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Abstract

The “log rank” conjecture consists in the question how exact the deterministic com-
munication complexity of a problem can be determinied in terms of algebraic invarants
of the communication matrix of this problem. In the following, we answer this ques-
tion in the context of modular communication complexity. We show that the modular
communication complexity can be exactly characterised in terms of the logarithm of
a certain rigidity function of the communication matrix. Thus, we are able to exactly
determine the modular communication complexity of several problems, such as, e.g.,
set disjointness, comparability, and undirected graph connectivity. From the obtained
bounds for the modular communication complexity we can conclude exponential lower
bounds on the size of depth two circuits having arbitary symmetric gates at the bottom
level and a MOD,,—gate at the top.

Area: Computational Complexity

Keywords: Communication Protocols, Modular Acception Modes, Depth Two
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Introduction

In the basic model of communication complexity the number of bits is investigated which have
to be exchanged in order to enable two processors Py and P, (with unlimited computational
power) which have access to input data from different finite sets S; and S; to compute
functions f:S; x Sy — {0,1}. The deterministic communication complexity CC(f) of such
an f is the minimum number of bits the processors have to exchange for the worst case
input. This model, first introduced by Yao [19], has many applications in different branches
of complexity theory and has been studied in many papers. (See [6] for a survey.)



For the communication matrix MJ _ = f (s1,s3) of the problem f given in distributed form
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we have the following inequality,

log, (rke (M7)) < CC(/),

due to Mehlhorn and Schmidt [8]. The question, which is called the “log rank” conjec-
ture (see [7]), is whether this lower bound is sharp. Considering this conjecture several
authors have obtained interesting separation results which show gaps between C'C(f) and

log, (rkR (A/lf)). Recently, Raz and Spieker [12] proved that there is a nonconstant gap.
(We review this result shortly in Section 4.)

We shall study an analogous problem in the case of modular communication complexity.
The investigation of the modular communication complexity is motivated by circuits of
finite depth having MOD,,—gates (see [20], and Section 1, Theorem 1). We succeed in
characterizing the modular communication complexity in terms of the logarithm of a certain
rigidity function of the communication matrix. The consideration of such regidity functions
came into prominence in the last few years. Lower bounds on rigidity functions of explicit
matrices proved useful in algebraic circuit complexity theory (see [9], [15]), for branching
programs (see [1]) and threshold circuits (see [4]), and for communication complexity (see
[11]). Lokam [5] unifies and strengthens many of these results.

We adopt and weaken a rigidity function of [4] which we call then rigidity rank of a ma-
trix, abbreviated rrk,,M. First, we show that the modular communication complexity
MOD,,-CC(f) is equal to O(log, rrk,, M) (see Section 2). In contrast to the variation
rank of [4], which could only be computed for the identity matrix, we determine the rigidity
rank in many more cases (see Sections 3 and 4). Thus, we can determine exactly the modular
communication complexity of the underlying problems (e.g., set disjointness, comparability,
undirected graph connectivity). Due to the close connection between modular communica-
tion complexity and the size of depth two circuits having arbitary symmetric gates in the
bottom level, and a MOD,,—gate at the top (see Theorem 1), finally, we can conclude some
exponential lower bounds on the circuit size for these problems.

1 The Computational Model and its Motivation

Assume that we are given a function f : S; xSy — {0, 1} in distributed form, where the S; are
finite sets. A communication protocol P of two processors Py and Py of length I computing a
function f is, as usual, defined as follows. In order to compute f(s1,s2), the processor P; has
the element s; € 5; as input, for : = 1,2. The one processor is not allowed to read the input
of the other directly. They have to communicate via a common communication tape. The
computation of the whole structure is going on in rounds. Starting with Py, the processors
write alternatingly bits on the communication tape. These bits depend on the input available
to the processor which is to move and on the bits already written on the communication tape
before. If the last bit written onto the communication tape is “1” or “0”, the computation
is called accepting or rejecting, respectively. Under the usual assumption of prefix—freeness



for messages, the co-operative computation can be thought of as to be a Boolean string, the
string of the bits communicated. The length of the string is the communication complexity
of the computation. Since we consider the worst—case complexity in this paper, we assume
without loss of generality that all computations of a protocol which influence the final output
are of equal length, say L.

If the processors are nondeterministic, the outcome of one computation is, of course, not
identical to the final vote. The output of a protocol P, for a given input (s1,sz2), depends
only on the numbers ./\/(f1 ", and ./\/lf1 ’j":j of accepting and rejecting computations performed
by the protocol accessing this input. How are these numbers, considered as matrices, related
to the length of the protocol? The answer is given by the following

Lemma 1 If P is a protocol of length L, and if R is any semiring, then we have the in-
equalities

I'kR(./MP’aCC) S
rkR(MP7Tej) S 2L—1'

The proof can be done in a straightforward way (see, e.g., [2]). As usual, the R-rank of a
Ny x Ny—-matriz A over R, which we denote by rkrA, is defined to be the minimal number
K such that A= B - (C, where B is a N; x K—matrix and C is a K x N,—matrix over R.

This dependency between the matrices M2 and MP7% and the final outcome of the
protocol is formally given by a function u : N> — {0,1}, the counting acception mode. More
precisely, if Mﬁl& := f(s1, 52) is the matrix associated with the problem, the communication
matriz, then

M£1752 =K (MZ’?SC;’ '/Mfl’jﬂsezj) '
A protocol P equipped with a counting acception mode g 1s called a p-protocol. The function
f:S1 xSy — {0,1} computed by a p-protocol P is called to be p—computed. If a protocol
p—computing a function f is chosen in such a way that its length is minimal, we define the
number p-CC(f) := L to be the p—communication complexity of the function f.

In this paper, we discuss in particular the modular acception modes MOD,, in which the
protocol accepts an input if the number of accepting computations is not equal to 0 modulo
m:

MOD,,(n1,n2) =1 < n; #0 (mod m).

We study the asymptotic modular communication MOD,,-CC(fs,) complexity of the se-
quence (fa, : X" x X" — {0,1})

We shall see later on that it is possible to settle down in a first step to modes MOD,,,, where

neN-"

m 1s square free. In order to do so, we need some constructions which are in some sense
polynomials of protocols.

Definition 1 Let S; x Sy be as before, and let Py, ..., P,, and P be protocols of length
Li,...,L,, and L.



1. We define the product Py Py of length Ly 4+ Ly as follows. Given an inpul (s1,sz) €
S1 X Sy, the protocol Py Py proceeds in the same way as Py does while the first Ly bils
are being exchanged, and according to Py then. But we make the following restriction
in the last round: For i = 1,2, if Y € {0,1}% are r;—round computations of the
protocols P; on (s1,s2), if ’yl(é)st € {0,1} are the last bits of ¥\, and if 71(als)t # 71(32t;
then the computation is stopped without result before the round rq+ ry. (This means,
each computation of length L+ Ly is either a concatenation of two accepting or of two
rejecting compulations.)

2. For a; € N, P/ ... P% is defined on the basis of item 1 in the canonical way. (We
assume P to be the unique protocol of length 0.)

3. The protocol (12), Jork € N, of length kL on an input (sq, s2) € S1xS2 works as follows.
It proceeds as P* does but with the following modification in the last round: Let {0,1}"
be arbitrarily but fized totally ordered. If vV € {0,1}" are r;—round computations of
the protocol P; on (s1,s2) such that A A48 s a r-round computation of P*, where
r=1r14...4rs, then the computation is stopped without result unless v < ... < ~®),

4. Letay, ..., a, be positive natural numbers. The sum (a1 Pi+. ..+ anPy) is the protocol
of length [log, (3o~ a;)] +max{L; |1 = 1,...,m} which is defined on (s1,s2) € S1 X .S2
by the following rules: First, the protocols are assumed to be prolonged to the length
max{L; |t = 1,...,m}. Second, processor Py sheds nondeterministically a number
Je{1,2,...,5", a;} as a message of length [log, (-7, a;)|. Third, Py and Py proceed
in the same way as Py and Py do according to protocol P;, provided that "% a, +1 <
J < Z?}:l ay-

A straightforward calculation reveals the next lemma.

Lemma 2 The situation is assumed to be as in Definition 1. Then, for all (s1,s2) € S1 xSy,

MPfl...P;,l{”,acc - m MP,;,CLCC a;
51,52 - =1 51,52 9
P
(k>,acc MP,acc
M = 51,52
51,52 k b
(a1Pi4...4amPm)ace  _ m ) P; acc
51,82 ' - ZZ:I azM51:52 *

We observe that analogous relations for the numbers M;"% are valid.

51,52
Now we have to define what we mean by reductions. Fortunately, this is much easier here
than in machine—based complexity theory.

Definition 2 Let F' = (f2, : " X X" — {0,1})nen and G = (g2, : I x I — {0,1}),en be
two dectsion problems. We say that F' is rectangular reducible to G with respect to q, where
g:IN = IN is a nondecreasing function, iff there are two transformations l,, r, : ©* — T2
such that for all n and for all T, € ¥" we have [3,(Z,7) = g2q(n)(ln(¥), (7). We wrile
F <1 G

—TEec



Clearly, we can utilize rectangular reductions for proving lower bounds on communication
complexity in the usual way.

One efficient way to get rectangular reductions is to work with projection reductions. In
accordance with Skyum and Valiant (see [14]) we define.

Definition 3 Let F = (f,, (z1,...,%21))nen and G = (g, (Y1, -, y2n) Jnen be two sequences
of functions given in distributed form fo,, gon : {0,1}*" — {0,1}. We write F' <[, G if there
is a 2p(n)—projection reduction

IT= (7r271 : {yla s ay2p(n)} - {wla ceeyLopy Ty ey T 2n, 0’ 1})TLEN
(see [14]) which respects the distribution of the variables,

7r2n({y17"'7yp(n)}) C {$17'"7$7L7_'$17"'7_'$TL7071}7
7r2n({yp(n)-|-17'"7y2p(n)}) g {xn-l-l;---7$2n,_‘$n-|-17---7_'$2n;071} .

On balance of this section, let us motivate the modular communication complexity. In fact,
we do more. We motivate all counting modes.

In the eighties, ACq-circuits with MOD,,—gates adjoined came into prominence. Let us
denote by ACE}"] the class of all sequences of Boolean functions computable by polynomially
size bounded circuits of this type. We know, due to Razborov [10] and Smolensky [16], that
AC([)p] and AC([)q], for p, ¢ different prime numbers, are incomparable to each other with respect
to inclusion. In contrast to that case, the classes ACEm], m a composite number of more than
one prime divisor, and the class ACC := [J>°_, ACEm] are not well-understood yet. The only
nontrivial bound for the whole class, an upper one, is due to Yao [20] : ACC C T'Cj 5 where
TC§ 5 is the class of all Boolean functions computable by quasipolynomially bounded (i.e.
2(105”)0(1)) threshold circuits of depth 3.

The aim is to separate ACC from classes like NC;. In order to make one step in this
direction, in [4] depth-two circuits with arbitrary symmetric gates in the bottom level and
MOD,,-gates at the top, called (SYMM, MOD,, )-circuits, are considered. An exponential
lower bound for the sequence equality function is shown.

The following theorem supplies a general lower bound for (SYMM, y)—circuits in terms of
counting communication complexity. Thereby, a (SYMM, p)—circuit is a depth two circuit
having arbitrary symmetric gates in the bottom level and a p—gate at the top, where p :
IN* — {0,1}. Recall, a p-gate for the gate function g(z1,...,zm) is defined by pu(#{j|2; =

1 #{5 12 =0}).

Theorem 1 Let f(xy,...,%n,y1,---,Yyn) be a boolean function. Let Cy, be a (SYMM, )~

circuit computing fy,. Then

log, (STZE(Can) = Qp-CC(fan).



Proof. Let o := SIZE(Cy,), and let (e, ..., e,n) be the sequence of wires of the circuit Cy,
leading to the top gate. Then we define the sequence (g1(211, .+, 2101 )5 -+ 5 91(26015 - - 5 20101 ,))

to be the sequence of gate functions of the source gates of (ey,...,e.n).

Let ng Azijli=1,...,0 = {25, 95,0,1]e =1,...,n}, for i = 1,...,0", be projections
resulting from the wires of ('3, which lead from the input nodes to the bottom gates. Then
the functions g;(z1,...,2n,y1,...,ys) are defined to be g; o (ﬂ'ég)t, for i = 1,...,0" (see

Definition 3).

We describe a protocol P of length 2[log, o] + 1, where processor P; has (z1,...,z,) as
inputs and P, the vector (y1,...,yn).

Round 1. Py chooses nondeterministically a number ¢ € {1,...,¢"} and sheds it, encoded
as a message of length [log, o].

Round 2. P, sheds the number 3! S7_ y¢ - |(7r£2)_1(yz)|, again encoded as a message of

length [log, o].

Round 3. Since the functions g; are symmetric and g; < ) gi, processor Py is able to compute
2n

Gi(z1,. T, Y1, .., yy) now. It sheds the result.

It 1s easy to see that the protocol P p—computes the function f if and only if the top gate
s a u—gate. O

2 A Partial Solution of the “Log Rank” Conjecture for
Modular Communication Complexity

Throughout this section, let fy, denote a function fy, : ¥ x ¥ — {0,1}, where ¥ is a
finite alphabet. If = plt - ... . pl is the unique decomposition of the natural number m
into powers of pairwise different prime numbers, the so—called primary decomposition, then
p(m), the so called radical, is defined to be the number p; - ... - p,.

This section is aimed at proving Theorem 2 and Corollary 1. This theorem characterizes the
modular communication complexity of a function sequence f;, in terms of a rigidity function
depending on the communication matrix M72», To do so, we adopt and weaken in Definition
4 the concept of variation ranks of communication matrices developed in [4]. (In Section 4
and Section 3, it turns out, that this extends and simplifies the possibilities to calculate the
modular communication complexity. This will justify the headline of this section.)

Our explanation is going on in two global steps. The first one is devoted to prove Proposition
1 saying that MOD,,,—protocols and MODP (myprotocols are of equal power. In the second
one we introduce our rigidity function “rigidity rank”, justify it in Lemma 6, and formulate
and prove Theorem 2.

Let us turn to the first global step. We prove first that MODP (m)—protocols can be efficiently
simulated by MOD,,—protocols.



Lemma 3 If my|my, then MOD,,,-CC(f) < MOD,,,,-CC(f) + [log, :—ﬂ for each function
f.

Proof. Let P be the MOD,,,—protocol of length L for f. Define the protocol P’ of length
L + [log, 2] to be (:n““—fP) Then MFPace = ot MPace - Consequently,

51,52 51,52

MPhaee = (mod my) <= MDD =0 (mod m,).

51,52 51,52

Now, we show that prime powers are not more powerful than primes.

Before formulating the next lemma, let us introduce the following notations for a,r € IN.

(z()((: - (i)
o - )

If P is a protocol of length L, then, of course, we can recursively define protocol (I:) ) of

length p'L such that

T

P\ (9) MP,(J,CC (@)
,acce
M glr"ZQ — ( 51,82 ) \

by Definition 1 and Lemma 2.

Lemma 4 Let p be a prime number and [ > 2 a natural number. Then
MOD,-CC(f2n) = © (MOD,-CC( f2))
for all fo,.

Proof. Again we write f instead of fy,.
The lower bound for MOD,-CC( f3,,) follows directly from Lemma 3.
Let us turn to prove the upper bound. If @ € IN, then it is well-known that

a=0 (mod pl) — (a) =0 (mod pl_l) and a =0 (mod p).
p
Consequently, using the above notations,
a=0 (mod pl)

(%)
= (0) =0 (modp), forall:=0,...,1—1
P

-1 o\ @ p=1
— 1+(;D])H(]+(p])((p) ) )0 (mod p).

7



Let P be a MOD,—protocol of length L for f. Let P be the protocol of length 1, where
processor Py sheds 1. Define P’ to be

(15+(p1> (15+(p1> ((i)m))p_l) (15+<p1> ((i)(l_l))p_l)) |

Then
-1 ./MP,acc (&) p=l
Mowe = 1+(p=-DI[|1+(-1) (( ) )
=0 P
Thus
Mi"fsczc =0 (modp) = Mi';g;c =0 (mod p).
The length of the protocol P’ is as desired. O

The following lemma ensures that LLemma 4 can be applied to prove Proposition 1 in the
following way. First, dissect the modulus m into its primary components by Lemma 5, Claim
1. Second, apply Lemma 4 to each of these components. Third, combine the protocols
resulting from Lemma 4 by Lemma 5, Claim 2.

Lemma 5 1. If m =my-...-m,, where the numbers m; € IN are pairwise coprime, then
each fa, has a representation fy, = fon1 V...V fon,, such that

max {MOD,,.,-CC(fani) |7 =1,...,r} <MOD,,-CC(fan).

2. Assume that fa, s represented by fo, = fon1 V...V fon,. Assume, moreover, thal
m=my - ... m,, where the numbers m; € IN are pairwise coprime. Then

MOD,,-CC( f2,) = O (max {MOD,,,,-CC(fan:) |t =1,...,1})

Proof. Throughout this proof, we write f instead of fy, and f; instead of f,, ;.

Claim 1. Let P be the protocol that MOD,,—computes the function f. Define f; to be the
functions MOD,,,,—computed by the protocol P. Clearly, f = fi V...V f..

Claim 2. Let P, for : = 1,...,r, be MOD,, . —protocols for f; of length L;. Let e;,... e, €
{1,...,m —1} be representatives of the orthogonal idempotents in Z/m\Z x ... x Z[m,Z,

which are, of course, pairwise different. Remember, that for all z, 2z, ..., 2, € Z,
zi=x (modmy), fori=1,...;r < z= inei (mod m)
=1

We consider the protocol P :=(e1P1 + ... 4 e, ) of length
lrlogz Z ei-‘ +max{L;|i=1,...,r},
=1

8



which is, of course, less than

max{L;|1=1,...,r} + lrlogQ(T'm — (r —;— 2) )-‘ .

It follows from Lemma 2 that, for all (s, s2) € S1 X S,

MPeee =0 (mod my) foralli = 1,... k

< fils1,s2) = 0 foralli=1,...k
— Mi’?sgc = 0 (mod m).
Consequently, the protocol P MOD,,—computes f. O

Proposition 1 follows now.

Proposition 1 Let m > 1 be a natural number. Then

MOD,,-CC(f1n) = © (MOD, (,1-CC(/n)

Before defining our rigidity function, let us justify it.

Lemma 6 Let m = py - ... p,, where the p; are pairwise different prime numbers. If P
is a MOD,, —protocol of length L compuling the function f, then there is a protocol P' of
length L-T]_,(p; — 1) compuling the same function which fulfills the following property: For
all inpuls (sy,s9) € f71(1), there is a nonempty index set § £ I C {1,...,r} such that
Yvel (MP”“CC = (mod py)) and Vv & 1 (A/lpl"m =0 (mod py)) .

Proof. We consider the protocol P’ := PILi2i®i=1) of Jength I, - [T;—i(pi — 1). Then the
claim immediately follows from Lemma 2 and Fermat’s Little Theorem. a

Now we are prepared for our crucial definition.

Definition 4 1. Let m be a product py - ... p,, where the p; are pairwise different prime
numbers. Two N x N-matrices A and B over the ring of integers are defined to be
mod,, —equivalent, if and only if, for all entry indices 1, 3, and all prime number indices
k=1,...,r,

a;; = bij (mod pk) or a,ijbij =0 (mod pk)

and

a;j =0 (modm) <= b; =0 (modm).



2. Let A be an integer matriz, and let m > 0 be an arbitrary natural number. We define
the rigidity rank rrk,, (A) to be the minimum of all numbers rkZ/p (m)Z<B mod p(m))

where B is an inleger matrixz which is modp (m)—equivalent to A.

Theorem 2 Let m > 1 be a natural number. Then

MOD,,-CC(f2) = © (log, (rrk,, (M) .

Proof. Referring to Proposition 1, we assume without loss of generality that m = p(m).
The lower bound is obvious, if we choose the optimal MOD,,—protocol P’ in such a way that
the conditions of Lemma 6 are fulfilled.

The upper bound. We choose an integer matrix B which is mod,,—equivalent to M/2»  such
that r = rkZ/mZ(B mod m) = rrkm(jwfz"). Then B= BMW .. .+ B(T), where the B%) have
Z /mZ-rank 1. This is equivalent to BZ-(;C) = Uz-(k)-Vj(k) (mod m), for U,L-(k), Vj(k) e{l,...,m},
and for 2,7 =1,... V.

Now we can describe the following protocol P. Assume that the input is (¢,7) € Sy x Ss.

First, processor P; chooses nondeterministically some indices k, 1 <k <r,and [;,1 <[; <

U-(k), and sheds (k,1y).

Second, processor Py chooses nondeterministically some index [, 1 < [; < Vj(k), and sheds
(I3, 1).

Clearly, there are >°;_, Uk Vj(k) = B,; (mod m) many accepting computations assigned

to the input (,7). It follows that the p-protocol P computes the function f. Obviously, the
length of the protocol is bounded above by log, r + 2log, m + 1. a

In the case of m being a prime number, we can even do better.

Corollary 1 If m = p is a prime number, we have

MOD,-CC(f2) = © (log, (tkz;,z(M*""))).

3 Application 1: Invertible Incidence Functions

A function f: Sy x Sy — {0, 1}, where |S1| = |Ss], is called an invertible incidence function if
and only if its communication matrix can be transformed by interchanging rows and columns
into a triangular form with the main diagonal elements all being 1. Clearly, the next lemma
is crucial.

Lemma 7 Let Dy denote an upper or lower triangular N X N-matriz over {0,1} with 1’s

in the main diagonal, and let m = p, - ... p,, where the p; are pairwise different prime

numbers. Then rrk,, (Dy) > [N/r].

10



Proof. Let A = (a;;) be an integer matrix such that A is mod,,~equivalent to Dy and
rrk,, (Dy) = rkZ/mZ<A mod m).

By definition we have, for all ¢, a;; Z 0 (mod m), and a;; = 0 (mod m) for all j < 1.
Moreover, for all k =1,...,r,and alle =1,...,N,a; =1 (mod pg)ora; =0 (mod pg).

We conclude that there is an index kg and a set of indices T C {1,2,..., N}, #7Z N>

[N/r], such that a;; =1 (mod py,) for all ¢ € Z. After deleting all rows and columns of
A whose indices do not belong to Z, we get an integer N’ x N'-matrix D’ which is upper
triangular and modpyg, with 1’s on the main diagonal.

Obviously, we have

k7,7 (A mod m) > rkz/pkoz(A mod pg,) > rkz/pkoz(D' mod pg, ) = N’ O

The main result of this section, the next theorem, immediately follows from Lemma 7 and
Theorem 2. The following corollary makes use of Theorem 1.

Theorem 3 Let m > 1 be a natural number, and let fs, be an invertible incidence function.
Then
MOD,,-CC(f2,) = O (n).

Corollary 2 Let Cy, be a (SYMM, MOD,, ) -circuit computing an invertible incidence func-
tion fa,. Then SIZE(Cy,) = 28(n)

The following functions are, for example, invertible incidence functions. (See Section 4,
Remark 1 for more.)

- The set disjointness test SDT = (SDTy, : {0,1}*" — {0,1}),en, defined by

n

de
SDTZn(mla---mnayla'"7yn> :fl - \/(mz/\yz>

=1

(see e.g. [6]),
- The sequence equality function SEQ = (SEQ2n : {0,1}*" — {0,1}),en, defined by

SEQQn(xlv ceey Ty Y1y 7yn) - /\(1 - ((IZ + yz) mod 2)),
=1

- The order function ORDER = (ORDERy, : {0,1}** — {0,1}),en, defined by
ORDERg, (21, ... Zpy Y1,y yn) = 1 &, > (i — y:)27 > 0.

=1

Corollary 3 For arbitrary m, we have that

MOD,,-CC(SEQ,,) = MOD,,-CC(SDT3,) = MOD,,-CC(ORDER,,) = O(n).

11



4 Application 2: Undirected Graph Connectivity

The graph connectivity problem for undirected graphs UCON = (UCON,(,_1)),en in dis-
tributed form can be formulated as follows. Assume that we are given two not necessarily
edge-disjoint undirected graphs G = (V, E;) and G; = (V, E;) on a common n—set of ver-
tices V., where both graphs are represented as Boolean vectors of length (Z) The question is
whether or not the graph ¢ =S G UGy = (V, Ey U Ey) is connected, i.e. each pair of vertices
in G is connected. In [17], the major developments in understanding the complexity of the

graph connectivity problem in several computational models are surveyed.

We pursue the aim to prove the following theorem in this section:
Theorem 4 Lelt m be arbitrary. Then MOD,,-CC(UCON,(,—1)) = O(n).

But first we review some results and methods which are strongly related to ours. Hajnal,
Maass, and Turan proved in [3] the following theorem:

Theorem A CC(UCON,(,_1)) = O(nlogn).

Their method involves the use of the Mébius function p for the lattice of partitions of an
n—set. Lovasz and Saks extended in [6] and [7] this idea to a large class of problems, the
so-called meet problems for finite lattices, which can be formulated as follows. Let S be a
finite lattice, and let both processors P; and Py be given an element x and y, respectively.
Then they have to decide whether A y = 0. More formally, MEETs : S x § — {0,1} is
defined by MEETs(z,y) = 6(0,z A y).

Theorem B Let MEET s be the meet problem of a finile lattice. Let S have a atoms and b
Mébius elements (i.e., elements x such that ;(0,2) #0). Then

logb < CC(MEETS5s) < (log a)(loghb).
Recently, Raz and Spieker [12] proved

Theorem C [f processor Py as well as processor Py have a bipartite perfect matching on 2n
vertices with two colors of size n as an input, and if their goal is to determine whether the
union of the two matchings forms a Hamiltonian cycle, the nondeterministic communication
complezity of the problem is Q(nloglogn).

Since the problem of Theorem C is a subproblem of UCON | it follows

Corollary D N-CC(UCON,,_1)) = Q(nloglogn).

12



Thus the modular acception modes are better than ordinary nondeterminism for detecting
undirected graph connectivity.

Let us turn to the proof of Theorem 4 now. We proceed as follows. We transform the Mobius
function method for proving lower bounds on the length of deterministic protocols to the
case of MOD,,—protocols. Thus we prove the upper bound of Proposition 3. We get the
lower bound of Proposition 4 when we reduce the sequence equality function (see Section 3,
Corollary 3) to undirected graph connectivity via a polynomial projection reduction.

We can only give a very brief treatment on Mobius functions. For more see, e.g., [13]. Let S
be a finite partially ordered set. The incidence algebra A(S) is defined as follows: Consider
the set of functions of two variables f(z,y), for # and y ranging in S, having values in R,
the field of real numbers, and with the property that f(z,y) = 0 whenever z £ y. The sum
and the multiplication by scalars are defined pointwise. The product of f and ¢ is defined

(f9)(x.y) =S f(e,2)g(z,y)

z2€S

Clearly, Kronecker’s 6~function is the 1 of A(S). The zeta function ((z,y) € A(S) is defined
by ((z,y) =1 if 2 <y and ((z,y) = 0 otherwise.

as follows.

It is easy to see that the zeta function ¢ has in A(S) a multiplicative inverse, the so-called
Mobius function, which has in fact values in Z.

The Mébius Inversion Formula is well-known: Let f(x) be an IR-valued function, for z
ranging in the finite poset S, and let g(z) = 3=, f(y)((y, ). Then f(z) =3, g(y)u(y, x).

It is easy to see that p(z,y) only depends on the the structure of the interval [z,y], and not
on the whole poset P. Moreover, we know that if g* is the Mébius function of the dual poset

S*, then p*(z,y) = p(y, z).

Let us motivate the notation “invertible incidence function” of Section 3 at this point.

Remark 1 Let [ : Sy x Sy, — {0,1} be an invertible incidence function in the sense of
Section 3. Then, of course, there s a posel S, and there are bijections k; : S; — S, for
J =1,2, such that f o (k1 X k2) is a unit in A(S).

The other way round, let f € A(S) be a Z-valued unit, and let, moreover, f be naturally
represented as a function from S x S to {0,1}*, for some k € N, by encoding f(S) as a set
of strings in {0,1}*. If we define p-CC(f) to be maxi< <k (u-CC(f,)), where f, is the vih
coordinate function of f, then it results from Theorem 3 that MOD,,,-CC(f) = 0(]S5]).

Let us assume from now on that the poset S is a lattice. Let M be a 0-1 matrix. Check
whether there are two equal rows or colomns in M and if this is the case, then delete one of
them. Do that as long as possible. The resulting matrix M is called the core of M. Clearly,
any communication complexity of two problems whose communication matrices have the
same core is the same. Now it is not difficult to see that the core of MUYCONnm-1) equals
the core of MMEETpm» - where P(n)* is the lattice dual to the lattice of partitions of an
n—set. Thus, in order to prove the upper bound of Proposition 3, we can proceed as follows.

13



First, we show that the MOD,—communication complexity of the meet problem for a finite
lattice S is equal to the logarithm of a number which might be called the number of Mébius
elements modp of the lattice S (see Proposition 2). Second, we compute this number in the
case of S =P(n)* (see Lemma 8). We are done with Lemma 3 then.

Proposition 2 Let p be a prime number. Let MEETg be the meet problem of a finite lattice
S. Let S have ¢ elements x such that p(0,2) Z0 (mod p). Then

Proof. Let M be the communication matrix of the meet problem assigned to the finite
lattice S. Let M be the diagonal matrix diag(p(0,z))zes, which has, as we have already
stressed, coefficients in the ring Z of integers, and let ( = ({(z,y))syes be the matrix
associated with the zeta function. Wilf observed in [18], that ¢7 - M (= M. The claim

follows from the Mobius Inversion Formula and from Corollary 1. a

Lemma 8 Let P(n)* be the lattice dual to the latlice P(n) of partitions, let p < n be a prime
number, and let p* be the Mobius function of P(n)*. Then

#{z € P(n)"| p*(0,2) £0 (mod p)} < p".

Proof. The following three facts can be found in any standard book of combinatorics.

Fact 1. If = € P(n), and if b(z) is the number of blocks of the partition z, then [z, 1] =
P(b(z)).
Fact 2. If y is the Mobius function of P(n), then p*(0,1) = p(0,1) = (=1)""1(n — 1)L

Fact 3. Let S(n, k) denote the number of partitions of an n-set into exactly k blocks (Stirling
numbers of the second kind), then 37_, S(n, k)[X]r = X", where X is an indeterminant and
X]p=X -(X—=1)-...- (X =k +1) is the falling factorial.

We get the following sequence of equations.
#{w € P(n)| p*(0,2) £0 (mod p)} = #{weP(n)[p(z,1)£0 (modp)}
#{z € P(n) | p(e,1) £0 (mod p)} = > S(n, k)
k=0

S50k < 3 St blpk ="

k=0

where the first one 1is clear, the second one follows from Fact 1 and Fact 2, and the third one
from Fact 3. O

Proposition 3 Let m be arbitrary. Then MOD,,-CC(UCON,(,—1)) = O(n).
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Lemma 9 SEQ = (SEQy,).en is reducible to UCON = (UCON,(n_1)),eN given in dis-

tributed form via an O(n*)-projection reduction with respect to the partition of the variables.

Proof. Consider an input (t1,...,t,,u1,...,u,) of SEQ,,. The projection reduction
Tp(n=1) * {xlﬁym | Za.] = 1,...,72, i < .]} - {0717tuaulla_'tl/a_'ul/ | V= 1)"'7”}7

where the values of the Boolean variables z;; and y;; define the graphs GG; and G accessible
to the processors Py and Py, is defined as shown in Figure 1 and Figure 2. We visualize this
graph in such a way that the edges which are not constant are labelled with the corresponding
literals. The meaning is that such an edge belongs to the graph if and only if the labelling
literal is true. Clearly, this graph is connected if and only if

SEQQn(tl, e ,tn,ul, e ,un) =1.

O
The lower bound easily results from Lemma 9, and Corollary 3:
Proposition 4 Let m be arbitrary. Then MOD,,-CC(UCON,(,_1)) = Q(n).
Corollary 4 Let Cy, be a (SYMM,MOD,,)-circuit computing (UCON,(,_1)),cn- Then

SIZE(Cy,) = 247,

/O\

G(tr,u1)
| |

Ky,

| |

K " O
| | /

G(tn,un) O O
\ / U/,u _‘U/,u

| @ @

Figure 1. The graph shows the construction Figure 2. The graphs G(i,,u,)
of the projection of SEQq,. (Kiz denotes of Figure 1.

the full bipartite graph having 2 X 2 nodes,

G(ty,uy,) ts defined in Figure 2.)
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