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Abstract

We provide new non-approximability results for the restrictions of the MiN VERTEX COVER
problem to bounded-degree, sparse and dense graphs. We show that for a sufficiently large
B, the recent 16/15 lower bound proved by Bellare et al. [5] extends with negligible loss to
graphs with bounded degree B. Then, we consider sparse graphs with no dense components
(i.e. everywhere sparse graphs), and we show a similar result but with a better trade-off between
non-approximability and sparsity. Finally we observe that the MIN VERTEX COVER problem
remains APX-complete when restricted to dense graph and thus recent techniques developed
for several Max SNP problems restricted to “dense” instances introduced by Arora et al. [2]
cannot be applied.

1 Introduction

Given the common belief that NP-hard optimization problems cannot be solved exactly in polyno-
mial time, much research has been devoted in the past twenty years to derive efficient approzimation
algorithms, i.e. algorithms that deliver solutions whose value is guarantee to be within some mul-
tiplicative factor from the optimum.

In order to evaluate the performance guarantees of such approximation algorithms, it is impor-
tant to understand how far we can go, i.e. to prove, for any approximable problem, which is the
best approximation achievable in polynomial time.

Until 1991, only a very few non-approximability results were known, usually with ad hoc tech-
niques that did not generalize to other problems. In 1991, Feige et al. [14] showed that results
about Probabilistic Checking of Proofs (PCP in short - this terminology has been introduced later
by Arora and Safra [4]) for NP languages imply non-approximability results for the Max CLIQUE
problem.

*Part of this work was done when both authors were visiting the Centre Universitaire d’Infomatique, University
of Geneva.
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Roughly speaking, the key ingredient of a proof checking system is a probabilistic polynomial-
time oracle Turing machine (commonly called verifier) which, given a language L and an instance
z, efficiently checks the correctness of any “proof” 7 (i.e. the oracle) for the “Theorem” z € L.
Feige et al. established a rather surprising connection between the efficiency of the verifier for the
language SAT and the hardness of approximating the MAX CLIQUE problem. Such a relation is
sometimes called the FGLSS reduction after the names of its discoverers.

Using this new approach, in a short while, a lot of increasingly strong non-approximability
results were given for several problems. The verifier developed by Arora et al. [3] yielded, for
several constant-factor approximable problems (namely, all the Max SNP-hard problems [29]), a
lower bound on their approximability. Lund and Yannakakis successively gave other explicit lower
bounds on the approximability of the MIN NODE COLORING and the MIN SET COVER problems.

In the last three years, the search for further non-approximability results has became a growing
field of computational complexity theory, and too many results have been proved to be listed here;
however, we can remark that two major sources of improvement have played a key role in virtually
all the recent non-approximability results.

On the one hand, there have been several improvements in the efficiency of verifiers and in
the way of measuring such efficiency [6, 15, 7, 5]. The last achievement in this direction, due to
Hastad [20], has been a verifier for SAT implying that MaX CLIQUE is not n'/2~“-approximable for
any € > 0.

On the other hand, much recent work has been devoted to improve the reductions from verifiers
to optimization problems and those between problems themselves. Improved reductions yielded
several recent breakthrough in approximability theory. For example, making heavy use of Raz’s
Parallel Repetition Theorem [30], and tightening a previous reduction given by Lund and Yan-
nakakis [26], Feige [13] has recently shown a tight approximation lower bound for MIN SET COVER.
Bellare et al. [5] use local reductions to prove hardness results for the weighted versions of Max
SAT and Max Cut. Sorkin et al. [32] show that their local reduction for MaX SAT is the best
possible and give new (and optimal) local reductions for Max CuT and Max DirEcTED CUT,
thus giving improved non-approximability results for those problems. Crescenzi et al. [11] give a
tight reduction between the weighted and unweighted versions of MAX SAT, MaxX CuT, and MaAX
DirRECTED CUT, thus extending such non-approximability results to the unweighted case.

This paper follows the latter approach to investigate the approximability of the MIN VERTEX
COVER problem with density constraints.

The MIN VERTEX COVER problem is a fundamental graph problem and was proved to be NP-
hard in the original Karp’s paper [22]. It is known to be NP-hard even when restricted to graphs
with bounded degree [17], and this gives a clear motivation in the study of its approximability in
both the general and the restricted case.

In the general case, a very simple 2-approximate algorithm has been known for twenty years [19],
and no better approximation algorithm has been found until now. Slightly better approximation
guarantees are achievable over bounded-degree graphs [27]. On the negative side, the MIN VERTEX
COVER problem has been shown to be MAX SNP-hard even when restricted to graphs with maxi-
mum degree 3 by Papadimitriou and Yannakakis [29]. Their reduction is from MAX 3-SAT and uses
explicit construction of expander graphs [16]. Combining this reduction, the non-approximability
results by Bellare et al. [5] and the best known explicit construction of expanders [25], one can
show that MiN VERTEX COVER is not 1.00036-approximable on bounded degree graphs.

Bellare et al. [5] give a 1.0688 lower bound for the general MIN VERTEX COVER problem by
using a different technique, namely, they reduce directly from the computation of a verifier using a
somehow “complementary” version of the FLGSS reduction [14]. However, their method does not



apply when classes of graphs in which a fixed bound on the maximum degree or some other density
constraints are considered.

Since better approximation algorithms are known to exist for the bounded degree case, and
since there is such a huge gap (i.e. 1.0688 vs 1.00036) between the lower bound for the general case
and the lower bound for the bounded-degree case, one may be tempted to conjecture that indeed
the bounded-degree version is strictly easier to approximate.

We provide a new characterization of the graphs resulting from the reduction from PCP verifiers
to MIN VERTEX COVER [5], and we show that such graphs can be seen as the union of bipartite
complete graphs. We then give a construction of a particular kind of expanders (denoted as switch-
ers). This technical result permits us to “sparsify” the bipartite complete graphs still preserving
the connectivity property required by the reduction. This allows us to show the following hard-
ness result for MIN VERTEX COVER over bounded degree graphs by directly reducing from PCP
verifiers: if P # NP then the MiN VERTEX COVER problem is not (1.0688 — ¢)-approximable even
when restricted to graphs with maximum degree O(1/¢?).

Actually, our result is fairly more general. We show that any lower bound for MIN VERTEX
COVER proved using current techniques can be extended with negligible loss to the bounded-degree
case, and we provide a trade-off between the degree of the resulting graphs and the hardness result.

It is worth noting that the best current non-approximability result for MAX 3-SAT is about
1.038 [5], while we can prove the MIN VERTEX COVER problem to be hard to 1.068-approximate
over bounded-degree graphs. It should be then clear that our result cannot be proved using a
reduction from MAX 3-SAT (such as Papadimitriou and Yannakakis’ reduction) and, consequently,
it is necessary to follow our approach of reducing directly from the verifier computations.

A better tradeoff can be achieved when a class of sparse graphs, slightly larger than that of
bounded degree graphs, is considered. In particular, using a better (but probabilistic) construction
of “sparse” switchers, we improve the above result for the class of everywhere sparse graphs i.e.
graphs in which the sparsity condition is satisfied by any induced subgraph (a formal definition will
be given in Section 2): If the polynomial hierarchy does not collapse, then the MiIN VERTEX COVER
problem is not (16/15 — €)-approximable even when restricted to everywhere O(1/elog1/¢)-sparse
graphs.

We have to use the hypothesis that the polynomial hierarchy does not collapse (actually, that
NP Z P/poly) because we use a non-uniform reduction.

We also note that the reduction appeared in [5] can be slightly modified in order to show that
the MIN VERTEX COVER problem is APX-complete even when restricted to dense graphs, and
in particular to graphs with large minimum degree (thus, the “dense” restriction does not admit
approximation schemes). This contrasts with the fact that several other graph problems (such as
the Max CuT problem) admit an approximation scheme when restricted to dense instances [2].
The rest of the paper is organized as follows. In Section 2, we give some preliminary definitions
and some previous results. Section 3 is devoted to both the probabilistic and the deterministic
constructions of switchers. In Section 4, we use these graphs to derive the hardness results for MIN
VERTEX COVER with density constraints. Finally, in Section 5, we discuss the consequences of our
results for the degree of approximation of some other important optimization problems.

2 Preliminaries

Given a graph G(V, E), the MIN VERTEX COVER problem is to find a cover C of G (i.e. a subset
C C V such that C' contains at least an endpoint of any edge in E') whose size (i.e. |C|) is as small
as possible. As usual, we will use n and m to denote the size of V' and the size of F, respectively.



Furthermore, given a vertex v € V, the degree of v will be denoted as d(v). We study the complexity
of approximating the MIN VERTEX COVER problem with respect to the density of the input graphs.
In particular, we will make use of the following definitions.

1) Bounded degree graphs. A B-bounded degree graph G(V, E) (B > 0) is a graph such that, for
any v € V, d(v) < B.

2) FEverywhere sparse graphs. An everywhere k-sparse graph G(V, E')is a graph such that for any
subset W C V, the graph induced by W has a number of edges which is not greater than

Given an instance z of an optimization problem and a feasible solution y of z, we let m(z,y)
be the measure (or cost) of the solution'. We also denote by opt(z) the measure of an optimum
solution. The performance ratio of y with respect to x is defined as

B [m(x,y) opt(x)
R(z,y) = max{ opt(z) ’ m(w,y)} .

Note that the performance ratio is always a number no smaller than one, and is as close to one as
the solution is close to the optimum.

Definition 1 (Approximation algorithm) Let r > 1 be any real; a polynomial-time algorithm
is said to be r-approximate for an oplimization problem 1L if, for any instance x of 11, it returns a
solution y feasible for x whose performance ratio is not greater than .

Definition 2 (Approximation scheme) An algorithm is said to be an approximation scheme
for an optimization problem 11, if, for any instance x of 1l and a rational r > 1, il relurns a
solution y feasible for x whose performance ratio is not greater than r. Furthermore, for any fized
r, the running time of the algorithm is polynomial in the size of x.

The class of optimization problems that admit an r-approximate algorithm for some r > 1 is
denoted by APX, while the class of optimization problems that admit an approximation scheme is
denoted by PTAS. Tt is possible to define PTAS-preserving reductions among APX problems and
show natural completeness results [10, 12, 24]. In particular, the MIN VERTEX COVER problem is
APX-complete even when restricted to bounded-degree graphs [29, 24].

In which follows, we summarize the main definitions from the theory of probabilistically check-
able proofs and its connections with the MIN VERTEX COVER problem. Our exposition follows
[5].

A wverifieris an oracle probabilistic polynomial-time Turing machine V. During its computation,
V tosses random coins, reads its input and has oracle access to a string 7 called proof. In particular,
let a be the sequence of oracle answers received by V during the course of its computation on input
z and random string R. If V accepts in that particular circumstance, then we say that (z, R, a)
is an accepting configuration for V. Let now z be an input and 7© be a proof. We denote by
ACC[V™(x)] the probability over its random tosses that V accepts  using 7 as an oracle. We also
denote by ACC[V(z)] the maximum of ACC[V"(z)] over all proofs .

We are interested in several parameters that determine the efficiency of the proof checking.

Definition 3 (PCP parameters) Let z be a language, and let V' be a verifier for L. Then we
say that

'In the MIN VERTEX COVER problem, instances are graphs and solutions are covers.



e V uses r(n) random bits (where r : ZT — Z% is an integer function) if for any input x and
for any proof =, V tosses at most r(|z|) random coins;

e V has query complexity ¢ (where q is an integer) if for any input z, any random string R,
and any proof w, V reads at most q bits from w;

e V has free bit complexity f (where f is a real) if for any input x and any random string R,
there are at most 27 set of answers a such that (2, R,a) is an accepting configuration for V;

e V has soundness s (where s € [0,1] is a real) if, for any = ¢ L, ACC[V(2)] < s;

o V has completeness ¢ (where ¢ € [0,1] is a real) if, for any v € L, ACC[V(z)] > c.

Definition 4 (PCP with few free bits) Let L be a language, let 0 < s < ¢ < 1 be any constants,
let f > 0 be a real, q be a positive integer and v : Zt — Z*, then we say that I € FPCP_4[r, f,q] if
a verifier V ewists for L that uses O(r(n)) random bits, has query complexity q, free bit complexity
[, soundness s and completeness c.

The following theorem shows that the existence of efficient verifiers for any NP problem implies
a non-approximability result for MIN VERTEX COVER.

Theorem 5 (Non-approximability of MIN VERTEX COVER [14, 5]) Let us assume that NP C
FPCP, [log, f,q]. Then, for any e > 0, it is NP-hard to find (1 — e+ (c— s)/(2f — ¢))-approzimate
solutions for the MIN VERTEX COVER problem.

Sketch of the proof. Let ¢ be an instance of the SAT problem, and let us consider the behavior
of the verifier claimed in the theorem with input ¢ and a proof 7. Let r = 200°87) he the total
(polynomial) number of possible random sequences accessed by the verifier. For any of these
sequences R, there are at most 2/ different accepting configurations (2, R,a). We say that two
configurations (z, R,a) and (z, R',a’) are consistent if a proof 7 exists such that a (respectively,
a') is the set of answers received during the computation V7 (z, R) (respectively, V™ (z, R')). We
construct a graph G, with a node for each accepting configurations (adding dummy configurations,
we make sure that there are exactly 2/r nodes). Then we put an edge between u and v if and only
if u and v are not consistent. It is possible to show (see [14]) that there is an independent set in
Gy with at least k nodes if and only if there exists a proof for ¢ that makes the verifier accept
at least k times over r (i.e. with probability £/r). Observe that a graph G, with n nodes has an
independent set with k& nodes if and only if it has a vertex cover with n — k nodes. It follows that
if ¢ is satisfiable then there exists a vertex cover in Gy with at most r(2f — ¢) nodes; otherwise any
vertex cover in Gy will have at least r(2/ — s) nodes. Thus, any approximation factor better than
(27 — 5)/(2/ - ¢) would be sufficient to decide the satisfiability of ¢. a

In the following, the graphs Gy arising from the above described construction will be called
FGLSS graphs.

The best current non-approximability result for MIN VERTEX COVER is achieved by showing
that NP C FPCPq .704]l0g, 2, ¢] for a certain constant ¢ [5]. This implies that it is NP-hard to
1.068-approximate MIN VERTEX COVER.



3 Switchers

As described in the Introduction, our technical goal is to replace complete bipartite graphs with
sparse bipartite graphs which preserve a sufficiently good “connectivity” property. In which follows
we will define this particular kind of graphs and we will show its existence and how to generate
them deterministically.

Definition 6 (Switcher) Let € be a positive number. A bipartite graph G = (V1,V3, FE) is an
(n1,ng, €)-switcher if the following holds:

1. |Vi| = nq, |Va| = ny;

2. for any vertex cover C' of G, either |Vi — C| < €|C| or |V2 — C| < €|C].

Roughly speaking, a switcher is such that any of its vertex covers has to choose almost all
the nodes in at least one component. It is worth noting that a bipartite complete graph over
components of size ny; and ng is an (nq, ng,0)-switcher. As will be shown later, bipartite complete
graphs are used in the proof of Theorem 5 because of their perfect switching properties. In the
next section we shall show that, essentially, constant-degree switchers suffice.

In order to construct switchers, it is useful to restate property (2) in a different way. Let I be
any independent set in G, let A =ViNI and B = VN 1. Then property (2) is equivalent to asking
that either

Al < e(IVal + [Va| = |A[ - [B]) ,
or
|B| < e([Va] + |Va| = [A] = [B]) .

If we consider the counterpositive version of the latter statement, we have that property (2) holds
if and only if for any subset A C V7 and for any subset B C V5 such that

|A],[B] > €(n1 + ny — (|A] +[B]))

there is at least one edge in F joining a node in A with a node in B. This turns out to be an
expansion property: switchers are indeed a generalization of OR dispersers.

Definition 7 (OR disperser [31]) An (ny,ng,€)-disperser is a bipartite graph G = (V1,V3, E)
such that |Vi| = nq, |Va| = na, and for any subsets A C Vi, B C V, such thal |A| > eny and
|B| > €ny, there is at least one edge having an endpoint in A and an endpoint in B.

Proposition 8 An (ny,ng,¢/(1+ €))-OR disperser is also an (ny, ng, €)-switcher.
Proof. Let G = (V1,Va, E) be an (ny,ng,€¢/(1 4 €))-OR disperser, and let A C V; and B C V; be

such that

Al > e(m +n2 — (JA[ +]B]))
|Bl > e(n1+nz —(|A] +[B]))

Since |B| < ng, it follows that |A] > e(ny — |A|), that is,



|A] > n
1+ ¢

Similarly, we can show that

>
|B|_ 1+en

Consequently, G is an (nq, ng, €)-switcher. O

Lemma 9 (Randomized construction of switchers) A constant ¢ > 0 exists such that for any
€ > 0, for any k > ¢(1/€)log(1/€) and for any nq,nq, a 2k-everywhere sparse (ny,nq, €)-switcher
with at most k(ny + ny) edges exists.

Proof. 1t sufficient to show the existence of a (nq,ng,7)-OR disperser where v = ¢/(1 + €) > €/2.
We randomly construct a bipartite graph in the following way. Consider two vertex sets Vi and
Vy where |Vi| = nq, |Vo| = ng, and ny > ny. Then for any vertex u of V; we choose at random
[(k—1)(ny +ng)/nq] distinct elements of V3 and we connect « to them. This construction ensures
that

|E| < (k=1)(ny 4 n2)+n1 < k(ng + ng) .
For any vertex pair (vq,v3) € Vi X Va3, we have that

ny + ng

Pr((vi,v2) € E] > (k- 1)=—

We now provide an upper bound on the probability that the random graph G(Vy, V;, E) is not
an (nq,ng,7)-OR disperser. This probability will be denoted as Pr [no-disperser]. It is not hard to

Prno-disperser] < ( ny ) ( ng ) <1_ (k- 1)(n1—|—n2)>7nwn2 |

prove that

T T2 n1ny

Using Stirling’s approximation for the binomial coefficient and the inequality (1 —z) < ™7
(z > 0), we obtain the following inequalities

i R E—1 Yn1ynz
Pr[no-disperser] < <ﬂ> <ﬂ> <1 . ( )(n1 + n2)>

T Y2 ning
<E> ~y(n1 +n2)e_'72 (k=1)(n14n2)
o

—  (1-logm)y(ni+n2)—~2 (k=1)(n1+n2)

If we introduce the condition Pr [no-disperser] < e™® < 1, where b is a fixed positive constant
then we have that

v(n1+n2)(1—logy —y(k—-1)) < -b.



That is,

1 b 1 1 1 1
E>14 - <1og5+ 27> -0 <—log—) -0 <—10g—> .
e S (O Y T € e
To show that the resulting graphs are 2k-everywhere sparse, we note that the nodes in the com-
ponent V; have degree at most k(ny 4+ ng)/n1 < 2k. Thus, given any set W = Wy U W; of nodes

(where W; = V; N W for ¢ = 1,2), it follows that the number of edges in the subgraph induced by
W is at most 2k|W1| < 2k|W|. ]

We shall now consider a deterministic construction that makes use of Ramanujan graphs [25, 28].
This will be used to prove non-approximability results for graphs with bounded degree under the
assumption that P # NP.

Lemma 10 (Deterministic construction of switchers) A constant ¢ > 0 exists such that, for
any € > 0 and any ny, ny such that ny > ng, an (ny,ng,€)-switcher with mazimum degree k <
c(ny + ny)/nae? exists and is constructable in polynomial time.

Proof. 1t is sufficient to show how to construct an (ny, ng,7)-OR disperser where vy = ¢/(1+¢€) > €/2.
Let G be a d-regular Ramanujan expander with n nodes, where ny + ny < n < 4(ny + ng), and
128(ny +nq)/n9y? < d < 512(ng +ny)/nyy? (such a graph exists and is constructable in polynomial
time [25]). The second largest eigenvalue of G is at most 2v/d — 1. It is well known (see e.g. [28],
exercise 6.27) that in a d-regular graph, if we let A be the second largest eigenvalue of its adjacency
matrix, then the number of edges connecting A and B is at least

|Al| B| /
d—— — \/|Al||B] .

Let us now consider any two sets A, B such that |A| > yn; and |B| > yns.
We have that

|A||B| |Al|B|d A
d—— — \J/|A||B| = Al|llBld| Y¥— — —
R iallBl = il (VAR -

> |A||B|d(””””8<§1 tra)at 2)
> /lAllBld (—V 64(”;* na)” _2)
> 0.

Let now V; and V; be two disjoint sets of nodes of G such that |Vi| = ny and |Va| = ny. Let G’ be
the bipartite subgraph of G induced by the components V; and Va: clearly, G’ is an (n1,n2,7)-OR
disperser (and thus an (ny,ng, €)-switcher) and its maximum degree is O((ny + na)/nqe?). a

4 Hardness results

Theorem 11 (Non-approximability of MIN VERTEX COVER-B ) Let us assume that NP C
FPCP,s[log, f,q]. Then for any € > 0 a constant B = O(q*/€*) ewists such that it is NP-hard to
(1— e+ (c—3)/(2f — ¢))-approzimate the MiIN VERTEX COVER problem on graphs with mazimum
degree B.



Proof. Let ¢ be an instance of SAT, and let us consider the FGLSS graph Gy = (Vy, Ey). This
graph has the following characterization. Let [ be the length of the proof accessed by the verifier;
for any ¢ = 1,...,1, let w[i] be the i-th bit of the proof 7, and let U[i] (respectively, Z[i]) be the
set of nodes of the graph corresponding to accepting configurations in which 7[i] = 1 (respectively,
7[i] = 0). Let also u[i] = |U[7]| and z[i] = |Z[7]|. Finally, let ul(-j) (respectively, z}j)) be the j-th
element of U[i] (respectively, of Z[i]) in lexicographic order. Given two configurations (vertices) u
and v, there is an edge between « and v if and only if they are inconsistent, that is, if and only if for
some ¢ they read the same bit 7[i] and expect it to have different values. Then, we can characterize

the edge set of Gy as

l .
Ey = U{(u£])7zz(k)) (4, k) € Kupzny)
=1

where, for any ny and ny, Ky, ,, is the edge set of the bipartite complete graph with vertex
components {1,...,n1} and {1,...,n3}. Moreover, any node u of V; belongs to at most ¢ sets
Uld], Z[i]. We can thus see Ey4 as the union of bipartite complete graphs, i.e. graphs with the
best possible switching properties. We shall now show that indeed constant degree switchers are
sufficient. Without loss of generality, we assume that for any ¢ = 1,...,[, u[i] > z[¢] (otherwise, we
can invert the value of the ¢-th bit of the proof in any configuration and then swap the values of
uf¢] and z[¢]). Let v be a constant to be fixed later such that 1/y = O(g¢/¢). Let I be the set of
bits ¢ such that z[i] > y(z[i] 4+ u[¢]). For any ny and for any ng, let S, ,,, be the set of edges of an
(n1,ng,7)-switcher (we assume that the vertex sets are {1,...,n1} and {1,...,n2}). We define a
graph G = (Vy, E}) with the same vertex set of Gy and with edge set

Ey = [J{(w”,2") : (G, k) € Supga) -
el

Lemma 10 implies that, for any ¢ € I, we can construct a (u[7], z[¢],7)-switcher with degree bounded

by

O((uli] + z[i])/z[i]r*) = O(1/7°) .
Since any node belongs to at most ¢ sets U[i], Z[i], and we assumed that v = O(¢/q), it follows
that G has degree bounded by O(q*/e).
We shall now show how to convert any vertex cover for Gib into a “slightly larger” vertex cover
for G. We claim that from any vertex cover C' in G/d> we can recover a vertex cover (' in G4 such
that |C] < |C'](1+ ¢7) + gyn. Indeed, let C" = (J;g; Z[i]: from the definition of I, it follows that

€ < Y (2l +uli]) < gyn .
i@l
Moreover, for any i € I,let C'[i{] = C'N(U[i]U Z[i]) be the set of nodes of C’ that are used to cover
the configurations where the i-th bit has been read. By adding at most yC'[i] nodes, we have a
cover that comprises either all nodes of U[7] or all nodes of Z[i]. Let C[¢] be this new set. Clearly,
C =C"U U, C[i] is a vertex cover for G4, and we have that

ICl=|C"| < gyn + Z |C[]| = |C'E]] < gym + qv|C|

where n = r2f. If ¢ is not satisfiable, then



1 1 2/
opt(Gh) > opt(Gy) — v2 qr > r(2/ — s - .
PHGg) 2 T —optGs) = 72 qr 2 x( ) el
Furthermore, G;s is an edge-subgraph of GGy, thus any vertex cover for GG is also a vertex cover
for Gld>' It follows that if ¢ is satisfiable, then

opt(G) < opt(Gy) < r(2/ —¢).

By letting v be sufficiently small (but such that 1/ = O(q/¢)), the theorem follows. O

Using the same technique applied in the proof of Theorem 11 we can prove the following result.
The main difference with respect to the proof of Theorem 11 is that this time we use sparse switchers
whose existence is guaranteed by Lemma 9.

Theorem 12 Let us assume that NP C FPCP, [log, f,q]. Then for any ¢ > 0 a constant k =
O((q*/e)log q/¢) exists such that the MIN VERTEX COVER problem restricted lo everywhere k-sparse
graphs is not (1 — e + (¢ — 8)/(2/ = ¢))-approzimable unless NP C P /poly.

Proof. The proof is very similar to that of Theorem 11, the only difference being the use of better
switchers whose existence is proved in Lemma 9. In particular, for any ¢, we use an everywhere
k/q-sparse (u[i], z[7],7)-switcher which exists provided that k/q = O((1/7)log1/7). It follows that
G is everywhere k-sparse where k = O(q(1/7)logl/7), that is, k = O((¢*/€)loggq/e). We can
now repeat the same analysis as in the proof of Theorem 11. Since we are not able to explicitly
construct such switchers, we assume that the reduction receives them as polynomial size advice.
Thus, instead of a polynomial-time reduction we use a P/poly reduction, and this allows us to
prove hardness results under the hypothesis that NP ¢ P/poly (recall that NP C P/poly mplies
the collapse of the polynomial hierarchy [23]). O

Our techniques also yield results regarding the approximability of the MiNn VERTEX COVER
problem on graphs having a non-linear number of edges.

An interesting consequence of Theorem 11 is the fact that any lower bound proved with the
PCP technique for the MIN VERTEX COVER problem on general graphs extends without any loss
to graphs with maximum degree bounded by any (thus even very slow) increasing function.

Corollary 13 (of Theorem 11) Leth: ZT — Z* be a computable function such that lim, h(n) =
o0, let NP C FPCP, 4[log, f,q]. Then for any ¢ > 0 the MIN VERTEX COVER problem restricted to
graphs with mazimum degree h(n) is NP-hard to approzimate within 1 — € + (¢ — 5)/(2/ — ¢).

Proof. For any € > 0, Theorem 11 implies that a constant B, exists such that the MIN VERTEX
COVER problem is NP-hard to approximate within 1 — e+ (¢ —s)/(2/ — ¢) when restricted to graph
with maximum degree B.. It is clear that the MIN VERTEX COVER problem restricted to graphs
with maximum degree B, is reducible to the MIN VERTEX COVER problem restricted to graphs
with maximum degree h(n). Indeed, the two problems just differ on a finite number of instances.
a

The restriction to dense instances (i.e. graphs with Q(n?) edges) of optimization graph problems
often admits an efficient approximation scheme [2] (see also [1] on parallel approximation) even if
the general problem is hard to approximate. We note, however, that this is not the case of MIN
VERTEX COVER.
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Theorem 14 The MIN VERTEX COVER problem resiriclted to dense graphs is APX-complete. In
particular, for any € > 0 there exists a constant r > 1 (depending on ¢) such that it is NP-hard to
r-approzimate the MIN VERTEX COVER problem restricted to graphs such that any node has degree
al least €|V].

Proof. For any € > 0, let @ = ¢/(1 — ¢). Consider the graph (7, obtained by adding a clique with
a|Vy| nodes to the FGLSS graph Gy and then connecting any node of the clique to any node of
Gy = (Vy, Eg). Let n = (a + 1)|Vy| be the number of vertices in 7, It is easy to see that GG}, has
minimum degree at least en. Moreover,

opt(Gy) + a|Vy| — 1 < opt(G,) < opt(Gy) + alVyl .

The results of [5] imply that a constant r > 1 exists such that it is NP-hard to r-approximate
MiN VERTEX COVER on graphs with minimum degree at least en. Furthermore, Theorem 5 in
[24] implies that the MIN VERTEX COVER problem is APX-complete with respect to the AP-
reducibility even when restricted to FGLSS graphs. It is easy to see that the above described
reduction from FGLSS graphs to dense graphs is approximation-preserving, and, in particular, is
an L-reduction [29], and thus also an E-reduction [24] and an AP-reduction (see [9]). The APX-
completeness of the MIN VERTEX COVER problem restricted to dense graphs follows. a

Note that inserting a large clique provides a non-approximability result only because FGLSS
graphs are such that the minimum vertex cover always has £(n) nodes, which is not true in general.
In particular, the same technique does not provide an approximation-preserving reduction from the
general MIN VERTEX COVER problem to its restriction over dense graphs.

5 Conclusions

In this paper, we have provided new hardness results on the approximation of MIN VERTEX COVER
when some density constraints on the input graphs are considered. A further motivation in deter-
mining whether or not the presence of a bound on the number of edges (or on the maximum degree)
yields a more “tractable” restriction of the general problem is due to the fact that the MIN VERTEX
COVER problem restricted to bounded maximum-degree graphs or to sparse ones (observe that we
have considered a “strong” concept of sparse graphs) has been used as the starting problem in
several reductions to other important problems such as the restriction of the MIN STEINER TREE
problem to metric spaces [8] and the LONGEST COMMON SUBSEQUENCE problem over alphabet
with small size [21] (a problem related to DNA sequencing). For example, the reduction from MIN
VERTEX COVER to MIN STEINER TREE shown in [8] implies a non-approximability result for MIN
STEINER TREE that depends on the non-approximability ratio that one can prove for vertex cover
on sparse graphs and on the sparsity of such graphs (and the additional condition that the sparse
graphs are such that the minimum cover is guaranteed to be a constant fraction of the number
of nodes). We computed the non-approximability result for MIN STEINER TREE that arises from
[29, 8, 25, 5], and it is about 1 4+ 1/5600. More generally, there is a linear relation between the
hardness ratio that one can prove for the MAX 3-SAT problem and the consequent hardness ratio
implied for the MIN STEINER TREE problem. On the other hand, our present results, combined
with the best currently available verifier [5], give a worse hardness ratio for the MIN STEINER TREE
problem, but the relation between the efficiency of the verifier and the hardness for MIN STEINER
TREE is superlinear, and thus better verifiers will imply a larger improvement for the hardness
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implied by our reduction than for that implied by Papadimitriou and Yannakakis’ reduction. More
formally, applying Theorem 12 with € = (¢ — s)/2/*! it follows that if NP C FPCP.[logn, f, q|,
then it is hard to approximate MIN STEINER TREE to within a factor

c— S8
IR

where the constant hidden in the O notation is about 4. Instead, using Papadimitriou and Yan-
nakakis’ reduction, we have that if NP C FPCP, ([logn, f, ¢, then it is hard to approximate MIN
STEINER TREE to within a factor

c—s

14+ ———.
+ 200 - 291

Observe also that our results are related to the free-bit complexity of the verifier, and improve-
ments on this query complexity measure do not imply any improvement for Papadimitriou and
Yannakakis’ reduction.

Acknowledgements

We wish to thank Pierluigi Crescenzi, José Rolim and Madhu Sudan for several helpful discussions.

References

[1] A. Andreev, A. Clementi, and J. Rolim. Constructing the highest degree subgraph for dense
graphs is in NCAS. To appear on Theorelical Computer Science, 1995.

[2] S. Arora, D. Karger, and M. Karpinski. Polynomial time approximation schemes for dense
instances of graph problems. In Proceedings of the 27th ACM Symposium on Theory of Com-
puting, pages 284-293, 1995.

[3] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and hardness
of approximation problems. In Proceedings of the 33rd IEFE Symposium on Foundations of
Computer Science, pages 14-23, 1992.

[4] S. Arora and S. Safra. Probabilistic checking of proofs; a new characterization of NP. In
Proceedings of the 33rd IEEFE Symposium on Foundations of Computer Science, pages 2—13,
1992.

[5] M. Bellare, O. Goldreich, and M. Sudan. Free bits, PCP’s and non-approximability — towards
tight results (3rd version). Technical Report TR95-24, Electronic Colloquium on Computa-
tional Complexity, 1995. Extended abstract in Proc. of FOCS’95.

[6] M Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficient probabilistically checkable proofs
and applications to approximation. In Proceedings of the 25th ACM Symposium on Theory of
Computing, pages 294-304, 1993. See also the errata sheet in Proc of STOC"94.

[7] M. Bellare and M. Sudan. Improved non-approximability results. In Proceedings of the 26th
ACM Symposium on Theory of Computing, pages 184-193, 1994.

[8] M. Bern and P. Plassmann. The steiner tree problem with edge lengths 1 and 2. Information
Processing Letters, 32:171-176, 1989.

12



[9] P. Crescenzi, V. Kann, R. Silvestri, and L. Trevisan. Structure in approximation classes. In
Proceedings of the 1st Combinatorics and Computing Conference, pages 539-548. LNCS 959,
Springer Verlag, 1995.

[10] P. Crescenzi and A. Panconesi. Completeness in approximation classes. Information and
Computation, 93:241-262, 1991. Preliminary version in Proc. of FCT’89.

[11] P. Crescenzi, R. Silvestri, and L. Trevisan. To weight or not to weight: Where is the question?
Manuscript, 1996.

[12] P. Crescenzi and L. Trevisan. On approximation scheme preserving reducibility and its ap-
plications. In Proceedings of 14th Conference on Foundations of Software Technology and
Theoretical Computer Science, pages 330-341. LNCS 880, Springer Verlag, 1994.

[13] U. Feige. A threshold of Inn for approximating set cover. In Proceedings of the 28th ACM
Symposium on Theory of Computing, 1996. To appear.

[14] U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. Approximating clique is almost
NP-complete. In Proceedings of the 32nd IEEFE Symposium on Foundations of Computer
Science, pages 2—-12, 1991.

[15] U. Feige and J. Kilian. Two prover protocols - low error at affordable rates. In Proceedings of
the 26th ACM Symposium on Theory of Compuling, pages 172-183, 1994.

[16] O. Gabber and Z. Galil. Explicit construction of linear sized superconcentrators. Journal of
Computer and System Sciences, 22:407-425, 1981.

[17] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph problems.
Theoretical Computer Science, 1:237-267, 1976.

[18] M.R. Garey and D.S. Johnson. Computers and Intractability: a Guide to the Theory of NP-
Completeness. Freeman, 1979.

[19] F. Gavril. Manuscript cited in [18], 1974.

[20] J. Hastad. Testing of the long code and hardness for clique. In Proceedings of the 28th ACM
Symposium on Theory of Compuling, 1996. To appear.

[21] T. Jiang and M. Li. On the approximation of shortest common supersequences and longest
common subsequences. In Proceedings of 21th International Colloguium on Automata, Lan-
guages and Programming, pages 191-202. Lecture Notes in Computer Science 820, 1994.

[22] R.M. Karp. Reducibility among combinatorial problems. In R.E. Miller and J.W. Thatcher,
editors, Complexity of Computer Computalions, pages 85—103. Plenum Press, 1972.

[23] R.M. Karp and R.J. Lipton. Some connections between nonuniform and uniform complexity
classes. In Proceedings of the 12th ACM Symposium on Theory of Computing, pages 302-309,
1980.

[24] S. Khanna, R. Motwani, M. Sudan, and U. Vazirani. On syntactic versus computational views
of approximability. In Proceedings of the 35th IEEFE Symposium on Foundalions of Computer
Science, pages 819-830, 1994.

13



[25]

A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujam graphs. Combinatorica, 8:261-277, 1988.

[26] C. Lund and M. Yannakakis. On the hardness of approximating minimization problems.

[27]

[28]

[29]

Journal of the ACM, 41:960-981, 1994. Preliminary version in Proc. of STOC’93.

B. Monien and E. Speckenmeyer. Some further approximation algorithms for the vertex cover
problem. In Proceedings of CAAP83, pages 341-349. LNCS 159, Springer Verlag, 1983.

R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity classes.
Journal of Computer and System Sciences, 43:425-440, 1991. Preliminary version in Proc. of
STOC’S8.

R. Raz. A parallel repetition theorem. In Proceedings of the 27th ACM Symposium on Theory
of Computing, pages 447-456, 1995.

M. Sipser. Expanders, randomness or time vs. space. In Proceedings of the 1st Conference on
Structure in Complexity Theory. Springer Verlag, 1986.

G. Sorkin, M. Sudan, L. Trevisan, and D.P. Williamson. Gadgets, approximation and linear
programming. In preparation, 1996.

14



