.1 Let (L'Qual; IForb) be a strong access structure on participant set P = {1,2,3,4}
such that {1,2,4},{1,3,4} € To. If there exists a (I'Qual, [Forbs 4)-VCS, then there is no
X €T such that {2,3} C X.

Proof. From Lemma 3.4 any (I'Qual, ['Forb, 4)-VCS contains (induced) a VCS for the strong
access structures [V and ' having basis I'l, = {{1,2,4}} and ['j = {{1, 3,4}}, respectively.
Therefore, from Theorem 5.13 any matrix M € C; and any matrix M’ € Cy are equal, up
to a column permutation, respectively, to

1001 0110
0101 , 0101
M = 0101 M = 0101
0011 0011

If this is the case, then, for any M € C; the matrix M[23] does not contain the columns
0 and (1) . Because of the unavoidable patterns, there is no X € I'y such that
{2,3} C X. Thus, the theorem holds. 0
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| access structure || SO St |
100 100
i} 110 011
#5 110 110
010 001
0011 0011
0101 0101
#11 0110 1001
0011 1100
01100 10001
11000 11000
#12 10100 10100
00100 00010
[ 0011 [ 0011 T
_ 0111 1110
#13 0101 0101
0110 | | 1001 |
0011 [ 0011 T
0101 0101
#14 0110 1001
0110 | | 1001 |
01100 10001
10100 10010
#15 10100 10100
11000 11000
000111 7 111000 1
110101 110101
#16 110011 110011
110110 | 110110 |
000111 T 111000 T
001011 110100
#11 001101 110010
001110 | 110001 |

Table 2: Basis matrices for VCS for strong access structures on
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The next theorem proves that for the strong access structure 12, a VCS with m = 4
does not exist.

Theorem 9.2 Let (FQualvFForb) be the strong access structure on participant set P =
{1,2,3,4} having basis g = {123,14,34}. Then there is no (I'Quals UFors 4)- VCS.

Proof. Suppose by contradiction that there exists a (I'Qual, ['Forb, 4)-VCS. From Lemma 3.4
and Theorem 5.13 any matrix M € C; and any matrix M’ € Cy are equal, up to a column
permutation, respectively, to

M' =

* O O =
* O = O
b S e i )
= =
oo oo
* O = =
* = O =
* = o= O

where x denotes the presence of either a one or a zero. Notice that for any matrix M’ € Cq
it holds that w(Mj,,) = w(Mls,) = 3. Since the scheme is for the strong access structure
having basis ['g, for any matrix M € Cy, we must have w(Miz4) = w(Maz4) = 4. Hence,
any matrix M € C; is equal, up to a column permutation to

0

—_0 O =
—_ -0 O
> = =

1
0
*

For any matrix M € C; we have that w(Mz4) = 4. Since 24 € T'g,, is has to be w(Mj,) = 4
for at least one matrix M’ € Cy. This is a contradiction since for any M’ € Cq it holds that
w(Mj,) < 3. Therefore, the theorem holds. 0

10 Conclusion

In this paper we have analyzed visual cryptography schemes. We have extended the Naor
and Shamir’s model to general access structures and we have proposed two techniques
to construct visual cryptography schemes for general access structures. We proved lower
bounds on the size of the shares distributed to the participants in the scheme. We provided
a novel technique to realize k out of n threshold visual cryptography schemes. Finally, we
considered graph-based access structures giving both lower and upper bounds on the size
of the shares.
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Appendix
Example of a Visual Cryptography Scheme

In this appendix an example of the secret image, the shares corresponding to single
participants, and few groups of participants are depicted. The family of qualified sets is

FQuaI = {{17 2}7 {27 5}7 {37 4}7 {17 27 3}7 {17 274}7 {17 374}7 {27 374}7 {17 27 37 4}}

All remaining subsets of participants are forbidden.
The visual cryptography scheme used for this example is described in Table 2 of Sec-
tion 9.

Secret Image

ECCC

Share of participant 1 Share of participant 2

Share of participant
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Image of participants 1 and 2 Image of participants 2 and 3

Image of participants 3 and 4 Image of participants 1 and 3
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