Electronic Colloquium on Computational Complexity - Reports Series 1996 - available via:

E(:(:(: FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW:

http://www.eccc.uni-trier.de/eccc/
T R96- 014 Email: ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

Sparse Hard Sets for P Yield Space-Efficient Algorithms

Mitsunori Ogihara*
Department of Computer Science
University of Rochester

Rochester, NY 14627, USA

Abstract

In 1978, Hartmanis conjectured that there exist no sparse complete sets for P un-
der logspace many-one reductions. In this paper, in support of the conjecture, it
is shown that if P has sparse hard sets under logspace many-one reductions, then

P C DSPACE[log® n).

1 Introduction

In 1978, Hartmanis [7] conjectured that no P-complete sets under logspace many-one reduc-
tions can be polynomially sparse; i.e., for any set A € P to which every set in P is logspace
many-one reducible, the function that maps n to the number of elements in A of length up
to n is not bounded by a polynomial in n. The conjecture is interesting and fascinating. If
the conjecture is true, then L # P, because L. = P implies that every nonempty finite set is
P-complete. So, since it is widely assumed that L is different from P, one might believe the
validity of the conjecture. Such a reasoning may well be fallacious: proving this conjecture
is at least as hard as proving L. # P, and therefore, it may well be the case that even though
L. # P, P has polynomially sparse complete sets. In order to support the conjecture, one
would perhaps need to show a result in the other direction; that is, if the conjecture does not
hold some ‘implausible’ event occurs. Such an implausible event would be the collapse of P
to a (presumably) much smaller class. As sets in P already have time-efficient recognition
algorithms, this should mean that P has ‘space-efficient’ algorithms, e.g., P is included in
DSPACE[log” n] for some .

The conjecture is reminiscent of the celebrated Berman-Hartmanis conjecture [2] that all
NP-complete sets under polynomial-time many-one reduction are polynomially isomorphic.
If the Berman-Hartmanis conjecture is true, then P # NP and polynomially sparse sets
cannot be NP-complete. A result to support this conjecture was obtained by Mahaney [10].
He showed that if there is a polynomially sparse hard set for NP, then P = NP; that is,
unless NP collapses to the seemingly small class P, NP cannot have sparse complete sets.

*A k.a Mitsunori Ogiwara.

In contrast with the “sparse hard set problem for NP,” not much work has been done
on the Hartmanis’ conjecture on P—we could call it “the sparse hard set problem for P.”
The only paper we are aware of is by Hemaspaandra, Ogihara, and Toda [8], who prove
that P cannot have poly-logarithmic sparse hard sets unless P is included in SC, the class
of sets recognized simultaneously in polynomial-time and in poly-logarithmic space. As one
can easily see, the result is still too weak because the poly-logarithmic sparsity is a much
more stringent condition than polynomial sparsity.

In this paper, we give the first solution to the sparse hard set problem for P by showing
that unless P C DSPACE[log? n], the Hartmanis’ conjecture holds.

Theorem 1 There exist no sparse P-hard sets under logspace many-one reductions unless

P C DSPACE[log? n].

Let us say a few words about the proof. Assuming the existence of a sparse P-hard set, we
are able to reduce, in a space-efficient manner, any instance of the circuit value problem to
a circuit value problem of a circuit consisting exclusively of ‘parity’ gates. However, this
restricted circuit value problem is known to be in DSPACE[log? n].

Readers familiar with the class ®L [3], a logarithmic space-bounded version of @GP
[11, 6], will recognize our reduction to map an instance of the circuit value problem to a
problem in @1, and recall that @L C DSPACE[log?n] (see [3] and [1]).

The paper is organized as follows. In section 2, we will define the basic notation and
the circuit value problems. In section 3, we prove our main theorem.

2 Circuit Value Problems

A Boolean circuit is a directed acyclic graph C with labeled nodes. Nodes in C' with indegree
0 are called input gates while the other gates are called interior gates. Input gates in C
have distinct labels from {1,---,n}, where n is the number of input gates in C'. There is
one designated node in C' with outdegree 0, which is called the output gate. Each interior
gate is labeled by a Boolean function chosen from {—, A, V}. A gate labeled by — is called
a NOT gate and has indegree 1. A gate labeled by A (or V) is called an AND gate (an OR
gate, respectively) and has indegree > 2. A gate ¢ is said to be a direct input to a gate g’
if there is an arc from ¢ to ¢’ in C.

A Boolean circuit is said to be of bounded fan-in if every gate has indegree < 2. It is
said to be of unbounded fan-in if some gate may have indegree > 2. A Boolean circuit is
encoded by its adjacency matrix and the labels of the gates, where we always assume that
the output gate is the last node and for every ¢, the ¢-th input gate is the ¢-th node.

Let C' be a Boolean circuit of m gates and n inputs and let © = @1 - - -2, € {0,1}". For
each ¢,1 < ¢ < m, let g; denote the ¢-th gate in C. For 7,1 < ¢ < m, the output of g; in C
on input z, denoted by C[z,], is determined inductively as follows:

e If g; is an input gate labeled by j, then Clz,i] = z;.

o If g; is a NOT gate whose unique direct input is g;, then C[z,7] = =(Clx, j]).

e If ¢g; is an AND gate and its direct inputs are g;,,---,g;,, then C[z,7] = Clz, j1] A
- ACl, g

e If ¢g; is an OR gate and its direct inputs are g;,,-- -, gj,, then Clz,i] = Clz, j1]V---V
C[xajk]-

The output of C' on input z, denoted by C(z), is Clz, m].

The circuit value problem (CVP) is the problem of deciding whether a bounded fan-in
Boolean circuit C' outputs 1 on input z. Ladner [9] showed that CVP is complete for P
under logspace many-one reductions. A circuit C' is topologically sorted if for every 1, j, if
¢; is a direct input gate of g;, then 7 < 5. One can easily observe that the construction by
Ladner can be used to show that the topologically sorted version of the problem, TSCVP,
is complete under logspace many-one reductions. We will identify TSCVP with the set of
all strings C'#z such that C is a topologically sorted Boolean circuit of n inputs, |z| = n,
and C'(z) = 1.

Parity function, denoted by @, is one that maps a binary string to the parity of the
number of 1’s in it. We also view @ as the function that maps a natural number n to
(n modulo 2). A parity (or, exclusive-or) gate is a gate of unbounded fan-in that, given
binary bits aq,---,a, as inputs, computes ®(ay---a,). By convention, we will use both
@(ay, -+, a,) and a; & -+ - P a, to denote H(ay ---a,). A parity circuit is an unbounded
fan-in circuit in which all the gates compute &. The parity circuit problem is defined as a
variation of the circuit value problem, in which it is asked whether a parity circuit outputs
1 on a specified input. We define Parity-CVP to be the set corresponding to the problem:
the set of all C'#a such that C' is a parity circuit and, on input z, outputs 1.

A set L is in @L [3] if there exists a logarithmic space-bounded nondeterministic Turing
machine NV such that for every z, € L if and only if the number of accepting computation
paths of N on z is odd.

Proposition 2 Parity-CVP is in ®L.

Proof Let C' be a parity circuit of m gates g1, - - -, g, and n input gatesand let & = 21 - - - 2.
Note for any a,b,c € {0,1}, that $(a, b, c) = &(P(a,b),c) = B(a, B(b, c)).

For each ¢,1 < ¢ < m, let u(7) denote the number of paths in C' on z from some input
gate with value 1 to the gate ¢g;. We claim for any 7,1 < ¢ < m, that C[z,7] = &(u(?)).
This is proven by induction.

For the base case, let g; be an input gate. Then C[z,i] = 1 if and only if z; = 1.
Trivially, there is exactly one path from the gate to itself. So, the claim holds.

For the induction step, let g; be an interior gate and let g, ,---, g5, be an enumeration
of all direct inputs to g;. Clearly, u(¢) = Zé‘:1 p(hj). Suppose that the claim holds for
hi,--- e, Clz, hj] = &(p(h;)) forall j,1 < 5 <[. By definition, C[z,] = &(Clz, by] +
4 Cla,). So, Cliyi] = (5o, ®(u(hy)) = By plhy)) = Bu(i)). Thus, the
claim holds for g;. Hence the claim holds for every gate.

Now, noting that Boolean circuits are acyclic, it is easy to construct a nondeterministic
machine witnessing Parity-CVP € @L. Our machine, on input C#az, guesses a sequence

Giys "1 gi, of at most m gates and accepts if and only if the sequence is a path from an
input gate outputting 1 to the output gate. The verification can be done sequentially, so
the machine has only to store consecutive two elements in the sequence. So, it can be
logarithmic space-bounded. Clearly, the number of accepting computation paths of the
machine on C'#z is equal to the number of paths in C' on 2 from some input gate with
value 1 to the output gate. So, the machine witnesses that Parity-CVP € @L.. This proves
the proposition. O

Proposition 3 /3, 1] ©L C DSPACE[log?n].

Here we provide a sketch of the proof, which is reminiscent of Savitch’s theorem [12]. Let
N be a logarithmic space-bounded nondeterministic machine N witnessing that L € @L
and z be an input to N. For two IDs I and J of N on z and a natural number ¢, define
Q(I,J,t) to be the parity of the number of computation paths of N on z from I to J of
length at most 2'. Define Q(I,1,t) =1 for every I and ¢. Let m = O(log|z|) be a natural
number such that N on z runs for at most 2™ steps and let I;,; be the unique start ID of
N on z. We may assume that there is a unique accepting ID of N on z. Let I,.. denote
this ID. Clearly, z € L if and only if Q(I;ni, lace, m) = 1. Note for every I, J, and t > 0,
that

QI,J,t) = GB (ZQ([,K,t— 1)-Q(K,J,t - 1)))
K

where K ranges over all IDs of N on z. This suggests the following recursive procedure to

evaluate Q(7, J,t):
e If I = J, then return 1.

o If I # .J and t = 0, then compute and return Q(I,.J,0) by simulating one move of N
onz at ID 1.

o If I # J and t > 0, then set ¢ to 0 and for each K, set ¢ to (¢ + Q(I,K,t—1) -
Q(K,J,t—1)) modulo 2.

If we run this procedure to evaluate Q([ini, lacc, m), then the recursion depth is m =
O(log|x|). Since each ID is encoded as a string of length O(log|x|), the evaluation re-
quires O(log? |z|) space, and thus, L € DSPACE[log? n].

From the above two propositions, we immediately obtain the following;:

Proposition 4 Parity-CVP € DSPACE[log? n].

3 Proof of Theorem 1

We repeat the statement of the theorem.

Theorem 1 There exist no sparse P-hard sets under logspace many-one reductions unless

P C DSPACE][log? n].

Suppose that there exists a sparse P-hard set under logspace many-one reductions. Then
we show that P C DSPACE[log? n], in particular, TSCVP is in DSPACE[log? n].

We will make use of the following set A: A is the set of all strings of the form C'H#a#I#b
such that

e ('#x is an instance of TSCVP, i.e., C is a topologically sorted Boolean circuit with
m gates and n inputs and z € {0,1}",

e [is a nonempty subset of {1,---,m} encoded as the enumeration of its elements in
increasing order,

e be {0,1}, and
° @,E[C[x, Z] =b.

Clearly, A € P. So, by our supposition, A is logspace many-one reducible to a sparse set .S
via some function f. Note that for a sufficiently large m and every legitimate C'#a# 17D,
it holds that |C#a#1#b| < 2|C#z|. Since S is sparse, this implies that for every C'#z, the
number of y € S such that y = f(CH#a#I#b) for some I and b is bounded by odlog |CH#z|
for some constant d.

Let C'#z be fixed, whose membership in TSCVP we are testing. Let ¢1,---, ¢,» be the
gates of C, where g1, -, g, are the input gates and g, is the output gate. Let £ = |C'#x|
and e = [dlogl]. As we have already fixed C' and z, we will simply use [#b to denote
CH#a#140b by dropping C' and 2. By the above observation, the number of y € S such that
y = f(I#b) for some I € {1,---,m} and b € {0,1} is less than 2°.

Now we introduce the notion of good gates and bad gates. Let 7 be the set of all
nonempty subsets of {1,---,m} of size at most e. Let i € {n+ 1,---,m}. We say that g;
is good if there exist I,.J € T and b,c € {0, 1} such that

FI#b) = f(J#c) and i = max({ A J), (1)
where I AJ denotes the symmetric difference of I and J. Otherwise, g; is called bad.
Intuitively, an interior gate g; is good if we can easily find a set of gates g;,-- -, gi such that
the parity of the output of these gates is equal to the output of g;, and thus, the evaluation
of g; can be reduced to the evaluation of g;,---, gk.

The outline of the main steps of the proof are as follows: (1) First, we show that there
are very few bad gates, (2) then construct a parity circuit D whose inputs are 2 and the bad
gates and whose interior gates are good gates, and (3) then show that for some assignment
of values to the bad gates in D, the value of each gate in D is equal to the value of the
corresponding gate in C'. Then, use the fact that D can be computed in polylog space.

Claim 1 The number of bad gates is at most €.

Proof Assume that there are e + 1 bad gates and let g5, -+, gs.,, be an enumeration of
e+ 1 bad gates. Let R be the set of all nonempty subsets of {hy, -, hey1} of size at most

e. Note for any I € R, that exactly one of f(I#0) or f(I#1) is in S because exactly one
of I#0 or I#1 is in A. So, let by be the unique b € {0, 1} such that f(I#b) € S. Note also,
for any distinct I,.J € R, that f(I#br) # f(J#bs). Otherwise, gr with & = maz(I AJ),
which is bad by our assumption, is good, a contradiction. Since there are 2671 — 2 > 2°
elements in R, we can collect 2° elements in S, which contradicts the assumption that there
are less than 2° elements in .S we see as the image of f. This proves the claim. a

Now let gp,, -+, gn, be the enumeration of all bad gates and let H = {hy,---, hy},
where ¢ < e. For each good g;, let (I(7),b(7),J(i),c(¢)) be the lexicographically minimum
(I#£b, J#£b) witnessing that ¢; is good. We define a parity circuit D with m + 1 gates and
n + g+ 1 input gates as follows:

e The gates of D are those of C' plus one new gate gg.

e The input gates of D are gg, the input gates of C', and the bad gates; that is, they
are go, g1, "y Yns Ghy, s Ghe- We will fix the input to go to 1.

e Each interior gate g; in D computes the parity function, whose direct inputs are given
as follows:

— If b(z) = (%), then all g; with j € (I(¢) A J(¢)) — {7}
— If b(2) # (i), then all g; with j € (I(¢) A J(i)) — {¢} plus go.

Note that D is topologically sorted since C' is topologically sorted and if g; is good then ¢
is the largest in I(¢) A J (7).

We say that v € {0,1}? is valid if the value assigned by v to each bad gate is equal to
the value of the bad gate in C'#z; i.e., for all {,1 < ¢ < ¢, the t-th bit of v is equal to
C[xz, hy]. 1t is obvious that there is a unique valid v.

Claim 2 v is valid if and only if for every gate g;,i,1 < i < m, C[z,i] = D[lzv,1]

Proof The implication from right to left is obvious. The other direction is proven
inductively. First, note that C[z,i] = D[lzv,1] holds for every bad gate g;. Next, let g; be
a good gate and suppose that the claim holds for every direct input g¢; of g; in D. We have

JI(@)F#(2))) = [(J(i)F#c(2)). So,
b(i)= P Clz,jlecli)= P Clz, 4.

JEI(2) JEJ(3)
This implies
C[I, 7’] = C[majl] DD C[majk] D b(l) ® C(i),

where jq,---,jr is an enumeration of all j such that j # ¢ and j € I(:) A J(¢). By our
supposition, for each ¢t,1 <t < k, D[1lzv, j| = Clz, j;]. Also, by definition, go is among the
direct inputs of g; if and only if b() # c(7), i.e., b(¢) & c(i) = 1. Thus, C[z,i] = D[lzv,1].
Hence, the claim holds for g;. This proves the claim. a

For each v € {0,1}? and ¢,1 < ¢ < ¢, we say that v is correct at t if, depending on the
type of gy, in C, the following conditions are satisfied:

(a) If gy, isa NOT gatein C with g; as its direct input, g;, then v; is equal to =(D[1zv, j]).

(b) If gp, is an AND gate in C' with g; and g as its direct inputs, then v is equal to
Dl[lzv, j]A D[lzv, k].

(c) [If gp, is an OR gate in C' with g; and g as its direct inputs, then v; is equal to
Dllzv,j]V D[lzv, k].

Claim 3 v is valid if and only if for allt,1 <t < g, v is correct at t.

Proof The implication from left to right is obvious. To prove the other direction, suppose
that v is not valid. Let ¢ be the smallest ¢ such that the i-th bit of v is not equal to
the output of the gate of C' on input z; i.e., ¢ is the smallest ¢,1 < ¢ < ¢, such that
v; = D[lzw, j;] # Clz,j;]. Since D is topologically sorted, by an argument similar to that
in the proof of Claim 2, we have D[lzv, k] = Clz, k] for all k < j;. If v is correct at ¢, then
vy is equal to C[z, j;], a contradiction. So, v is not correct at t. O

The above claims suggest the following algorithm to reduce C' to D with the unique
valid v.

Step 1: For each interior gate of C', test whether it is good, and construct H, the set of all
bad gates.

Step 2: For each v € {0,1}7, test whether v is valid by testing whether v is correct at all
t, and if so, use the valid v to compute D[lzv, m].

Claim 4 The algorithm can be executed in O(log®) space.

Proof Let M be a logspace machine that computes f. Note that [€ T is encoded
as a string of length O(elogm) = O(log?{). Given I#b and J#ec, testing whether
f(I#b) = f(J#c) can be done by simulating M on I#b and M on J#c simultaneously to
compare f(I#b) and f(J#c) bit-by-bit. Since M’s output tape is certainly write-only, the
comparison requires to store only the most recent output bit from each. More precisely, M
on I#b and M on J#c are simulated alternatively step-by-step. If one of the simulations
outputs a new bit of f, then it is suspended until the other simulation produces a new bit
of f or halts without outputting a new bit. If both produce new bits, then the bits are
compared and, if they are different, it must be the case that the values of f are different.
So, the comparison is terminated. If only one simulation produces a new bit, then the two
values of f obviously have different length, so, the values are different. So, the comparison
is terminated. If both simulations halt without producing any new bits, then since the bits
that have been produced so far are the same, it must be the case that they have the same
value. The amount of space expended by the simulations is O(log?), the amount required
to store I#b and J#c, since M is logarithmic space-bounded.

In order to test whether an interior gate ¢; is good, and if so, to compute

I(2),b(7), J(2),c(?), it suffices to test, by cycling through all possible (I#b, J#c) in the

-~

lexicographic increasing order, whether (I#b, J#tc) witnesses that g; is good. By the previ-
ous discussion, the amount of space required is (9(10g2). There are at most e bad gates, so
the amount of space required to store H, the set of all bad gates, is O(elogm) = O(log? (),
so, H can be computed in space O(log? ().

Note that, as we are developing an O(log?n) algorithm, there is not enough space to
store the entire description of D. However, after obtaining H, each bit of the description
of D is computable in O(log? £) space as follows: In order to determine the direct inputs
to g;, if either ¢ < n or ¢ € H, then g; is an input gate of D, and so, has no direct inputs;
otherwise, 1(i),b(i),J(),c(i), which are computable in O(log? £) space, provide the list of
direct inputs.

In order to test whether v is correct at ¢, since h; is the {-th element in H and the
type of gi, in C and its direct input(s) are determined from C#uz, it suffices to compute
D[lzv, j] for j such that g; is a direct input to gp, in C. Since D is a parity circuit, the
computation problem is solvable by Parity-CVP. Recall that we demand that the last gate
of a circuit be the output. So, let D; be the circuit constructed from D by making the
connection of g,, identical to that of g;. Then D;(1av) = D;[lav, m] = D[lzv, j]. Let N be
a deterministic Turing machine that decides Parity-CVP in O(log? n) space. Since each bit
of the description of D is computable in O(log? £) space, given j, each bit of the description
of D; is computable in the same amount of space. Thus, one can simulate N on D;#1lzv
by keeping track of the position of N’s input head. When N needs to read the k-th bit
of its input, one has only to activate the algorithm to produce D to compute the k-th bit
(by recording the number of bits produced so far and the current bit), where the bits for
the m-th gate are computed from those for the j-th gate. Thus, D[lzwv, j] is computable
in (’)(log2) space, and therefore, whether v is valid can be tested in the same amount of
space.

Once the valid v is discovered, since it is of length at most e, there is enough space to
record it. Now we have only to compute C[z, m] as D[lzv, m] with the valid v. Again, we
have only to simulate N while computing the bits of D on demand, which requires (’)(log2 0)
space. Hence, the whole process can be done in O(log? £) space. This proves the claim. O

This completes the proof of the theorem.

By a straightforward generalization of the proof, we obtain the following theorem.

Theorem 2 Leid,e > 1 and let S be a sel whose densily function is bounded by 90 (log"n)
Suppose every set in P is many-one reducible to S via a function f computable in O(log®n)
space. Then P C DSPACE[log?*! n].

4 Conclusion

We have given a solution to Hartmanis’ conjecture on sparse complete sets for P by showing
that P cannot not have many-one hard sets of low density via space-efficient reductions
unless P C DSPACE[log? n]. We note here that, by extending the technique is this paper,
Cai and Sivakumar have recently resolved the conjecture by showing that sparse P-hard sets

exist under logspace many-one reductions if and only if P = L. [5]. The technique has been
further extended to study the sparse P-hard set problem for more flexible reducibilities [4,
13]. A very interesting open question in this regard is whether P having sparse hard sets
under logspace Turing reductions collapses P.

Acknowledgment

The author would like to thank Eric Allender, Jin-yi Cai, Lane Hemaspaandra, loan
Macarie, D. Sivakumar, and Marius Zimand for enjoyable discussions.

References

[1] C. Alvarez and B. Jenner. A very hard log-space counting class. Theoretical Computer
Science, 107:3-30, 1993.

[2] L. Berman and J. Hartmanis. On isomorphisms and density of NP and other complete
sets. SIAM Journal on Computing, 6(2):305-322, 1977.

[3] G. Buntrock, C. Damm, U. Hertrampf, and C. Meinel. Structure and importance of
Logspace-MOD class. Mathematical Systems Theory, 25:223-237, 1992.

[4] J. Cai, A. Naik, and D. Sivakumar. On the existence of hard sparse sets under weak
reductions. Technical Report 95-31, Department of Computer Science, State University
of New York at Buffalo, Buffalo, NY, July 1995.

[5] J. Cai and D. Sivakumar. The resolution of a Hartmanis conjecture. In Proceedings
of the 36th Symposium on Foundalions of Computer Science, pages 362-371. IEEE
Computer Society Press, 1995.

[6] L. Goldschlager and I. Parberry. On the construction of parallel computers from various
bases of boolean functions. Theoretical Computer Science, 43:43-58, 1986.

[7] J. Hartmanis. On log-tape isomorphisms of complete sets. Theoretical Computer Sci-
ence, 7(3):273-286, 1978.

[8] L. Hemachandra, M. Ogiwara, and S. Toda. Space-efficient recognition of sparse self-
reducible languages. Computational Complezity, 4:262-296, 1994.

[9] R. Ladner. The circuit value problem is log space complete for P. SIGACT News,
7(1):18-20, 1975.

[10] S. Mahaney. Sparse complete sets for NP: Solution of a conjecture of Berman and
Hartmanis. Journal of Computer and System Science, 25(2):130-143, 1982.

[11] C. Papadimitriou and S. Zachos. Two remarks on the power of counting. In Proceedings
of the 6th GI Conference on Theoretical Computer Science, pages 269-276. Springer-
Verlag Lecture Notes in Computer Science #145, 1983.

[12] W. Savitch. Relationships between nondeterministic and deterministic tape complexi-
ties. Journal of Computer and System Science, 4:177-192, 1970.

[13] D. van Melkebeek. On reductions of P sets to sparse sets. Technical Report TR95-06,
Department of Computer Science, University of Chicago, Chicago, IL, August 1995.

10

