ECCC TR96-013 FTP: ftp.eccc.uni-trier.de:/pub/eccc/ WWW: http://www.eccc.uni-trier.de/eccc/

Email: ftpmail@ftp.eccc.uni-trier.de with subject 'help eccc'

The PL Hierarchy Collapses

Mitsunori Ogihara Department of Computer Science University of Rochester Rochester, NY 14627

February 14, 1996

Abstract

It is shown that the PL hierarchy

$$PLH = PL \bigcup PL^{PL} \bigcup PL^{PL^{PL}} \bigcup \cdots$$

defined in terms of the Ruzzo-Simon-Tompa relativization collapses to PL.

1 Introduction

The oracle separations proven by Baker, Gill, and Solovay [BGS75] initiated the study of complexity classes by relativization. In order to study the NL =?L question, various relativization models for nondeterministic logspace have been proposed [LL76,Sim77,RS81,RST84]. Among them, the so-called Ruzzo-Simon-Tompa model (the RST-model, in short) [RST84], which demands that nondeterministic Turing machines run deterministically while generating query strings, is widely accepted because of its reasonability—for any oracle A, $L^A \subseteq NL^A \subseteq P^A$. Given this reasonable model of relativization, it is quite reasonable for one to what are the complexity classes defined by stacking logspace complexity classes: for a logspace class \mathcal{C} , does the \mathcal{C} hierarchy in terms of the RST-model collapse? The answer to this question was given for some classes. Ruzzo, Simon, and Tompa showed that the hierarchy with respect to BPL [Gil77] (the bounded-error probabilistic logspace with unlimited computation time) collapses to BPL. Also, the NL = coNL theorem proven independently by Immerman [Imm88] and Szelepcsényi [Sze88] implies that the NL hierarchy collapses to NL. In this paper, we obtain the answer to the question for PL (the probabilistic logspace with unlimited computation time) [Gil77]: the PL hierarchy collapses to PL.

Our proof is built on top of some precedent work. Beigel, Reingold, and Spielman [BRS95] showed that PP is closed under intersection. Their proof makes use of the rational functions of Paturi and Saks [PS94] to approximate threshold functions, which extends the work of Newman [New64]. Furthermore, Fortnow and Reingold [FR96] strengthened the technique and showed that PP is even closed under polynomial-time constant round truth-table reductions. Intuitively, we show that the proof by Fortnow and Reingold can be carried over to PL. To this end, we use a

characterization of PL in terms of polynomial time-bounded nondeterministic logspace machines derived from Jung's result [Jun85] that PL is equal to the polynomial time-bounded PL. Such a characterization is shown in Allender and Ogihara [AO94], where they prove that PL is closed under both conjunctive truth-table reductions and disjunctive truth-table reductions.

2 Preliminaries

In this section, we set down some notation and define relevant complexity classes. The alphabet we use is $\Sigma = \{0,1\}$. **Z** and **N** respectively denote the set of all integers and the set of all nonnegative integers. $\langle \cdot, \cdot \rangle$ denotes a logspace computable and logspace invertible pairing function (not necessarily onto).

The class PL was originally defined by Gill [Gil77].

Definition 2.1 [Gil77] A language L belongs to PL if there exists a logarithmic space-bounded probabilistic Turing machine M with unlimited computation time such that for every $x, x \in L$ if and only if the probability that M on x accepts is at least a half.

Let PL_{poly} denote the polynomial time-bounded version of PL. Jung [Jun85] showed that $PL = PL_{poly}$, and furthermore, Allender and Ogihara [AO94] showed that the equivalence holds relative to any oracle.

Proposition 2.2 [AO94] For every oracle H, $PL^H = (PL_{poly})^H$.

Based on the above equivalence, one can obtain a characterization of PL in terms of nondeterministic Turing machines. For a time-bounded nondeterministic Turing machine M and $x \in \Sigma^*$, let $acc_M(x)$ and $rej_M(x)$ respectively denote the number of accepting computation paths and that of rejecting computation paths of M on x and let $gap_M(x)$ denote $acc_M(x) - rej_M(x)$. Define the complexity class GapL [AO94] (see also, GapP [FFK94]) as follows.

Definition 2.3 GapL = $\{gap_M \mid M \text{ is a logarithmic space-bounded, polynomial time-bounded nondeterministic Turing machine }.$

The following propositions are proven by Allender and Ogihara [AO94].

Proposition 2.4 [AO94] A language L belongs to PL if and only if there exists some $f \in \text{GapL}$ such that for every $x, x \in L$ if and only if $f(x) \geq 0$.

Proposition 2.5 Let f be a function in GapL, $g: \Sigma^* \times \mathbb{N} \mapsto \Sigma^*$ be a function in FL, and p be a polynomial. Then the following functions h_1, h_2 , and h_3 all belong to GapL:

- 1. $h_1(x) = -f(x)$.
- 2. $h_2(x) = \sum_{i=1}^{p(|x|)} f(g(x,i)).$
- 3. $h_3(x) = \prod_{i=1}^{p(|x|)} f(g(x,i)).$

Given a function $f \in \text{GapL}$ witnessing that a language L is in PL, define q by q(x) = 2f(x) + 1. Then g always takes on odd values and witnesses that L is in PL. By Proposition 2.5, g belongs to GapL. So, we have the following characterization of PL.

Proposition 2.6 A languages L is in PL if and only if there exists a function f in GapL such that for every x,

$$f(x) \ge 1$$
 if $x \in L$ and $f(x) \le -1$ otherwise.

2.1GapL functions to approximate the characteristic function of languages in

Proposition 2.6 states that the problem of testing whether a GapL function takes a positive or a negative value characterizes PL. Newman [New64] show that the sign function can be approximated by the fraction of two polynomials. The Newman's construction gives us a method for approximating threshold functions by rational functions [PS94,BRS95,FR96].

Definition 2.7 Let $m \geq 1$ and $k \geq 1$. Define polynomials $\mathcal{P}_m(z)$ and $\mathcal{Q}_m(z)$ in $\mathbf{Z}[z]$ by

(1)
$$\mathcal{P}_{m}(z) = (z-1) \prod_{i=1}^{m} (z-2^{i})^{2} \text{ and}$$
(2)
$$\mathcal{Q}_{m}(z) = -(\mathcal{P}_{m}(z) + \mathcal{P}_{m}(-z)),$$

$$Q_m(z) = -(\mathcal{P}_m(z) + \mathcal{P}_m(-z)),$$

and define $\mathcal{R}_{m,k}(z)$ and $\mathcal{S}_{m,k}(z)$ by

(3)
$$\mathcal{R}_{m,k}(z) = \left(\frac{2\mathcal{P}_m(z)}{\mathcal{Q}_m(z)}\right)^{2k} \text{ and }$$

(4)
$$S_{m,k}(z) = (1 + \mathcal{R}_{m,k}(z))^{-1}.$$

Furthermore, define polynomials $A_{m,k}(z)$ and $B_{m,k}(z)$ by

(5)
$$A_{m,k}(z) = Q_m(z)^{2k} \text{ and }$$

(6)
$$\mathcal{B}_{m,k}(z) = \mathcal{Q}_m(z)^{2k} + (2\mathcal{P}_m(z))^{2k}$$

Lemma 2.8 For every $m, k \ge 1$ in N and every $z \in \mathbb{Z}$, the following properties hold.

1.
$$S_{m,k}(z) = A_{m,k}(z)/B_{m,k}(z)$$
.

2. If
$$1 < z < 2^m$$
, then $1 - 2^{-k} < S_{m,k} < 1$.

3. If
$$-2^m < z < -1$$
, then $0 < S_{m,k}(z) < 2^{-k}$.

Proof Let $m, k \geq 1$ be in N. The first equivalence is proven by the routine calculation, so, we omit the proof. Note that $\mathcal{P}_m(z) \geq 0$ if and only if $z \geq 1$. Let z be in $\{1, \ldots, 2^m\}$. We claim that $\mathcal{P}_m(z) \leq |\mathcal{P}_m(-z)|/4$. This is seen as follows: If z=1, then $\mathcal{P}_m(z)=0$, so, the claim holds. On the other hand, if $z \geq 2$, then there exists a unique $t, 1 \leq t \leq m$, such that $2^t \leq z < 2^{t+1}$, and

this t satsifies $|z - 2^t| \le z/2 \le |-z - 2^t|/2$. Since $|z - 1| \le |-z - 1|$ and for every $i, 1 \le i \le m$, $|z - 2^i| \le |-z - 2^i|$, we have $\mathcal{P}_m(z) \le |\mathcal{P}_m(-z)|/4$.

The claim is proven. So, for every $z \in \mathbf{Z}$,

$$0 \le \frac{2\mathcal{P}_m(z)}{\mathcal{Q}_m(z)} \le \frac{2}{3} \quad \text{if } 1 \le z \le 2^m \text{ and}$$
$$\frac{2\mathcal{P}_m(z)}{\mathcal{Q}_m(z)} \le -2 \quad \text{if } -2^m \le z \le -1.$$

Since $(2/3)^2 \le 1/2$, for every $z \in \mathbf{Z}$,

$$0 \le \mathcal{R}_{m,k}(z) \le 2^{-k}$$
 if $1 \le z \le 2^m$ and $\mathcal{R}_{m,k}(z) \ge 2^k$ if $-2^m \le z \le -1$.

Since $S_{m,k}(z) = (1 + \mathcal{R}_{m,k}(z))^{-1}$ and $(1 + 2^{-k})(1 - 2^{-k}) < 1$, for every $z, 1 \le z \le 2^m$,

$$1 - 2^{-k} \le S_{m,k}(z) \le 1.$$

Also, since $(1+2^k)^{-1} \le 2^{-k}$, for every $z, -2^m \le z \le -1$,

$$0 \le \mathcal{S}_{m,k}(z) \le 2^{-k}.$$

This proves the lemma.

3 The PL Hierarchy Collapses

The following lemma states that logarithmic space-bounded oracle Turing machines can be normalized so that the queries, including the query order, are independent of the oracle.

Lemma 3.1 Let $L \in PL^H$ for some oracle H. Then there exist polynomials p and q and a logarithmic space-bounded nondeterministic Turing machine N such that for every x,

- 1. independent of the oracle and the nondeterministic choices, N on x makes exactly p(|x|) queries and exactly q(|x|) nondeterministic moves, and furthermore, N on x makes no nondeterministic moves while generating queries; and
- 2. $x \in L$ if and only if $gap_{NH}(x) > 0$.

Proof Let M be the base probabilistic logarithmic space-bounded machine witnessing that $L \in \mathrm{PL}^H$. By Proposition 2.2, we may assume that M is polynomial time-bounded. There is a polynomial q such that for every x, M on x tosses at most q(|x|) coins regardless of its oracle. Without changing the acceptance probability, we can modify M so that M tosses exactly q(|x|) coins. Then by replacing the coin tosses of M by nondeterministic moves, M becomes a nondeterministic oracle Turing machine satisfying the condition on the number of nondeterministic moves in (1) as well as (2). We will construct a new machine N from this M so that the condition on the query strings is met while preserving the other properties. Recall that the RST-model

demands that M should run deterministically while it generates query strings. So, without loss of generality, we may assume that M has a special state, called GENERATE-state, such that (i) M enters GENERATE-state if and only if it is at the beginning of query string generation and (ii) once it enters GENERATE-state, M runs deterministically until it enters QUERY-state. For each n, let \mathcal{T}_n be the set of all IDs of M on an input of length n at GENERATE-state. For every input x of length n and every potential query string y of M on x, there is an ID $I \in \mathcal{T}_n$ such that M on x generates y as the query string from ID I, and thus, simulation of M on x from ID I generates y. Furthermore, since M is logarithmic space-bounded, \mathcal{T}_n is bounded by some polynomial in n. Let r_1 be such a polynomial. Also, since M is polynomial time-bounded, let r_2 be a polynomial bounding the run-time of M. Now define $p(n) = r_1(n)r_2(n)$ and define N to be the machine that, on input x, simulates M on x as follows:

- At the very beginning of the computation, N sets a binary counter c to 0.
- When M enters GENERATE-state, N records the current ID I of M.
- When M enters QUERY-state, N increments the counter c, resets a binary counter d, and does the following:
 - By cycling through all IDs J in $\mathcal{T}_{|x|}$, N asks its oracle all potential query strings of M on x. Each time a query is made, N increments the counter d. If J = I, then N records the answer b from the oracle. Otherwise, N ignores the answer from the oracle.
 - When the above process is done, if $d < r_1(|x|)$, then N queries some fixed string u, e.g., the empty string, $r_1(|x|) d$ times.
 - N returns to the simulation of M on x with b as the answer to the current query of M
- When M enters a halting state, if $c < r_2(|x|)$, then N executes the above query process $r_2(|x|) c$ times, but this time, N ignores all the answers from the oracle. After accomplishing this, N accepts if and only if M has accepted.

Note that N on x makes exactly q(|x|) nondeterministic moves and the number of accepting computation paths of N on x is identical to that of M on x. The number of queries of N on x is exactly p(|x|) regardless of its oracle. For every $i, 1 \le i \le p(|x|)$, the ith query string of N on x is determined independent of its oracle or its nondeterministic moves. Thus, the remaining part of the condition (1) is met. This proves the lemma.

Theorem 3.2 $PL^{PL} = PL$.

Proof Let $L \in \operatorname{PL^{PL}}$ be witnessed by a nondeterministic Turing machine N and a language $H \in \operatorname{PL}$ satisfying the conditions in Lemma 3.1 with polynomials p and q. For each x and $i, 1 \leq i \leq p(|x|)$, let $y_{x,i}$ denote the ith query string of N on x. Let f be a function in GapL witnessing that $H \in \operatorname{PL}$ as in Proposition 2.6. There exists a polynomial μ such that for every x and $i, 1 \leq i \leq p(|x|)$, $1 \leq |f(y_{x,i})| \leq 2^{\mu(|x|)}$. Let us fix such a polynomial μ . Define $\kappa(n) = p(n) + q(n) + 1$ and for each x and $i, 1 \leq i \leq p(|x|)$, define

$$T(x, i, 1) = \mathcal{S}_{\mu,\kappa}(f(y_{x,i}))$$
 and $T(x, i, 0) = 1 - \mathcal{S}_{\mu,\kappa}(f(y_{x,i})),$

where $S_{\mu,\kappa}$ is the short-hand of $S_{\mu(|x|),\kappa(|x|)}$. By Lemma 2.8, for every $x, i, 1 \leq i \leq p(|x|)$, and $b \in \{0,1\}$,

(7) if
$$\chi_H(y_{x,i}) = b$$
, then $1 - 2^{-\kappa(|x|)} \le T(x, i, b) \le 1$, and

(8) if
$$\chi_H(y_{x,i}) \neq b$$
, then $0 \leq T(x, i, b) \leq 2^{-\kappa(|x|)}$.

Furthermore, define

$$\alpha(x, i, 1) = \mathcal{A}_{\mu,\kappa}(f(y_{x,i})),
\alpha(x, i, 0) = \mathcal{B}_{\mu,\kappa}(f(y_{x,i})) - \mathcal{A}_{\mu,\kappa}(f(y_{x,i})), \text{ and}
\beta(x, i) = \mathcal{B}_{\mu,\kappa}(f(y_{x,i})),$$

where $\mathcal{A}_{\mu,\kappa}$ is the short-hand of $\mathcal{A}_{\mu(|x|),\kappa(|x|)}$ and $\mathcal{B}_{\mu,\kappa}$ is the short-hand of $\mathcal{B}_{\mu(|x|),\kappa(|x|)}$. Then for every $x, i, 1 \leq i \leq p(|x|)$, and $b \in \{0, 1\}$,

$$T(x, i, b) = \alpha(x, i, b) / \beta(x, i)$$
.

For each x and $w \in \{0,1\}^{p(|x|)}$, define

$$C(x, w) = \prod_{i=1}^{p(|x|)} T(x, i, w_i),$$

where w_i denotes the *i*th bit of w. Then, by (7) and (8), we have

(9) if
$$w = \chi_H(y_{x,1}) \cdots \chi_H(y_{x,p(|x|)})$$
, then $1 - p(|x|) 2^{-\kappa(|x|)} \le C(x, w) \le 1$, and

(10) if
$$w \neq \chi_H(y_{x,1}) \cdots \chi_H(y_{x,p(|x|)})$$
, then $0 \leq C(x,w) \leq 2^{-\kappa(|x|)}$.

Define

$$\gamma(x,w) = \prod_{i=1}^{p(|x|)} \alpha(x,i,w_i)$$
 and $\delta(x) = \prod_{i=1}^{p(|x|)} \beta(x,i)$

Then, for every x and w,

$$C(x, w) = \gamma(x, w)/\delta(x)$$
.

Define predicate e as follows:

(11) For each x, w, |w| = p(|x|), and u, |u| = q(|x|), e(x, w, u) = 1 if and only if M on x with nondeterministic guesses u accepts assuming that the answer to the ith query is affirmative if and only if $w_i = 1$.

Define

$$D(x) = \sum_{w,u:|w|=p(|x|),|u|=q(|x|)} e(x, w, u)C(x, w) \text{ and}$$

$$\theta(x) = \sum_{w,u:|w|=p(|x|),|u|=q(|x|)} e(x, w, u)\gamma(x, w).$$

Clearly, $D(x) = \theta(x)/\delta(x)$. By (9) and (10), the following properties hold.

1. There is a unique $w_x \in \Sigma^{p(|x|)}$ such that

$$1 - p(|x|)2^{-\kappa(|x|)} \le C(x, w_x) \le 1$$

and for every $w \neq w_x$,

$$0 \le C(x, w) \le 2^{-\kappa(|x|)}.$$

- 2. If $x \in L$, then the number of u, |u| = q(|x|), such that $e(x, w_x, u) = 1$ is at least $2^{q(|x|)-1}$.
- 3. If $x \notin L$, then the number of u, |u| = q(|x|), such that $e(x, w_x, u) = 1$ is at most $2^{q(|x|)-1} 1$.

Since $\kappa(n) = p(n) + q(n) + 1$, for every x, if $x \in L$, then

$$D(x) \geq 2^{q(|x|)-1} (1 - p(|x|) 2^{-\kappa(|x|)})$$

$$\geq 2^{q(|x|)-1} (1 - 2^{p(|x|)} 2^{-\kappa(|x|)})$$

$$= 2^{q(|x|)-1} - 2^{-2}$$

$$= 2^{q(|x|)-1} - 1/4,$$

and if $x \notin L$, then

$$D(x) \leq (2^{q(|x|)-1} - 1) + 2^{p(|x|)+q(|x|)}2^{-\kappa(|x|)}$$

$$= 2^{q(|x|)-1} - 1 + 2^{-1}$$

$$= 2^{q(|x|)-1} - 1/2.$$

This implies for every x,

$$x \in L$$
 if and only if $D(x) \ge 2^{q(|x|)-1} - \frac{1}{4}$.

Finally, define $h(x) = 4\theta(x) - (2^{q(|x|)+1} - 1)\delta(x)$. Then, for every $x, x \in L$ if and only if $h(x) \geq 0$. We claim that $h \in \text{GapL}$. Define π to be the function that maps each w to $2^{|w|}$. It is obvious that $\pi \in \text{GapL}$. Thus, by Theorem 2.5, the function that maps each x to $\mathcal{P}_{\mu(|x|)}(f(x))$, i.e., $(f(x) - 1) \prod_{i=1}^{\mu(|x|)} (f(x) - \pi(0^i))^2$, is in GapL. For much the same reason, the function that maps each x to $\mathcal{Q}_{\mu(|x|)}(f(x))$ is in GapL. Since $y_{x,i}$ is logarithmic-space computable, by Theorem 2.5, $\alpha, \beta \in \text{GapL}$. This implies $\delta \in \text{GapL}$. Since the function that maps each x to $2^{q(|x|)+1} - 1$ belongs to GapL, the proof will be completed if we show that $\theta \in \text{GapL}$.

Let M be such that $\alpha = gap_M$. Define G to be the nondeterministic Turing machine that, on input x, behaves as follows:

- **Step 1** G first sets a one-bit counter c to 0.
- Step 2 G starts simulating N on x nondeterministically; that is, if N makes its ith nondeterministic move, then so does G thereby guessing bit u_i . When N makes its ith query $y_{x,i}$, G does the following.
 - (a) G nondeterministically guesses $w_i \in \{0,1\}$ and simulates M on $\langle x, i, w_i \rangle$. If M rejects, then G flips the bit c.

- (b) G returns to the simulation of N on x assuming that the answer to the query is affirmative if and only if $w_i = 1$.
- Step 3 When N enters the halting state, G does the following.
 - (a) If N has accepted, then G accepts if and only if c = 0.
 - (b) If N has rejected, then G nondeterministically guesses a bit $d \in \{0,1\}$ and accepts if and only if d = 0.

Note that, at the beginning of Step 3, e(x, w, u) = 1 holds if and only if N has accepted with w and u. In the case that N has rejected, i.e., e(x, w, u) = 0, G generates one accepting path and one rejecting path, so, there is no contribution to $gap_G(x)$ along w and u. In the case that N has accepted, i.e., e(x, w, u) = 1, the one-bit counter c is the parity of the number of accepting simulations of M that G has encountered. Since G accepts if and only if the parity is 0, the number of accepting computation paths along w and u is the sum of all

$$\prod_{i \notin I} acc_{M}(x, i, w_{i}) \prod_{i \in I} rej_{M}(x, i, w_{i}),$$

where I ranges over all subsets of $\{1, \ldots, p(|x|)\}$ of even cardinality. Also, the number of rejecting computation paths along w and u is the sum of all

$$\prod_{i \not\in I} acc_M(x,i,w_i) \prod_{i \in I} rej_M(x,i,w_i),$$

where I ranges over all subsets of $\{1, \ldots, p(|x|)\}$ of odd cardinality. Note for every i and w_i , that $acc_M(x, i, w_i) - rej_M(x, i, w_i) = gap_M(x, i, w_i)$. Thus, the difference between the above two sums is equal to

$$\prod_{i=1}^{p(|x|)}(acc_M(x,i,w_i)-rej_M(x,i,w_i))=\prod_{i=1}^{p(|x|)}gap_M(x,i,w_i).$$

Thus, for every x,

$$\begin{array}{lcl} gap_{G}(x) & = & \sum_{w,u:|w|=p(|x|)|u|=q(|x|)} e(x,w,u) \prod_{i=1}^{p(|x|)} \alpha(x,i,w_{i}) \\ & = & \sum_{w,u:|w|=p(|x|),|u|=q(|x|)} e(x,w,u) \gamma(x,w) \\ & = & \theta(x) \end{array}$$

Since both N and M are logarithmic space-bounded, so is G. Hence, θ is in GapL. This proves the theorem.

Allender and Ogihara [AO94] observe that the PL hierarchy coincides with the logspace-uniform AC⁰ closure of PL. So, we immediately obtain the following corollary.

Corollary 3.3 $PLH = AC^{0}(PL) = PL$.

This gives rise to question whether PL is closed under logspace-uniform NC¹-reductions. Very recently, the question has been resolved affirmatively by Beigel [Bei].

Acknowledgment

The author would like to thank Eric Allender for enjoyable discussions and insightful comments and Marius Zimand and Gabi Istrate for careful reading of the manuscript.

References

- [AO94] E. Allender and M. Ogihara. Relationships among PL, #L, and the determinant. In *Proceedings of the 9th Conference on Structure in Complexity Theory*, pages 267–278. IEEE Computer Society Press, 1994.
- [Bei] R. Beigel. Personal communication.
- [BGS75] T. Baker, J. Gill, and R. Solovay. Relativizations of the $\mathcal{P}=?\mathcal{NP}$ question. SIAM Journal on Computing, 4(4):431–442, 1975.
- [BRS95] R. Beigel, N. Reingold, and D. Spielman. PP is closed under intersection. *Journal of Computer and System Sciences*, 50:191-202, 1995.
- [FFK94] S. Fenner, L. Fortnow, and S. Kurtz. Gap-definable counting classes. *Journal of Computer and System Sciences*, 48(1):116–148, 1994.
- [FR96] L. Fortnow and N. Reingold. PP is closed under truth-table reductions. *Information and Computation*, 124:1–6, 1996.
- [Gil77] J. Gill. Computational complexity of probabilistic Turing machines. SIAM Journal on Computing, 6(4):675–695, 1977.
- [Imm88] N. Immerman. Nondeterministic space is closed under complementation. SIAM Journal on Computing, 17:935–938, 1988.
- [Jun85] H. Jung. On probabilistic time and space. In Proceedings of the 12th Conference on Automata, Languages and Programming, pages 310–317. Springer-Verlag Lecture Notes in Computer Science #194, 1985.
- [LL76] R. Ladner and N. Lynch. Relativization of questions about logspace computability. Mathematical Systems Theory, 10(1):19-32, 1976.
- [New64] D. Newman. Rational approximation to |x|. Michigan Mathematics Journal, 11:11–14, 1964.
- [PS94] S. Paturi and M. Saks. Approximating threshold circuits by rational functions. *Information and Computation*, 112(2):257–272, 1994.
- [RS81] C. Rackoff and J. Seiferas. Limitations on separating nondeterministic complexity classes. SIAM Journal on Computing, 10(4):742–745, 1981.

- [RST84] W. Ruzzo, J. Simon, and M. Tompa. Space-bounded hierarchies and probabilistic computations. *Journal of Computer and System Sciences*, 28:216–230, 1984.
- [Sim77] I. Simon. On some subrecursive reducibilities. PhD thesis, Stanford University, 1977. Available as Computer Science Department Stanford University Technical Report STAN-CS-77-608.
- [Sze88] R. Szelepcsényi. The method of forced enumeration for nondeterministic automata. *Acta Informatica*, 26:279–284, 1988.