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Abstract
It is shown that the PL hierarchy

PLH = PL | J PL"" | J | U

defined in terms of the Ruzzo-Simon-Tompa relativization collapses to PL.

1 Introduction

The oracle separations proven by Baker, Gill, and Solovay [BGS75] initiated the study of complex-
ity classes by relativization. In order to study the NL =7L question, various relativization models
for nondeterministic logspace have been proposed [LL76,Sim77,RS81,RST84]. Among them, the
so-called Ruzzo-Simon-Tompa model (the RST-model, in short) [RST84], which demands that
nondeterministic Turing machines run deterministically while generating query strings, is widely
accepted because of its reasonability—for any oracle A, L4 C NLA C P4, Given this reasonable
model of relativization, it is quite reasonable for one to what are the complexity classes defined
by stacking logspace complexity classes: for a logspace class C, does the C hierarchy in terms
of the RST-model collapse? The answer to this question was given for some classes. Ruzzo,
Simon, and Tompa showed that the hierarchy with respect to BPL [Gil77] (the bounded-error
probabilistic logspace with unlimited computation time) collapses to BPL. Also, the NL = coNL
theorem proven independently by Immerman [Imm&88] and Szelepcsényi [Sze88] implies that the
NL hierarchy collapses to NL. In this paper, we obtain the answer to the question for PL (the
probabilistic logspace with unlimited computation time) [Gil77]: the PL hierarchy collapses to
PL.

Our proof is built on top of some precedent work. Beigel, Reingold, and Spielman [BRS95]
showed that PP is closed under intersection. Their proof makes use of the rational functions of
Paturi and Saks [PS94] to approximate threshold functions, which extends the work of Newman
[New64]. Furthermore, Fortnow and Reingold [FR96] strengthened the technique and showed that
PP is even closed under polynomial-time constant round truth-table reductions. Intuitively, we
show that the proof by Fortnow and Reingold can be carried over to PL. To this end, we use a



characterization of PL in terms of polynomial time-bounded nondeterministic logspace machines
derived from Jung’s result [Jun85] that PL is equal to the polynomial time-bounded PL. Such
a characterization is shown in Allender and Ogihara [AO94], where they prove that PL is closed
under both conjunctive truth-table reductions and disjunctive truth-table reductions.

2 Preliminaries

In this section, we set down some notation and define relevant complexity classes. The alphabet
we use is ¥ = {0,1}. Z and N respectively denote the set of all integers and the set of all
nonnegative integers. (-, -) denotes a logspace computable and logspace invertible pairing function
(not necessarily onto).

The class PL was originally defined by Gill [Gil77].

Definition 2.1 [Gil77] A language L belongs to PL if there exists a logarithmic space-bounded
probabilistic Turing machine M with unlimited computation time such that for every x, x € L if
and only if the probability that M on x accepts is at least a half.

Let PLpoly denote the polynomial time-bounded version of PL. Jung [Jun85] showed that PL =
PLpoly, and furthermore, Allender and Ogihara [AO94] showed that the equivalence holds relative
to any oracle.

Proposition 2.2 [A094] For every oracle H, PL7 = (PLpoly) .

Based on the above equivalence, one can obtain a characterization of PL in terms of nondetermin-
istic Turing machines. For a time-bounded nondeterministic Turing machine M and z € 3%, let
accpr(z) and rejyr(2) respectively denote the number of accepting computation paths and that
of rejecting computation paths of M on z and let gapy,(z) denote accyr(z) — rejpr(z). Define the
complexity class GapL [AO94] (see also, GapP [FFK94]) as follows.

Definition 2.3 GapL = {gapy; | M is a logarithmic space-bounded, polynomial time-bounded
nondeterministic Turing machine }.

The following propositions are proven by Allender and Ogihara [AOQ94].

Proposition 2.4 [A094] A language L belongs to PL if and only if there exists some f € GapL
such that for every x, x € L if and only if f(z) > 0.

Proposition 2.5 Let f be a function in Gapl,, g : ¥* X N +— ¥* be a function in FL, and p be
a polynomial. Then the following functions hy, hy, and hs all belong to GapL:

1. hy(z) = —f(z).
2. hy(z) = 00 f(g(a, 1))

3. ha(x) = TG f(g(x, 1)).



Given a function f € GapL witnessing that a language L is in PL, define g by ¢g(z) = 2f(z)+1
Then g always takes on odd values and witnesses that L is in PL. By Proposition 2.5, g belongs
to GapL. So, we have the following characterization of PL.

Proposition 2.6 A languages L is in PL if and only if there exists a function f in Gapl. such
that for every x,

f(z) > 1ifz €L and f(z) < —1 otherwise.

2.1 GapL functions to approximate the characteristic function of languages in

PL

Proposition 2.6 states that the problem of testing whether a GapL function takes a positive
or a negative value characterizes PL.. Newman [New64] show that the sign function can be
approximated by the fraction of two polynomials. The Newman’s construction gives us a method
for approximating threshold functions by rational functions [PS94,BRS95,FR96].

Definition 2.7 Let m > 1 and k > 1. Define polynomials Py, (z) and Q,,(z) in Z[z] by

(1) Pu(z) = (2-1 ﬁ (z — 2 and
(2 On(z) = ~(P(2) +Pu(~2)),
and define R, (z) and S, 1(2) by

2k
(3) Ryk(z) = <2§:((5))) and
(4) Smi(2) = (14 Rump(2))™"

Furthermore, define polynomials A, 1 (z) and By, k(z) by

(5) Ami(2) = Qu(2)** and
(6) Bui(z) = Qu(2)* + (2Pm(2)™

Lemma 2.8 For every m,k > 1 in N and every z € Z, the following properties hold.
1 Smp(z) = A i (2) /B e (2).
2. If1<2<2™ thenl-27%<S, <1
3. If—2" <2< —1, then 0 < Sy p(2) < 275,

Proof Let m,k > 1 be in N. The first equivalence is proven by the routine calculation, so, we
omit the proof. Note that P,,(z) > 0 if and only if z > 1. Let z be in {1, ..., 2™}. We claim
that P, (2) < |Pm(—2)|/4. This is seen as follows: If z =1, then P,,(z) = 0, so, the claim holds.
On the other hand, if z > 2, then there exists a unique ¢, 1 <t < m, such that 2¢ < z < 2+1 and



this ¢ satsifies |z — 2f| < 2/2 < | — 2 — 2!|/2. Since |z — 1| < | — z — 1] and for every 7,1 < i < m,
|z — 2'| < | — 2z = 2", we have P, (2) < |Pm(—2)|/4.
The claim is proven. So, for every z € Z,

2Pn(z) 2 .
—r < = f1<2<2"and
0 a.(s) =3 if1<2< an
2P (2) .
< -2 if —2m <2< —1.
Qn(z) ~ -7

Since (2/3)%? < 1/2, for every z € Z,
ognmk( )<2—’C if 1 <2< 2™ and
mi(2) > if —2m <z < —1.
Since Spk(2) = (1 4+ Rmi(2)) ™t and (14+275)(1 —27%) < 1, for every 2,1 < z < 2™,
1-27% <8 n(2) < 1.
Also, since (1+2F)~1 < 27k for every z, 27" < z < —1,
0<Smr(z) <278

This proves the lemma. |

3 The PL Hierarchy Collapses

The following lemma states that logarithmic space-bounded oracle Turing machines can be nor-
malized so that the queries, including the query order, are independent of the oracle.

Lemma 3.1 Let L € PLY for some oracle H. Then there exist polynomials p and ¢ and a
logarithmic space-bounded nondeterministic Turing machine N such that for every z,

1. independent of the oracle and the nondeterministic choices, N on x makes exactly p(|z|)
queries and ezxactly q(|z|) nondeterministic moves, and furthermore, N on x makes no
nondeterministic moves while generating queries; and

2. x € L if and only if gapyu(z) > 0.

Proof Let M be the base probabilistic logarithmic space-bounded machine witnessing that
L € PLY. By Proposition 2.2, we may assume that M is polynomial time-bounded. There
is a polynomial ¢ such that for every z, M on z tosses at most ¢(|z|) coins regardless of its
oracle. Without changing the acceptance probability, we can modify M so that M tosses exactly
¢(]z|) coins. Then by replacing the coin tosses of M by nondeterministic moves, M becomes a
nondeterministic oracle Turing machine satisfying the condition on the number of nondeterministic
moves in (1) as well as (2). We will construct a new machine N from this M so that the condition
on the query strings is met while preserving the other properties. Recall that the RST-model



demands that M should run deterministically while it generates query strings. So, without loss
of generality, we may assume that M has a special state, called GENERATE-state, such that (i)
M enters GENERATE-state if and only if it is at the beginning of query string generation and
(ii) once it enters GENERATE-state, M runs deterministically until it enters QUERY-state. For
each n, let 7, be the set of all IDs of M on an input of length n at GENERATE-state. For every
input z of length n and every potential query string y of M on z, there is an ID I € 7, such
that M on z generates y as the query string from ID I, and thus, simulation of M on z from
ID I generates y. Furthermore, since M is logarithmic space-bounded, 7, is bounded by some
polynomial in n. Let rq be such a polynomial. Also, since M is polynomial time-bounded, let r
be a polynomial bounding the run-time of M. Now define p(n) = r{(n)rz(n) and define N to be
the machine that, on input z, simulates M on « as follows:

e At the very beginning of the computation, N sets a binary counter ¢ to 0.
e When M enters GENERATE-state, N records the current ID [ of M.

e When M enters QUERY-state, N increments the counter ¢, resets a binary counter d, and
does the following:

— By cycling through all IDs .J in 7., N asks its oracle all potential query strings of
M on z. Each time a query is made, N increments the counter d. If J = I, then N
records the answer b from the oracle. Otherwise, IV ignores the answer from the oracle.

— When the above process is done, if d < ri(|z|), then N queries some fixed string u,
e.g., the empty string, ri(|z|) — d times.
— N returns to the simulation of M on & with b as the answer to the current query of

M.

e When M enters a halting state, if ¢ < ry(]z|), then N executes the above query process
ra(lz]) — ¢ times, but this time, N ignores all the answers from the oracle. After accom-
plishing this, N accepts if and only if M has accepted.

Note that N on z makes exactly ¢(|z|) nondeterministic moves and the number of accepting
computation paths of N on z is identical to that of M on x. The number of queries of N on z is
exactly p(|z|) regardless of its oracle. For every ¢,1 < ¢ < p(|]), the ith query string of N on «
is determined indepedent of its oracle or its nondeterministic moves. Thus, the remaining part of
the condition (1) is met. This proves the lemma. |

Theorem 3.2 PIL.FL = PL..

Proof Let L € PLY be witnessed by a nondeterministic Turing machine N and a language
H € PL satisfying the conditions in Lemma 3.1 with polynomials p and ¢. For each z and
i,1 <1 < p(|z]), let yz; denote the ith query string of N on 2. Let f be a function in GapL
witnessing that H € PL as in Proposition 2.6. There exists a polynomial u such that for every
e and 4,1 < i < p(|z]), 1 < |f(yes)| < 202D, Let us fix such a polynomial u. Define k(n) =
p(n) + ¢q(n) + 1 and for each z and ¢,1 <7 < p(|z|), define

T(z,i,1) = 8,x(f(yz;)) and
T(.Q?, iv 0) = 1- Sﬂﬁ(f(yl?,i))v



where Sy, . is the short-hand of S|z} x(jz))- By Lemma 2.8, for every z, i,1 < i < p(|z|), and
b e {0,1},

(7) if X (Yz,:) = b, then 1 — 2~ <T(z,i,b) <1, and

(8) if X (Yz,i) # b, then 0 < T( b) < 2=+ll=l),

Furthermore, define

a(@,i,1) = Auk(f(¥e,i)),
a(z,1,0) = Bux(f(Yzi)) = Aps(f(yz:)), and
Bla, i) = Buw(f(yzi)),
where A, . is the short-hand of A, (jz)) x(|z|) and By, is the short-hand of B (z|) «(jz))- Then for
every z, 1,1 < i < p(|z|), and b € {0 1},
T(z,i,b0) = a(z,i,b)/8(z,1).
For each z and w € {0,1}7(#) define

B
B

—

p(lz])
Clz,w) = T(z,i,w;),

where w; denotes the ¢th bit of w. Then, by (7) and (8), we have

Il
_

(9) if w= XH(yx,l) e XH(yz,p(|x|))7 then 1 — (| |) ~(l=l) < C(Qﬁ, ’ll)) <1, and
(10) if w# X8 (Yen) - XH(Yop(jz)), then 0 < C(z, w) < 27%(2D,
Define

p(lz)

y(z,w) = afz,i,w;) and
=1
p(l=])
o(z) = Bz, i)
=1

Then, for every  and w,
Clz,w) =7v(z,w)/é(x).
Define predicate e as follows:
(11) For each z, w, |w| = p(|z|), and u,|u| = ¢(|z|), e(z,w,u) = 1 if and only if
M on z with nondeterministic guesses u accepts assuming that the answer
to the ¢th query is affirmative if and only if w; = 1.

Define
D(z) = E e(z,w,u)C(z,w) and
wyui|w|=p(|z]),|ul=q(|z[)
(o) = e(, 0, u)3(2, 0).
wyu:|w|=p(|z]),|ul=q(|z])

Clearly, D(z) = 0(z)/é(z). By (9) and (10), the following properties hold.



1. There is a unique w, € 227 such that
1 - p(|e))27"=) < C(z,w,) <1

and for every w # w,,
0 <C(z,w) < 9= r(l=l)

2. If # € L, then the number of u, |u| = ¢(|z]), such that e(z,w,, u) = 1 is at least 29(2D—1,
3. If z € L, then the number of u, |u| = ¢(|z]), such that e(z, w,, u) = 1 is at most 29(=D=1 1,

Since k(n) = p(n) + q(n) + 1, for every z, if z € L, then

D(z) > 200=D=1(1 — p(|a])2-rl=Dy
> 9allzl=1(y _ 9r(l=Ng-r(l=])
e 2q(|x|)—1 _ 2—2
= 2q(|$|)_1 _ 1/47
and if € L, then
D(z) < (290=D=1 _ 1) 4 gr(leD+a(lzhg—~(le)

ga(lz)=1 _ 1 4 91
= 24(=D=1_1/2,

This implies for every z,

z € L if and only if D(z) > 29—t 1,
Finally, define h(z) = 46(z) — (290sD+1 —1)§(z). Then, for every z, = € L if and only if h(z) > 0.
We claim that A € GapL. Define 7 to be the function that maps each w to 2/*I. Tt is obvious
that 7 € GapL. Thus, by Theorem 2.5, the function that maps each z to Pyq(f(z)), i-e.
(f(z)—1) f:”f')(f(ac) — 7(0%)2, is in GapL. For much the same reason, the function that maps
each z to Q,(z)(f(z)) is in GapL. Since y,; is logarithmic-space computable, by Theorem 2.5,
o, 3 € GapL. This implies § € GapL. Since the function that maps each z to 2¢0#D+1 — 1 belongs
to GapL, the proof will be completed if we show that § € GapL.
Let M be such that & = gap;s. Define G to be the nondeterministic Turing machine that, on
input x, behaves as follows:

Step 1 G first sets a one-bit counter ¢ to 0.

Step 2 G starts simulating N on z nondeterministically; that is, if N makes its ¢th nondeter-
ministic move, then so does GG thereby guessing bit u;. When N makes its ith query y,;, G
does the following.

(a) G nondeterministically guesses w; € {0, 1} and simulates M on (z,7,w;). If M rejects,
then G flips the bit c.

-~



(b) G returns to the simulation of N on z assuming that the answer to the query is
affirmative if and only if w; = 1.

Step 3 When N enters the halting state, G does the following.

(a) If N has accepted, then G accepts if and only if ¢ = 0.
(b) If N has rejected, then G nondeterministically guesses a bit d € {0,1} and accepts if
and only if d = 0.

Note that, at the beginning of Step 3, e(z,w, u) = 1 holds if and only if N has accepted with w
and w. In the case that N has rejected, i.e., e(z, w,u) = 0, G generates one accepting path and
one rejecting path, so, there is no contribution to gaps(z) along w and u. In the case that N
has accepted, i.e., e(z,w,u) = 1, the one-bit counter ¢ is the parity of the number of accepting
simulations of M that G has encountered. Since G accepts if and only if the parity is 0, the
number of accepting computation paths along w and w is the sum of all

H ach(xa i wz) H T‘EjM(Q?, i wi)a

gl i€l
where I ranges over all subsets of {1, ..., p(|z|)} of even cardinality. Also, the number of rejecting
computation paths along w and u is the sum of all

H acepr(z, @, w;) H rej (@, i, wy),

¢l 1€l
where I ranges over all subsets of {1, ..., p(|z|)} of odd cardinality. Note for every ¢ and w;, that
acepr (z, 0, w;) — rejp(x, i, w;) = gapps(z, ¢, w;). Thus, the difference between the above two sums
is equal to
p(|z p(lz
H (acepr(zy i, w;) — rejpr(z, i H gapy(z, 1, w;).
=1 =1
Thus, for every z,
p(|z[)
gapG(x) = Z 6(377’“)7“) a($7i7wi)
w,uz|w|=p(|z|)[ul=q(|z[) =1

= > ez, w, u)y (e, w)

w,ui|wl=p(|z]), lul=q(|x])

= ()

Since both N and M are logarithmic space-bounded, so is G. Hence, 6 is in GapL. This proves
the theorem. |

Allender and Ogihara [AO94] observe that the PL hierarchy coincides with the logspace-
uniform AC? closure of PL. So, we immediately obtain the following corollary.

Corollary 3.3 PLH = AC°(PL) = PL.

This gives rise to question whether PL is closed under logspace-uniform NC'-reductions. Very
recently, the question has been resolved affirmatively by Beigel [Bei].
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