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Abstract

We investigate the computational complexity of languages which have interactive proof sys-
tems of bounded message complexity. In particular, we show that

e If I has an interactive proof in which the total communication is bounded by ¢(n) bits
then L can be recognized a probabilitic machine in time exponential in O(e(n) 4 log(n)).

e If L has an AM-proof in which the prover sends c¢(n) bits then L can be recognized a
probabilitic machine in time exponential in O(c(n)log(c(n)) + log(n)).

e If L has an interactive proof in which the prover sends ¢(n) bits then L can be recognized a
probabilitic machine with an NP-oracle in time exponential in O(e(n)log(e(n)) + log(n)).

*Work done while being on a sabatical leave at L.CS, MIT.



1 Introduction

In 1992, Kilian demostrated that computationally-sound proof systems (aka ‘argument systems’ [3])
may be able to recognize any language in AP while using only polylogarithmic message complex-
ity [6]. Specifically, assuming the existence of hashing functions for which collisions cannot be
found by subexponential circuits, Kilian showed that any L € NP has a computationally-sound
proof systems in which both the bi-directional message complexity and the randomness complex-
ity are polylogarithmic. Furthermore, this proof system is in the public-coins model (i.e., is an
Arthur-Merlin game) of Babai [1].

Kilian’s result should be contrasted with the following observation, which indicates that Kilian’s
result is unlikely for interactive proof systems (rather than argument systems).

Theorem 1 (interactive proofs with bounded message and randomness complexities): Let ¢(-) be
an integer function and L C{0,1}*. Suppose that L has an interactive proof system in which both the
randomness and communication complexities are bounded by ¢(+). Then L € Dtime(2°C0) . poly(+)).

Proof: Consider the tree of all possible executions of the proof system on input z € {0,1}*. (This
tree is defined in the next section and considering it is standard practice.) This tree has at most
222D Jeaves and its value can be easily computed within the stated time bound. [

Theorem 1 is the starting point of our investigation. Its proof is easy since the hypothesis contains
a bound on the randomness complexity of the verifier. However, what we consider fundamental in
Kilian’s result is the low message complexity. Thus, we wish to waive the extra hypothesis. In fact,
waiving the bound on the randomness complexity, we obtain a very similar bound

Theorem 2 (interactive proofs with bounded message complexity): Let ¢(-) be an integer function
and L C {0,1}*. Suppose that L has an interactive proof system in which the communication
complezity is bounded by c(-). Then L€ BPtime(2°¢() . poly(-)).

Theorem 2 refers to interactive proof system in which the bi-directional communication complexity
is bounded. However, it seems that the more fundamental parameter is the uni-directional com-
munication complexity in the prover-to-verifier direction. In fact, waiving also the bound on the
verifier’s message length, we obtain a similar bound for the special case of Arthur-Merlin interactive
proof systems. Namely,

Theorem 3 (Arthur-Merlin proofs with bounded prover-messages): Let ¢(-) be an integer function
and I, C{0,1}*. Suppose that L has an Arthur-Merlin proof system in which the total number of
bits sent by the prover is bounded by c(-). Then L€ BPtime(2°0()1g<() . poly(+)).

Theorem 3 may not hold for general interactive proofs, and if it does this may be hard to establish.
The reason being that Graph Non-Isomorphism has an interactive proof system in which the prover
sends a single bit [4]. Thus, we are currently content with a weaker result.

Theorem 4 (interactive proofs with bounded prover-messages): Let ¢(-) be an integer function
and L C{0,1}*. Suppose that I has an interactive proof system in which the total number of bits
sent by the prover is bounded by c(-). Then L € BPtime(20(«()10g() . poly(.))NP,



2 Formal Treatment

We assume that the reader is familiar with the basic definitions of interactive proofs as introduced
by Goldwasser, Micali and Rackoff [5] and Babai [1]. Here we merely recall them, while focusing
on some parameters.

Definition 1 (interactive proof systems):

e An interactive proof system for a language L is a pair (P, V') of interactive machines, so that
V' is probabilistic polynomial-time, satisfying

— Completeness: For every x € L the verifier V, the verifier V accepts with probability at

least 2, after interacting with P on common input x.

3
— Soundness: For every x ¢ L and every potential prover P*, the verifier V accepls with

probability at most %, after interacting with P* on common input x.

An interactive proof system is said to be an Arthur-Merlin game if the verifier’s message in
each round consists of all coins it has tossed in this round.

o Let m and r be inleger functions. The complexity class TP(m(-),r(-)) (resp., AM(m(-),r(-))
consists of languages having an interactive proof system (resp., an Arthur-Merlin proof sys-
tem) in which, on common input x, the interaction consists of at most r(|z|) communication
rounds during which the total number of bits sent from the prover to the verifier is bounded

by m(|z]).

For an integer function ¢, we let BPtime((-)) (resp., BPtime(¢(-))V*) denote the class of languages
recognizable by probabilistic #(-)-time machines (resp., orcale machines with access to an oracle set
in N'P) with error at most 1/3. Our main result is

Proposition 5 (interactive proofs with bounded message and round complexity):

AM(m(+),7(-)) C BPtime(20mO+ ()87 . poly(.)) (1)
IP(m(:),r(-)) < BPtilne(QO(m('H’"(')10%?“(0)_poly(_))NP (2)

Theorem 3 follows from Part (1) of Proposition 5, whereas Theorem 4 follows from Part (2).

2.1 The Tree of all Possible Executions

The main ingridient of our proof is a probabilistic procedure for evaluating the value of the tree
of all possible executions of a proof system. Let (P,V) be an interactive proof system in which,
on common input z, the interaction consists of at most r(|z|) communication rounds during which
the total number of bits sent from the prover to the verifier is bounded by m(|z|). In defining the

tree of possible executions of (P,V) we assume, for simplicity, that the interaction between the

P and V on input z consists of exactly r = 7(|z|) rounds so that the i*® round starts with the

verifier sending a poly(|z|)-bit long message which is replied by a prover message of length m; so
that 5°0_; m; = m(|z|). In case (P, V) is not an Arthur-Merlin system, we assume that in the last
round the verifier sends to the prover the outcome of all coins flipped by it during the execution.



Definition 2 (the tree of all possible executions of a proof system): The nodes in the tree cor-
respond to possible prefizes of the execution of V with some prover P*. Nodes which correspond
to prefizes ending with a V-message are called prover nodes and the other are verifier nodes. The
root is called the 0-level of the tree. Nodes at the (2i — 1)** level are prover’s nodes and each has
2™ children. Nodes at the even levels are verifier’s nodes and each has upto 2°°YU2D) children. The
leaves are verifier nodes and their value is either 0 or 1 depending on whether V accepls in this
execution or nol. The value of an internal prover node s defined as the mazimum of the values of
its children. The value of an internal verifier node is defined as the weighted average of the values
of its children, where the weights correspond to the probabilities of the various verifier messages.
The value of the tree is defined as the value of its root.

Clearly, to decide if z is in the language accepted by (P, V), it suffices to approximate the value of
the corresponding tree of possible executions. This can be done by the following procedure

2.2 Evaluating the tree of all possible executions

To evaluate a tree such as in Definition 2, we select for each (verifier) node at the 2™ level a
sample of O(m?) children. The sample is selected according to the weights (i.e., the probabilities of
the various verifier’s messages). Note that the sample may contain several occurences of the same
node. This defines an approzimation tree in which each node at the (2¢ —1)*" level has 2™+ children,
whereas each node at the 2i*® level has poly(m) children. The value of the approximation tree is
defined recursively as above, where the leaves have the same value as in the tree of all possible
executions, the value of nodes at odd levels is the maximum of the value of their children, and the
value of nodes at even level is the (unweighted) average of the values of their children.

Lemma 6 (evaluating the tree of all possible executions): With probability at least 3/4, the value
of the approximation tree is within 0.1 away from the value of the corresponding tree of all possible
executions.

The total size of the approximation tree is

r

[ (2™ - poly(m)) = poly (2™ - m") = poly(2™ - ")

i=1

(For the last equality use 2™ - m” < (2™ - r™)?, which can be shown by considering two cases w.r.t
the relative sizes of 2™ and m”.) Thus, once Lemma 6 is proven, Part (1) of Proposition 5 follows
immediately. To prove Part (2) of Proposition 5, we merely use the uniform generation procedure of
Bellare and Petrank [2] in order to sample children at the verifier nodes. Since the latter procedure
can be implemented in probabilistic polynomial-time with access to an oracle in NP, Part (2)
follows.

Proof of Lemma 6: Let s = O(m*) be the size of the sample used for each verifier node. Using
Chernoff bound, we observe that with probability at least 1—2-"" the approximation at any specific

7+ of the expected value. Since the number of verifier nodes is bounded by

2m . 5" = 0(2™-m*) < % 2™ we conclude that with probability at least % the approximation at

every verifier node is within ﬁ of the expected value. In such a case the value of the root of the

approximation tree is within 0.1 of the value of the tree of all possible executions, and the lemma

follows. |

verifier node is within



2.3 Proof of Theorem 2

Finally, we prove Theorem 2. Let ¢(:) and L C{0,1}* be as in the theorem, and consider a fixed

2€{0,1}*. Let ¢ & ¢(|z]). Considering the tree of all possible executions (on input z), we associate

with each internal node the probability that this node is reached assuming that the prover’s moves
do match the path to this node. Note that the probability associated with each node is the product
of the probabilities of the corresponding verifiers’ moves along this path. Nodes which are reached
with probability smaller than, say, 0.01-27° can be ignored, as the tree of all possible computations
has at most 2° leaves.

Suppose one uniformly selects a set of O(2%¢ - ¢) possible random-tapes for the verifier. Then,
with probability at least 9/10, the fraction of random-tapes within this sample which corresponds
to each node in the tree, approximates the probability associated with this node up to a 0.01-27°
additive term. It follows that by uniformly selecting such a sample, we can approximate the value
of the tree of all possible executions (on input z), in time polynomial in the size of the tree and
the size of the sample. The theorem follows. W
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