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Abstract

The GQ-protocol of Guillou and Quisquater and Ong-Schnorr identification and signatures are variants of the Fiat-
Shamir scheme that provide short and fast communication and signatures. Let N = pq be an arbitrary product of two
primes that is difficult to factor. The Ong-Schnorr scheme uses secret keys that are 2!-roots modulo N of the public
keys, whereas Fiat-Shamir use square roots modulo N. The Ong-Schnorr scheme is quite efficient, in particular in its
multi-key version. Under the assumption that the module N is a Blum integer that is difficult to factor, security for
the Ong-Schnorr scheme has recently be proved for particular cases. Micali proves security of the signature scheme for
particular keys and modules N. Shoup proves that the identification scheme is secure against active adversaries.

We prove for arbitrary modules N = pg that Ong-Schnorr identification and signatures are secure unless N can
easily be factored. The proven security of Ong-Schnorr identification against active impersonation attacks depends in
an interesting way on the maximal 2-power 2™ that divides either p — 1 or ¢ — 1. For m > ¢ we give a reduction from
factoring N to active impersonation attacks that is as efficient as the one known for Fiat-Shamir identification. For
m < t we give an equally efficient reduction from factoring N to passive impersonation attacks and a less efficient
reduction to active impersonation attacks. As these security results depend on the parameter m the question arises on
how the difficulty of factoring N depends on m.

We show that Ong-Schnorr signatures with arbitrary module N are secure against adaptive chosen-message attacks

unless the module N can easily be factored. Unlike to the security of identification against active adversaries, the
parameter m is irrelevant for the security of the signature scheme in the random oracle model.
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1 Introduction and Summary

Fiat and Shamir proposed a practical identification/signature scheme that is based on a
zeroknowledge protocol of Goldwasser, Micali and Rackoff (1989) for proving quadratic
residuosity. The GQ-protocol of Guillou and Quisquater and Ong-Schnorr identification
and signatures are variants of the Fiat-Shamir scheme which provide shorter communication
and signatures than the Fiat-Shamir scheme. Ong-Schnorr identification and signatures
are direct extensions of the Fiat-Shamir scheme replacing square roots modulo N by 2!-
roots. Moreover Ong-Schnorr identification and signatures are as fast, in the number of
modular multiplications, as Fiat-Shamir. Until recently it was only known that Ong-Schnorr
identification is secure provided that particular 2’-roots modulo N are hard to compute
[0S90]. Recently there has been surprising progress for the case of Blum integers N (N = pq
is called a Blum integer if p, ¢ are primes that are congruent 3 mod 4).

Previous results. Micali [M94] proves security of Ong-Schnorr signatures for the case
that the secret key is a 2!-root of 4 and that 2 is a quadratic non-residue modulo N. Micali
assumes that the hash function used for signatures acts as a random oracle. He shows that
any algorithm which produces, without secret key, a valid signature faster than by random
trials immediately leads to the factorization on N. This surprising result requires that the
secret key, the 2'-root of 4, already reveals the prime factors p and ¢ of N. Therefore distinct
users must have different modules NV, and N is part of the secret key rather than a public
parameter as in the Fiat-Shamir scheme and its extension by Ong-Schnorr.

Shoup [Sh95] proves that Ong-Schnorr identification with Blum integers N is secure
against active adversaries unless N is easy to factor. Shoup gives a reduction from fac-
toring N to active impersonation attacks that is less efficient than the one known for the
Fiat-Shamir scheme. Also his reduction is not entirely constructive as it requires apriori
knowledge on the adversary’s probability of success.

Our results. We present security proofs for Ong-Schnorr identification for arbitrary mod-
ules N = pq. This extends and improves the results of Shoup in various ways. It sheds new
light on the prime factors p and ¢ of the module N. The efficiency of our reduction from
factoring N = pg to impersonation attacks depends in an interesting way on the maximal
2-power 2™ that divides either p — 1 or ¢ — 1. We distinguish the cases of active and of
passive attacks. In an active attack, before the impersonation attempt, the adversary poses
as verifier in a sequence of executions of the ID-protocol and asks questions of his choice
using the legitimate user as oracle. In a passive impersonation attack the adversary is given
the public key but he cannot even listen in executions of the ID-protocol.

The cases that m > t, respectively m < t, are quite different. For m > t we present a
reduction from factoring N to active impersonation that is as efficient as the one known for
Fiat-Shamir ID. It only requires that the adversary’s success rate is twice the success rate
for guessing the exam posed by the verifier. Thus modules N with m > ¢ provide optimal
security against active/passive impersonation attacks unless they can easily be factored.

For the case m < t we give a reduction from factoring to (only) passive impersonation
that is as efficient as the one known for Fiat-Shamir ID. The reduction works for public



keys that are generated together with a pseudo-key (independent from the secret key)
which enables to transform successful passive impersonations into the factorization of N.
Having only a pseudo-key complicates for small m the reduction from factoring to active
impersonation attacks as it becomes difficult to simulate the ID-protocol which is necessary
to provide the information which the adversary needs for an active impersonation attack.
This leads to a trade-offf which we describe in Theorem 8. We either have an additional time
factor 2'=™ for factoring N or the required probability of success of the active adversary
increases by the factor 21—,

Security of signatures. The above results translate into corresponding security results
for Ong-Schnorr signatures. We assume that the public hash function of the signature
scheme acts as a random oracle. This random oracle assumption has already be used in
[F'S86] and is commonly accepted to be appropriate for hash functions without crypto-
graphic weaknesses, see also [BR93]. We consider the strongest type of attacks, adaptive
chosen-message attacks. Here the adversary, before attempting to generate a valid signature-
message pair, uses the legitimate signer as oracle to sign messages of his choice.

Pointcheval and Stern [PS96] show how to transform security proofs for discrete loga-
rithm identification schemes into security proofs for the corresponding signature scheme.
Using similar arguments we transform security against passive attacks for Ong-Schnorr
ID into security against adaptive chosen-message attacks for the corresponding signature
scheme. In Theorem 6 we prove the following. Ong-Schnorr signatures cannot be produced
by an adaptive chosen-message attack faster than by random trials unless the module N
can easily be factored. We get the same result for arbitrary keys and modules N which
Micali [M94] proves for particular keys and modules N.

Generalizing the properties of Blum integers. Blum integers N are characterized
by the property that squaring acts as a permutation on the set ) Ry of quadratic residues
modulo N. The cryptographic relevance of Blum integers relies on this property. One of
our basic tools is a generalization of this property for arbitrary N, following Lemma 2.

2 Ong-Schnorr identification

Let N be product of two large primes p,q. Assume that N is public but the factorization
is completely unknown. Let 7ZZ% denote the multiplicative group of integers modulo N.
Let the prover A have the private key s = (s1,...,s;) with components sy, ...,s; € Z}y.
The corresponding public key v = (vy, ..., ;) has components v; satisfying 1/v; = sft for
j=1,....k. We assume that the verifier B has access to A’s public key v.

Ong-Schnorr ID-protocol (A, B) (Prover A proves its identity to verifier B)
1. A picks a random r €g Z% and sends z := r? to B.

2. B picks a random exam e = (e1,...,ex) €r [0,2))* and sends it to A.

3. Asendsy:=r][]; sjj to B.

4. B checks that z = y?' I1; 'vjj.



Standard forgery. It is known that a fraudulent prover A can cheat by guessing the
exam e and sending the crooked proof z := r2 I1; ?J;J, y := r. The probability of success is
27k The goal is to prove that this 27% success rate cannot be much improved unless we

can easily factorize N. As the security level is 2¥* we are interested in parameters k, t with
kt about 72.

Ong-Schnorr signatures. are obtained by replacing in the ID-protocol the verifier B
by a public hash function h. To sign a message M the signer picks a random r €r 7}
forms z := r2 and computes the hash value e := h(z, M) in [0,25)* and y := Hjsjj. The
signature of the message M is the pair (e, y). It is verified by checking that h(yQt]ij;J, M) =
e holds.

Efficiency. For Ong-Schnorr ID (resp. signatures) both prover (resp. signer) A and
verifier B perform on the average k%t multiplications in Z}. For k = 8, ¢t = 9 these are
45 multiplications. Further optimization is possible the same way as for the Fiat-Shamir
scheme [I'S86]. If the public key components v; are integers having only a few non-zero bits
in their binary representation, the work load of the verifier reduces to only ¢ squarings in
2 and a few additions, shifts and reductions modulo N with integers of the order N. If
CHEF vm-Qi has w; 1-bits v;; = 1, a multiplication by v; can be done by w; additions,
shifts and reductions modulo N. Thus the verifier needs only to perform ¢ squarings, for
computing y%', and on the average %Z] w; additions, shifts and reductions modulo N.
Moreover the reductions modulo N are needless if the »; are small integers.

Previous protocols. The original Fiat-Shamir scheme is the case t = 1 of the Ong-
Schnorr protocol, repeated several times. While the Fiat-Shamir scheme requires many
rounds to become secure, the Ong-Schnorr scheme executes a single round. Fiat-Shamir ID
is secure against passive and active attacks unless N can easily be factored. Moreover Fiat-
Shamir signatures are secure in the random oracle model [FS86], [FFS88]. Attacks with a
success rate that is twice the probability for guessing the exame e can be transformed into
the factorization of N.

The GQ-protocol [GQ88] is the case of single component keys k = 1, where 2'-powers
z = r? are replaced by u-powers z = r* for an arbitrary integer u of order N. The GQ-
protocol consists of a single round with a large exam e. This greatly reduces the length of
transmission and signatures of the Fiat-Shamir scheme at the expense of a slightly increased
work load.

Notation. Let the fraudulent prover A be an interactive, probabilistic Turing machine
that is given the fixed inputs k,¢, N (k,? are sometimes omitted). Let RA be the sequence
of coin tosses of A. Define the success bit Sj,u(RAv e) to be 1if A succeeds with v, RA, e, N
and 0 otherwise; accordingly call the pair (RA, ) successful /unsuccessful. The success rate
SA,U of A with v is the expected value of SAW(RA, e) for uniformly distributed pairs (RA,e).

For simplicity, we assume that the time 7'; (RA,e) of A with v, RA, e is the same for all



pairs (RA,e),i.e. T; (RA,e) =Tj; . This is no restriction since limiting the time to twice
the average running time for successful pairs (RA, e) decreases the success rate S;  at most
by a factor 2. We assume that 7; = Q(k - t(log, N)?) and thus 7'; | majorizes the time of

B in the protocol (A, B).

Theorem 1. [0590] There is a probabilistic algorithm AL which on input ii, N,v compules
(y,7,e,€) such that y, 5 € Xy, e,é € [0,2))F, ¢ # € and (y/y)? = j'v;j_ej. If5;, >
27"+ then AL runs in expected time O(T; /S5 ,)-

The proof is a straightforward extension of Lemma 4 in Feige, Fiat, Shamir (1988).
Algorithm AL constructs a random pair (RA,e) with §; (RA,e) = 1 and produces a second

v

random exam & for which A; succeeds with the same RA, i.e. e # & and Si.(RA€) =1

AL outputs e, and the replies y, 7 of A with coin tosses RA to the exams e, é.
For the entities of Theorem 1 we denote X := y/y, £ := max{i | e = €mod 2'},

7 = Hjsgej_ej)/#. By the construction we have X?2' = Z%* The goal is to derive from
X, 7 two statistically independent square roots of the same square modulo N, so that we
can factorize N with prob. > 1/2.

We use the structure of the prime factors p, gof N = p-q. Let p—1 = 2™»p’, g—1 = 2™/
with p/, ¢’ odd. W.Lo.g. let m; > m, and denote m := m, = max(m,, m,). We have m =1
iff both p and ¢ are congruent 3 mod 4, i.e., if N is a Blum integer. For Blum integers
squaring acts as a permutation on the subgroup () Ry of quadratic residues in 7};. This
property characterizes the set of Blum integers. Lemma 2 extends this property to arbitrary
cyclic groups.

For a multiplicative group G let G* denote the subgroup of u-powers in G, G* = {g
g € G}. Lemma 2 is obvious.

"

Lemma 2. For any cyclic group G of order |G| = 2"m' with m’ odd, squaring SQ : G? =
G21+1, z+— 2% is a2 — 1 mapping for i =0,...,m — 1 and is 1 — 1 for i > m.

Extension of the Blum integer property. Let N, m, < m, = m be as above. Z} is di-
rect product of the cyclic groups 7; and 7Z;. Hence squaring SQ : Z}‘\?Z — Z}‘\?ZH, T 22,
acts as a 4-1 mapping for « < m,, as a 2-1 mapping for m, < i < m, and as a permutation
for i« > my, = m. With this observation we can extend cryptographic applications from

Blum integers to arbitrary modules N.

3 Passive impersonation attacks for m > ¢

We show that Ong-Schnorr ID in case m > t is as secure as Fiat-Shamir ID. We assume
that £ and ¢ are given as input along with N but m may be unknown.

Theorem 3. There is a probabilistic algorithm which on input A, N generates a random
public key v €gr (Z*NQt)k, factorizes N with probability at least 1/2, with respect to its coin
tosses, and runs in expected time O(T; /S; ) provided that Sz > 27+ and t < m.



Proof.  The factoring algorithm picks random s; €r Z}y sets 1/v; := s?-t forj=1,...,k,
runs algorithm AL of Theorem 1 on input A, N, v to produce (y,9,€e,€) and computes the
corresponding ¢, X, Z with X% = 72 Then, it checks whether

{gcd(X2i + Z2i+£, N} =A{p,q} holds for some i, 0 <i <.

For the analysis we assume w.l.o.g. that (e; — & )/2" is odd. The probability space consists
of the coin tosses of AL including s; € 7} for j = 1,..., k. To simplify the analysis we ar-
bitrarily fix X, Z(mod p), sz(modgq),...,sg(mod ¢) so that the probability space reduces
to s;(mod q) €r 7Z;. By Lemma 2 and since ¢ < m there are 2! many 2'-roots s,(mod ¢)
of 1/v; = s¥(modg). They yield 2! many values Z(modgq). Since £ < t < m we have
X # +7% for at least half of these 2! cases. If X # +7% take the largest i < t with
X% £ +22*" Then X%, 7% are square roots of the same square modulo N, they are
distinct even when changing the sign. Hence {ged(X?" £ 72 N)} = {p,q}. This shows
that the algorithm factorizes N with probability at least 1/2.

The expected time of the factoring algorithm is that of algorithm A L. By the assumption
T;,= Q(k - t(logy N)?) this covers all other steps. O

A basic difficulty for the case of small m-values is that the above factoring algorithm
requires £ < m while the construction only ensures £ < t. If £ > m it can happen that
X = 72" holds for all possible 2f-roots s; of 1/v;. In this case the factoring method breaks
down completely.

Lemma 4. For any m' with 1 < m' < t algorithm AL of Theorem 1 produces on input
A,v an output (y,7,e,€) so that e #  mod 2™ holds with probability > 1/4 provided that
SA ) > 2—km’-|—2'

The Lemma shows that the algorithm of Theorem 3 factorizes N with probability at
least 1/8 and runs in expected time O(T'; /S5 ,) provided that §; > 2-km'+2

Proof. We call a coin tossing sequence RA of A m'-heavyif Y. SA,u(RAv ) > okt—km'+1
ie., if A succeeds for at least a 27%"'*1 fraction of the e. The claim follows from facts A
and B.

Fact A. If RA is m'-heavy and §; (RA,e) = 1then e # & mod 2" holds for at least
half of the & with §; (RA,e) = 1.

Proof. For every e we have #{¢ | e = é mod 2"} < since €; = & mod 2™
holds for at most a 2=™' fraction of the &. Now the fact follows since RA is m/-heavy.

Fact B. If 5;, > 27542 then RA is m'-heavy for at least half of the pairs (RA, )
with §; (RA,e) = 1.

Proof. If RA is not m/-heavy at most a 2=¥7'+1 fraction of the e satisfy Si (RAe)=1.
Therefore at most a 27¥'*1 fraction of pairs (RA,e) satisfy S (RA,e) =1 without that

RA is m/-heavy. On the other hand, since §; > 2=km'+2 at least a 2-*™'*2 fraction of

the (RA,e) satisfy 5; (RA,e) = 1.

th—k‘m’



Algorithm AL generates a random pair (RA,e) with 53 (RA,e) = 1. By Fact A RA is
m/-heavy with probability > 1/2. After fixing (RA,e) with S; (RA,e) =1 AL gererates a

random € with §; (RA,€) = 1. By Fact B e # e mod 2" holds with probability > 1/4. O

Remark. The lower bound S; > 9=km' g necessary in Lemma 4. It is possible to

oy - ! . _ !
position a 27F"'_fraction of successes so that e = @ mod 2™ always holds.

4 Passive impersonation attacks for m < ¢t

For m < t we give another reduction from factoring to impersonation. The factoring
algorithm generates a random public key » together with a pseudo-key § which enables to
transform successful attacks of a passive adversary A into the factorization of V.

Theorem 5 There is a prob. algorithm which on input A, N generates a random public key
v €ER (Z}‘\?t)k, factorizes N with probability > 1/2 with respect to its coin tosses, and runs
in expected time O(T; /S ;) provided that S; > 27F+1 and m < t.

Proof. Factoring algorithm
1. Pick random §; €g 7% and set 1/v; = §§m for j=1,...,k (we have v € (ﬂ?\?r)k ).
2. According to Theorem 1 compute AL : (A, v) — (y,7,e,&) and set

; 7 e;,—€ ¢
(:=max{i|e=¢emod 2'}, X :=y/y, Z:= nggj /2
3. Test whether for some 7, £ <1 <t {gcd(XQt_l + ZQZ'*’"_”N)} = {p,q}.

By the construction we have X2 = 72™ and £ < t. W.lo.g. let (e1—€1)/2" be odd. Arbi-
trarily fix Z( mod p), 32(mod ¢),..., 5 mod ¢ and X so that the probability space reduces
to the 2™ solutions §;(mod ¢) of 32" = 1/v; mod ¢. These 2 solutions yield 2 many val-
ues & € % and, since (e; — )/2" is odd, they generate 2 many values Z € 7%. Note
that X2~ # +£72"7" holds for at least 2~' many Z-values. (By Lemma 2 and since
Z( mod p) is fixed we have X277 = £22"7" for at most 2™~ of these Z-values). For such
7 consider the smallest i > 0 with X2'7" # £72"™" Then X2, 72" are square
roots of the same square in 7Z%;. These square roots are distinct even if we change signs.
Hence {gcd(XQt_i + 7277 N)} = {p,q}. This shows that the algorithm factorizes at least
with probability 1/2. O

The above proof establishes security of public keys v that are generated without a corre-
sponding secret key s. We have generated » from a random pseudo-key 3 so that 1/v; = §?m
for 5 = 1,...,k. We cannot generate first a secret key s to produce a pseudo-key § by
squaring the components of s. The components 3; must be random in Z};, and thus §; is
a quadratic non-residue with probability 3/4. In fact we cannot have v, s together with 3

unless we can easily factor V.



5 Security of Ong-Schnorr signatures

We study the security in the random oracle model where the hash function A is replaced
by a random oracle. This assumption has already been made in [FF'S86] and has been further
developed in [BR93]. Under this assumption the hash function A produces for each query
(z, M) a random value h(z, M) € [0,2%)%. If a query is repeated the same answer is given.

We consider most powerful attacks, adaptive chosen-message attacks as introduced by
Goldwasser, Micali, Rivest in [GMRS88]. The adversary, before attempting to generate a
new message-signature pair, uses the legitimate signer as an oracle to sign messages of his
choice.

The strength of the adaptive chosen-message attack gets somewhat diluted by the ran-
dom oracle assumption. The hash values A(x, M) are random in [0,2!)* and independent for
distinct pairs (z, M ). The adversary cannot get anything from correct signatures (e, y) since
these are random pairs in [0, 2")* x Z3} that can easily be produced, with the same probabil-
ity distribution, by anybody. In the random oracle model, adaptive chosen-message attacks
on Ong-Schnorr signatures are not stronger than no-message attacks, where the attacker is
merely given the public key.

For the next theorem let A s be an attacker which executes an adaptive chosen-message
attack on N and public key v so that the oracle for the hash function A is queried at most
f times, f > 1. Let ijﬂf be its expected time and SANJ its probability of success with ».

Theorem 6 . There is a probabilistic algorithm which on input /If, N generates a random

v €ER (Z}‘\?t)k, factorizes N with probability at least 1/2 with respect to its coin tosses, and
runs in expected time O( f Tﬁf,v/sﬁf,v) provided that Sﬁf,u > fo-kt+1,

Proof. Depending on whether m > ¢ or m < t we mimic the factoring algorithms corre-
sponding to Theorems 3 and 5. Firstly we give an informal argument for the case m > t.

The factoring algorithm picks random s; €r Zy;, sets 1/v; = sft for j = 1,...,k,
and lets /If execute its attack on the public key v. For the signatures requested by Af it
produces random pairs in [0,2')% x Z%. Suppose /if queries the oracle for h on (z;, M;) for
i=1,...,f and outputs the message-signature pair (M, e, y).

We can assume that (thva?,A/l) = (;, M;) holds for some i < f since otherwise
e = h(yQtva;J,JVI) holds with prob. 2%, If the adversary produces this z; as z; :=
yQtHjU;J for some preselected e and y, the oracle returns the preselected e with prob. 27,
Thus, each such oracle query can at most add 2% to the success rate Sfifﬂf Hence, at
least with probability (Sfifﬂf — f27%) the attacker Af is able to produce two distinct pairs
(e,y) and (e, 37_) with e # € satisfying yQtva;J = ngtHj'v;J = ;. For these pairs we have
(y/?j)zt = va;rej and (y,y,e,€) has the same properties as the output of algorithm AL
of Theorem 1. It yields the factorization of N with prob. 1/2 as described in Theorem 3.

The formal factoring algorithm employs a version of algorithm AL of Theorem 1 to
construct (e,y,é,7). It simulates Ay using statistically independent oracles for h.



Factoring algorithm

1. Pick random s; €r 7}, set 1/v; = s?t for j = %,...,k and % :=0
2. Pick a random sequence of coin tosses RA for Ay.
3. (first signing attempt) Simulate the adversary A; with v, RA.
For the message signature pairs requested by /ff provide random pairs.
Let the adversary query the oracle for h about (z;, M;) fori=1,..., f.
If fff fabricates a signature (e, y) satisfying y? Hj'v;J = z; for some 7 (in this
case we call the pair (RA, e) successful with i) then fix RA, 1, 2;, M;, e, y, set
uw:= 4uf and go to step 4.
Otherwise increase u by 1 and go back to step 2 undoing A~f’s computation.
4. (second signing attempt) Simulate the adversary /if with v, RA.
Let the oracle answer the first + — 1 queries the same way as in step 3.
Let it answer the other queries statistically independent from previous oracle outputs.
In particular, the oracle is repeatedly queried about the (z;, M;) of step 3
providing statistically independent replies.
If A; fabricates a signature (&,7) with e # € satisfying 3% va? =
for the z; fixed in step 3 and the new oracle reply € for (z;, M;), then go to step 5.
Otherwise, if « > 0 set u := u — 1 and go back to step 4,
if u = 0 go back to step 2 (undoing the computation of A in either case).
5. Compute X := y/7, £:=max{i|e=¢emod 2}, Z:= Hjsgej_ej)/zz
(hence X2 = 72,
6. Test whether {ged(X2 ™" + 72277 N)} = {p, ¢} holds for some i < t.

Sketch of the analysis. On the average it takes 1/ij , many passes of steps 2 and 3
to find ¢, x;, M;, e, y. If SA‘iva > f 27K+ the subsequent step 4 succeeds to find (e, )

with e # € at least with probability %(1 — 2.771). For this we note that, with probability
step 3 probes at least u > %S;—i] many pairs (RA,e) before fixing some RA
f v

’

at least %,

for which the fraction of successful pairs (RA,€) is at least %Sgl .- In this case at least a
I

%Sglv—fraction of & succeeds in step 4 with the 7 fixed in step 3. Since step 4 probes at
I

least QfSAf,U many random &, step 4 succeeds at least with probability 1 — 2.77!. Finally,
steps 5 and 6 factorize N at least with probability 1/2.

In case that m < t the factoring algorithm generates, as in the proof of Theorem 5, the
public key from a random pseudo-key 3 and factorizes N according to Theorem 5. O

6 Ong-Schnorr ID is secure against active impersonation

In Theorem 7 we extend the reduction of Theorem 3 from passive to active impersonation
attacks. In Theorem 8 we present a reduction from factoring to active impersonation attacks
for arbitrary modules N = p-¢ with m < ¢. The latter result extends and improves the
reduction given by Shoup for the case of Blum integers N. The efficiency of the reduction



depends in an interesting way on the parameter m. While this reduction is quite efficient if
m is close to t it is less efficient for Blum integers, i.e. for m = 1. This deficiency of Blum
integers was not apparent from Shoup’s proof. Shoup’s proof of security is not entirely
constructive. It requires a priori knowledge on the probability of success of the adversary
/1f, given the knowledge from the f executions of the protocol (A, /~1f). We eliminate this a
priori knowledge. We only use Af’s overall success rate SANJ depending on the coin tosses

of the entire sequence of f executions of protocol (A, A;) followed by (A, B).

An active adversary, before the impersonation attempt, poses as B in a sequence of exe-
cutions of the protocol (A, B) asking A questions of his choice without necessarily following
the protocol of B. Then, he attempts to pose as A in the protocol (A, B) For short we
let Af denote an active adversary who asks for f ID-proofs of A via (A, Af) and then at-
tempts to impersonate A in protocol (Af, ). Let T~ , denote the total running time of f

consecutive executions of protocol (A, Af) followed by (Af, B). The probability of success
SA v of Af refers to the coin tosses of Ay, A, B in these f + 1 protocol executions. We

first show that in case m > ¢ Theorem 3 holds for any active adversary Af.

Theorem 7. There is a probabilistic algorithm which given for input the active adversary
Ag,and N generates a random public key v €gr (Z}‘\?t)k, factorizes N with probability at
least 1/2 with respect to its coin tosses, and runs in expected time O(TA}’U/SA}’U) provided

that S ; > 2R+ and t < m.

I

Proof. The factoring algorithm picks s; €r Zj for i = 1,...,k and generates the
public key » as 1/v; = .s?t for j = 1,...,k. Using the private key s = (s1,...,5;) the
algorithm executes the protocol (A4, /~1f) f-times providing to /~1f the information necessary
to impersonate A with success rate ij Y

A key observation is that the protocol (4, /le) is witness indistinguishable and witness
hiding in the sense of [FS90]. The protocols (A,;lf) executed using the secret key s do
not reveal to %If any information on which 2'-roots s; of 1/v; are used by A. The same
distribution of data is given to A; in protocol (4, A;) no matter which of the 2'-roots s; is
2t

chosen by A. For this we note that in step 1 of protocol (A4, Zlf), A sends x = r* a random

2'-power in Z}K\?t. In step 3, A sends y = - Hjs?, a random 2'-root of w/HﬂJ;J uniformly
distributed among all possible 2¢-roots. This uniform distribution is based on the random
choice of r and does not change with the selected 2'-roots s; of 1/v;.

Using the data transmitted within the f excecutions of protocol (A, Af) algorithm AL
of Theorem 1 produces an output (y,7,e,#) so that X% = 7% holds for X := y/y and
ARES Hj.sg-e]_e])/ﬂ. The distribution of X does not change if s; is replaced by any other
2'-root of the same 1/v; (this holds even though y, § are functions depending on s). On
the other hand the 2'-root 7 = lljsg-ej_ej)/# changes with the choice of the 2-roots s;.
Therefore the factoring method of Theorem 3 remains intact. With probability at least 1/2,
{gcd(XZi + 72", N)}=A{p,q} holds for some 7 with 0 <1 < t. O



Secure modules. In view of Theorem 7, modules N with m > t provide optimal
security against active impersonation attacks unless N can easily be factored. This raises
the question on how the difficulty of factoring a random integer N depends on the parameter
m. We are not aware of a factoring algorithm that makes a relevant difference for small
values of m, say for m < 10, which are most interesting for Ong-Schnorr 1D.

The previous reductions cannot be easily extended to the case of active adversaries if
m < t. The best we can do is to combine Lemma 4 with the use of pseudo-keys as in
Theorem 5. The factoring method of Theorem 3 requires £ < m which in turn necessitates
a large probability of success, SAN} > 27Fm  Using a pseudo-key § we can factorize N with
smaller success rates. ,

Suppose the pseudo-key § satisfies §?m = 1/v; for j = 1,...,k with m < m' < t. Using
such a pseudo-key the factoring method works iff £ < t + m — m/. The drawback is that the
factoring algorithm, without secret key, cannot easily simulate the protocol (A, A ) which is
necessary to provide the information which the adversary needs for an active impersonation
attempt. Following Shoup [Sh95] we can simulate the protocol (A4, A ) in zeroknowledge
fashion by guessing the exams e partly. It is sufficient to guess e mod 20=m" since the
LQm/_tejJ-part of the exam can be answered using the pseudo-key $. To guess e mod gt—m'
we need on the average 2°('="') many trials. This causes a time factor 25(=™") for the
factoring algorithm.

Thus we have a trade-off in case of small m-values. We can have an additional time
factor 2¢(="') for factoring N or a required success rate Si., thatis 2k(m'=m) times larger
than the success rate required in case m > ¢. The trade-off is expressed in the following

theorem:

Theorem 8. There is a probabilistic algorithm which on input Af, N, m' withm <m' <t

generates a random public key v €g (Z?\?t)k, factorizes N with probability at least 1/8 with
respect to its coin tosses and runs in expected time O(Qk(t_ml)TA /S ;. .,) provided that
gl T Ap

Sfif,u > 9—kt+k(m'—m)+2

For Blum integers this theorem contains the result of Shoup [Sh95] that factoring N is
polynomial time reducible to active impersonation attempts. If the success rate SAf , 1s at

least 1/(log(N))¢ for some fixed ¢ > 0 and we have a corresponding a priori lower bound for
ij , we apply Theorem 8 with the maximal m/ satisfying 9 ktdh(m!—m)+2 ij .- With

this m’ the time factor 2F(=7) js polynomially bounded and together with a polynomial
time adversary Ay the factoring algorithm becomes polynomial time.

Proof. Factoring algorithm

1. Pick random 3; €g %y, set 1/v; = E?m forj=1,...,kand u:=0
2. Pick a random sequence of coin tosses RA for Ay.
To simulate f executions of (A, As) using 3, repeat steps 2.1,2.2 f times.

2.1 Pick r €g %Y, € = (e),...,e}) €r [0,27"")% and set z := r2tH]-v;].

10



2.2 Compute e € [0,2%)* following Aj.
If e # ¢’ mod 2t=m" 56 hack to step 2.1 undoing the computation of flf.

m!—t
EJLQ i) (an easy calculation shows that yQSH]-U;J = ).

Otherwise set y := r -1,
(By the f iterations of steps 2.1 and 2.2 the adversary fif gets the necessary
information for impersonation attempts.)
3. (first impersonation attempt) Pick e €g [0,2')* and execute (A}, B) with exam e.
If ij’U(RA,e) = 1 set u := 4u and go to step 4.
Otherwise set u := u + 1 and go back to step 2 undoing the computation of Af.
4. (second impersonation attempt) Pick € €g [0,2")* and execute (A}, B) with exam e.
If ij,u(RAv €) =1 and e # &, compute the replies y, y of /if with e, € and go to step 5.
Otherwise set u :=u — 1, if u > 0 go back to step 4, if u = 0 go back to step 2
(undoing the computation of A in either case).

5. Compute X :=y/7, £:=max{i|e=2e&mod 20}, 7 := Hjég-ej_éj)/#
(hence X% = ZW’H).
6. Test whether {gcd(XQt_Z + 72" H_I,N)} = {p, ¢} holds for some 7 < min(t, m' + £).

Analysis. Each evaluation of SAf J(RA,e) requires f executions of protocol (A, ﬂf)

followed by an execution of protocol (/If, B). Here /if is determined by its coin tosses RA
while A and B follow the protocol (A, B) with independent coin flips.

The steps 2.1 and 2.2 simulate the protocol (A, /If) in zeroknowledge fashion using the
pseudo-key 8. This is possible by partially guessing the exams e.

Step 3 counts the number u of probed pairs (RA,e) until a successful pair is found.
Then step 4 probes at most 4u pairs to find a second successful pair (RA, €) for the same
RA. This way steps 2, 3, 4 are passed on the average at most O(l/SAN)) times. This
follows from the argument set forth by Feige, Fiat, Shamir in Lemma 4 of [FF'S88].

In step 2.2, the equation e = ¢’ mod 21=" holds with probability 9—k(t=m"), Guessing
a correct e takes on the average 2k(t=m") many trials. This costs a time factor 26(=7) We
see that the algorithm runs in expected time O(Qk(t_ml)TAfiu/SAfiv).

By the construction we have X2 = 72" Therefore the factorization attempt in step
6 succeeds with probability > 1/2 iff there exists ¢ with £+m'—m < i < min(¢t, m'+/{). This
condition is satisfiable iff £ < t + m — m’. By Lemma 4 and since SAf , > 9—kt+k(m'—m)+2

the inequality ¢ < ¢+ m —m’ holds at least with probability > 1/4. Hence the factoring of
N succeeds at least with probability 1/8.
The required lower bound on ij , is nearly sharp as the inequality ij Yy > 9= httk(m!—m)

is necessary for the condition £ < ¢+ m — m'. O
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