Security of 2^t-Root Identification and Signatures

C.P. Schnorr

Fachbereich Mathematik/Informatik
Universität Frankfurt
PSF 111932
60054 Frankfurt/Main, Germany
e-mail: schnorr@cs.uni-frankfurt.de

March 6, 1996

Abstract

The GQ-protocol of Guillou and Quisquater and Ong-Schnorr identification and signatures are variants of the Fiat-Shamir scheme that provide short and fast communication and signatures. Let $N = pq$ be an arbitrary product of two primes that is difficult to factor. The Ong-Schnorr scheme uses secret keys that are 2^t-roots modulo N of the public keys, whereas Fiat-Shamir use square roots modulo N. The Ong-Schnorr scheme is quite efficient, in particular in its multi-key version. Under the assumption that the module N is a Blum integer that is difficult to factor, security for the Ong-Schnorr scheme has recently been proved for particular cases. Micali proves security of the signature scheme for particular keys and modules N. Shoup proves that the identification scheme is secure against active adversaries.

We prove for arbitrary modules $N = pq$ that Ong-Schnorr identification and signatures are secure unless N can easily be factored. The proven security of Ong-Schnorr identification against active impersonation attacks depends in an interesting way on the maximal 2-power 2^m that divides either $p-1$ or $q-1$. For $m \geq t$ we give a reduction from factoring N to active impersonation attacks that is as efficient as the one known for Fiat-Shamir identification. For $m < t$ we give an equally efficient reduction from factoring N to passive impersonation attacks and a less efficient reduction to active impersonation attacks. As these security results depend on the parameter m the question arises on how the difficulty of factoring N depends on m.

We show that Ong-Schnorr signatures with arbitrary module N are secure against adaptive chosen-message attacks unless the module N can easily be factored. Unlike to the security of identification against active adversaries, the parameter m is irrelevant for the security of the signature scheme in the random oracle model.

Keywords

identification scheme, signature scheme, Fiat-Shamir scheme, active/passive impersonation attacks, adaptive chosen-message attack, random oracle model.
1 Introduction and Summary

Fiat and Shamir proposed a practical identification/signature scheme that is based on a zero-knowledge protocol of Goldwasser, Micali and Rackoff (1989) for proving quadratic residuosity. The GQ-protocol of Guillou and Quisquer and Ong-Schnorr identification and signatures are variants of the Fiat-Shamir scheme which provide shorter communication and signatures than the Fiat-Shamir scheme. Ong-Schnorr identification and signatures are direct extensions of the Fiat-Shamir scheme replacing square roots modulo N by 2^t-roots. Moreover Ong-Schnorr identification and signatures are as fast, in the number of modular multiplications, as Fiat-Shamir. Until recently it was only known that Ong-Schnorr identification is secure provided that particular 2^t-roots modulo N are hard to compute [OS90]. Recently there has been surprising progress for the case of Blum integers N ($N = pq$ is called a Blum integer if p, q are primes that are congruent 3 mod 4).

Previous results. Micali [M94] proves security of Ong-Schnorr signatures for the case that the secret key is a 2^t-root of 4 and that 2 is a quadratic non-residue modulo N. Micali assumes that the hash function used for signatures acts as a random oracle. He shows that any algorithm which produces, without secret key, a valid signature faster than by random trials immediately leads to the factorization on N. This surprising result requires that the secret key, the 2^t-root of 4, already reveals the prime factors p and q of N. Therefore distinct users must have different modules N, and N is part of the secret key rather than a public parameter as in the Fiat-Shamir scheme and its extension by Ong-Schnorr.

Shoup [Sh95] proves that Ong-Schnorr identification with Blum integers N is secure against active adversaries unless N is easy to factor. Shoup gives a reduction from factoring N to active impersonation attacks that is less efficient than the one known for the Fiat-Shamir scheme. Also his reduction is not entirely constructive as it requires apriori knowledge on the adversary’s probability of success.

Our results. We present security proofs for Ong-Schnorr identification for arbitrary modules $N = pq$. This extends and improves the results of Shoup in various ways. It sheds new light on the prime factors p and q of the module N. The efficiency of our reduction from factoring $N = pq$ to impersonation attacks depends in an interesting way on the maximal 2-power 2^m that divides either $p - 1$ or $q - 1$. We distinguish the cases of active and of passive attacks. In an active attack, before the impersonation attempt, the adversary poses as verifier in a sequence of executions of the ID-protocol and asks questions of his choice using the legitimate user as oracle. In a passive impersonation attack the adversary is given the public key but he cannot even listen in executions of the ID-protocol.

The cases that $m \geq t$, respectively $m < t$, are quite different. For $m \geq t$ we present a reduction from factoring N to active impersonation that is as efficient as the one known for Fiat-Shamir ID. It only requires that the adversary’s success rate is twice the success rate for guessing the exam posed by the verifier. Thus modules N with $m \geq t$ provide optimal security against active/passive impersonation attacks unless they can easily be factored.

For the case $m < t$ we give a reduction from factoring to (only) passive impersonation that is as efficient as the one known for Fiat-Shamir ID. The reduction works for public
keys that are generated together with a pseudo-key (independent from the secret key) which enables to transform successful passive impersonations into the factorization of \(N \). Having only a pseudo-key complicates for small \(m \) the reduction from factoring to active impersonation attacks as it becomes difficult to simulate the ID-protocol which is necessary to provide the information which the adversary needs for an active impersonation attack. This leads to a trade-off which we describe in Theorem 8. We either have an additional time factor \(2^{t-m} \) for factoring \(N \) or the required probability of success of the active adversary increases by the factor \(2^{t-m} \).

Security of signatures. The above results translate into corresponding security results for Ong-Schnorr signatures. We assume that the public hash function of the signature scheme acts as a random oracle. This random oracle assumption has already been used in [FS86] and is commonly accepted to be appropriate for hash functions without cryptographic weaknesses, see also [BR93]. We consider the strongest type of attacks, adaptive chosen-message attacks. Here the adversary, before attempting to generate a valid signature-message pair, uses the legitimate signer as oracle to sign messages of his choice.

Pointcheval and Stern [PS96] show how to transform security proofs for discrete logarithm identification schemes into security proofs for the corresponding signature scheme. Using similar arguments we transform security against passive attacks for Ong-Schnorr ID into security against adaptive chosen-message attacks for the corresponding signature scheme. In Theorem 6 we prove the following. Ong-Schnorr signatures cannot be produced by an adaptive chosen-message attack faster than by random trials unless the module \(N \) can easily be factored. We get the same result for arbitrary keys and modules \(N \) which Micali [M94] proves for particular keys and modules \(N \).

Generalizing the properties of Blum integers. Blum integers \(N \) are characterized by the property that squaring acts as a permutation on the set \(QR_N \) of quadratic residues modulo \(N \). The cryptographic relevance of Blum integers relies on this property. One of our basic tools is a generalization of this property for arbitrary \(N \), following Lemma 2.

2 Ong-Schnorr identification

Let \(N \) be product of two large primes \(p,q \). Assume that \(N \) is public but the factorization is completely unknown. Let \(\mathbb{Z}_N^* \) denote the multiplicative group of integers modulo \(N \). Let the prover \(A \) have the private key \(s = (s_1,\ldots,s_k) \) with components \(s_1,\ldots,s_k \in \mathbb{Z}_N^* \). The corresponding public key \(v = (v_1,\ldots,v_k) \) has components \(v_j \) satisfying \(1/v_j = s_j^2 \) for \(j = 1,\ldots,k \). We assume that the verifier \(B \) has access to \(A \)'s public key \(v \).

Ong-Schnorr ID-protocol \((A,B)\) (Prover \(A \) proves its identity to verifier \(B \))

1. \(A \) picks a random \(r \in_R \mathbb{Z}_N^* \) and sends \(x := r^{3t} \) to \(B \).
2. \(B \) picks a random exam \(e = (e_1,\ldots,e_k) \in_R [0,2^t]^k \) and sends it to \(A \).
3. \(A \) sends \(y := r \prod_j s_j^{e_j} \) to \(B \).
4. \(B \) checks that \(x = y^{2^{t}} \prod_j v_j^{e_j} \).
Standard forgery. It is known that a fraudulent prover \tilde{A} can cheat by guessing the exam e and sending the crooked proof $x := r^2 \prod v_j^{e_j}, \ y := r$. The probability of success is 2^{-kt}. The goal is to prove that this 2^{-kt} success rate cannot be much improved unless we can easily factorize N. As the security level is 2^{kt} we are interested in parameters k, t with kt about 72.

Ong-Schnorr signatures. are obtained by replacing in the ID-protocol the verifier B by a public hash function h. To sign a message M the signer picks a random $r \in \mathbb{Z}_N^*$ forms $x := r^d$ and computes the hash value $e := h(x, M)$ in $[0, 2^k)^k$ and $y := r \prod v_j^{e_j}$. The signature of the message M is the pair (e, y). It is verified by checking that $h(y^{2t} \prod v_j^{e_j}, M) = e$ holds.

Efficiency. For Ong-Schnorr ID (resp. signatures) both prover (resp. signer) A and verifier B perform on the average $\frac{k+2}{2} t$ multiplications in \mathbb{Z}_N^*. For $k = 8, t = 9$ these are 45 multiplications. Further optimization is possible the same way as for the Fiat-Shamir scheme [FS86]. If the public key components v_j are integers having only a few non-zero bits in their binary representation, the work load of the verifier reduces to only t squarings in \mathbb{Z}_N^* and a few additions, shifts and reductions modulo N with integers of the order N. If $v_j = \sum v_{j,i} 2^{i}$ has w_j 1-bits $v_{j,i} = 1$, a multiplication by v_j can be done by w_j additions, shifts and reductions modulo N. Thus the verifier needs only to perform t squarings, for computing y^{2t}, and on the average $\frac{1}{t} \sum w_j$ additions, shifts and reductions modulo N. Moreover the reductions modulo N are needless if the v_j are small integers.

Previous protocols. The original Fiat-Shamir scheme is the case $t = 1$ of the Ong-Schnorr protocol, repeated several times. While the Fiat-Shamir scheme requires many rounds to become secure, the Ong-Schnorr scheme executes a single round. Fiat-Shamir ID is secure against passive and active attacks unless N can easily be factored. Moreover Fiat-Shamir signatures are secure in the random oracle model [FS86], [FFS88]. Attacks with a success rate that is twice the probability for guessing the examine e can be transformed into the factorization of N.

The GQ-protocol [GQ88] is the case of single component keys $k = 1$, where 2^t-powers $x = r^2t$ are replaced by u-powers $x = r^u$ for an arbitrary integer u of order N. The GQ-protocol consists of a single round with a large exam e. This greatly reduces the length of transmission and signatures of the Fiat-Shamir scheme at the expense of a slightly increased work load.

Notation. Let the fraudulent prover \tilde{A} be an interactive, probabilistic Turing machine that is given the fixed inputs k, t, N (k, t are sometimes omitted). Let RA be the sequence of coin tosses of A. Define the success bit $S_{A,v}(RA, e)$ to be 1 if A succeeds with v, RA, e, N and 0 otherwise; accordingly call the pair (RA, e) successful/unsuccessful. The success rate $S_{A,v}$ of A with v is the expected value of $S_{A,v}(RA, e)$ for uniformly distributed pairs (RA, e). For simplicity, we assume that the time $T_{A,v}(RA, e)$ of A with v, RA, e is the same for all
pairs \((RA,e)\), i.e. \(T_{\tilde{A},v}(RA,e) = T_{\tilde{A},v}\). This is no restriction since limiting the time to twice the average running time for successful pairs \((RA,e)\) decreases the success rate \(S_{\tilde{A},v}\) at most by a factor 2. We assume that \(T_{\tilde{A},v} = \Omega(k \cdot t(\log_2 N)^3)\) and thus \(T_{\tilde{A},v}\) majorizes the time of \(B\) in the protocol \((\tilde{A}, B)\).

Theorem 1. [OS90] There is a probabilistic algorithm \(AL\) which on input \(\tilde{A}, N, v\) computes \((y, \tilde{y}, e, \tilde{e})\) such that \(y, \tilde{y} \in \mathbb{Z}_N^*\), \(e, \tilde{e} \in \{0, 2\}^k\), \(e \neq \tilde{e}\) and \((y/\tilde{y})^{2^t} = \prod_j v_j^{2^{t-\varepsilon_j}}\). If \(S_{\tilde{A},v} \geq 2^{-kt+1}\) then \(AL\) runs in expected time \(O(T_{\tilde{A},v}/S_{\tilde{A},v})\).

The proof is a straightforward extension of Lemma 4 in Feige, Fiat, Shamir (1988). Algorithm \(AL\) constructs a random pair \((RA,e)\) with \(S_{\tilde{A},v}(RA,e) = 1\) and produces a second random exam \(\tilde{e}\) for which \(\tilde{A}_{f}\) succeeds with the same \(RA\), i.e. \(e \neq \tilde{e}\) and \(S_{\tilde{A},v}(RA, \tilde{e}) = 1\). \(AL\) outputs \(e, \tilde{e}\) and the replies \(y, \tilde{y}\) of \(\tilde{A}\) with coin tosses \(RA\) to the exams \(e, \tilde{e}\).

For the entities of Theorem 1 we denote \(X := y/\tilde{y}\), \(\ell := \max\{i \mid e = \tilde{e} \mod 2^i\}\), \(Z := \Pi_j v_j^{(2^\ell-\varepsilon_j)/2^t}\). By the construction we have \(X^{2^t} = Z^{2^t+\ell}\). The goal is to derive from \(X, Z\) two statistically independent square roots of the same square modulo \(N\), so that we can factorize \(N\) with prob. \(\geq 1/2\).

We use the structure of the prime factors \(p, q\) of \(N = p \cdot q\). Let \(p-1 = 2^{m_p} p', q-1 = 2^{m_q} q'\) with \(p', q'\) odd. W.l.o.g. let \(m_q \geq m_p\) and denote \(m := m_q = \max(m_p, m_q)\). We have \(m = 1\) iff both \(p\) and \(q\) are congruent 3 mod 4, i.e., if \(N\) is a Blum integer. For Blum integers squaring acts as a permutation on the subgroup \(QR_N\) of quadratic residues in \(\mathbb{Z}_N^*\). This property characterizes the set of Blum integers. Lemma 2 extends this property to arbitrary cyclic groups.

For a multiplicative group \(G\) let \(G^n\) denote the subgroup of \(u\)-powers in \(G\), \(G^n = \{g^n \mid g \in G\}\). Lemma 2 is obvious.

Lemma 2. For any cyclic group \(G\) of order \(|G| = 2^m m'\) with \(m'\) odd, squaring \(SQ : G^{2^t} \rightarrow G^{2^{t+1}}, x \mapsto x^2\) is a \(2-1\) mapping for \(i = 0, \ldots, m-1\) and is \(1-1\) for \(i \geq m\).

Extension of the Blum integer property. Let \(N, m_p \leq m_q = m\) be as above. \(\mathbb{Z}_N^*\) is direct product of the cyclic groups \(\mathbb{Z}_p^*\) and \(\mathbb{Z}_q^*\). Hence squaring \(SQ : \mathbb{Z}_N^{2^t} \rightarrow \mathbb{Z}_N^{2^{t+1}}, x \mapsto x^2\) acts as a \(4-1\) mapping for \(i < m_p\), as a \(2-1\) mapping for \(m_p \leq i < m_q\) and as a permutation for \(i \geq m_q = m\). With this observation we can extend cryptographic applications from Blum integers to arbitrary modules \(N\).

3 Passive impersonation attacks for \(m \geq t\)

We show that Ong-Schnorr ID in case \(m \geq t\) is as secure as Fiat-Shamir ID. We assume that \(k\) and \(t\) are given as input along with \(N\) but \(m\) may be unknown.

Theorem 3. There is a probabilistic algorithm which on input \(\tilde{A}, N\) generates a random public key \(v \in \mathbb{Z}_N^{2^t}\), factorizes \(N\) with probability at least 1/2, with respect to its coin tosses, and runs in expected time \(O(T_{\tilde{A},v}/S_{\tilde{A},v})\) provided that \(S_{\tilde{A},v} \geq 2^{-kt+1}\) and \(t \leq m\).
Proof. The factoring algorithm picks random \(s_j \in R \mathbb{Z}_N^* \) sets \(1/v_j := s_j^{2^j} \) for \(j = 1, \ldots, k \), runs algorithm \(AL \) of Theorem 1 on input \(A, N, v \) to produce \((y, \widehat{y}, e, \widehat{e}) \) and computes the corresponding \(\ell, X, Z \) with \(X^{2^\ell} = Z^{2 + \ell} \). Then, it checks whether

\[
\{\gcd(X^{2^\ell} \pm Z^{2 + \ell}, N)\} = \{p, q\} \quad \text{holds for some } i, \ 0 \leq i < t.
\]

For the analysis we assume w.l.o.g. that \((e_1 - \bar{e}_1)/2^\ell \) is odd. The probability space consists of the coin tosses of \(AL \) including \(s_j \in R \mathbb{Z}_N^* \) for \(j = 1, \ldots, k \). To simplify the analysis we arbitrarily fix \(X, (Z \bmod p), s_2 \bmod q, \ldots, s_k \bmod q \) so that the probability space reduces to \(s_1 \bmod q \in R \mathbb{Z}_q^* \). By Lemma 2 and since \(t \leq m \) there are \(2^t \) many \(2^t \)-roots \(s_1 \bmod q \) of \(1/v_1 = s_1^{2^t} \bmod q \). They yield \(2^t \) many values \(Z \bmod q \). Since \(\ell < t \leq m \) we have \(X \neq \pm Z^{2^t} \) for at least half of these \(2^t \) cases. If \(X \neq \pm Z^{2^t} \) take the largest \(i < t \) with \(X^{2^i} \neq \pm Z^{2 + i} \). Then \(X^{2^i}, Z^{2 + i} \) are square roots of the same square modulo \(N \), they are distinct even when changing the sign. Hence \(\{\gcd(X^{2^i} \pm Z^{2 + i}, N)\} = \{p, q\} \). This shows that the algorithm factorizes \(N \) with probability at least \(1/2 \).

The expected time of the factoring algorithm is that of algorithm \(AL \). By the assumption \(T_{\hat{A}, v} = \Omega(k \cdot t(\log_2 N)^3) \) this covers all other steps. \(\square \)

A basic difficulty for the case of small \(m \)-values is that the above factoring algorithm requires \(\ell < m \) while the construction only ensures \(\ell < t \). If \(\ell \geq m \) it can happen that \(X = Z^{2^t} \) holds for all possible \(2^t \)-roots \(s_j \) of \(1/v_j \). In this case the factoring method breaks down completely.

Lemma 4. For any \(m' \) with \(1 \leq m' \leq t \) algorithm \(AL \) of Theorem 1 produces on input \(\hat{A}, v \) an output \((y, \widehat{y}, e, \widehat{e}) \) so that \(e \neq \widehat{e} \bmod 2^m' \) holds with probability \(\geq 1/4 \) provided that \(S_{\hat{A}, v} \geq 2^{-k m' + 2} \).

The Lemma shows that the algorithm of Theorem 3 factorizes \(N \) with probability at least \(1/8 \) and runs in expected time \(O(T_{\hat{A}, v}/S_{\hat{A}, v}) \) provided that \(S_{\hat{A}, v} \geq 2^{-k m' + 2} \).

Proof. We call a coin tossing sequence \(RA \) of \(\hat{A} \) \(m' \)-heavy if \(\sum_e S_{\hat{A}, v}(RA, e) \geq 2^{k m' + 1} \), i.e., if \(\hat{A} \) succeeds for at least a \(2^{-k m' + 1} \) fraction of the \(e \). The claim follows from facts A and B.

Fact A. If \(RA \) is \(m' \)-heavy and \(S_{\hat{A}, v}(RA, e) = 1 \) then \(e \neq \widehat{e} \bmod 2^m' \) holds for at least half of the \(e \) with \(S_{\hat{A}, v}(RA, \bar{e}) = 1 \).

Proof. For every \(e \) we have \(\# \{ e \mid e = \bar{e} \bmod 2^m' \} \leq 2^{k t - k m'} \) since \(e_i = \bar{e}_i \bmod 2^m' \) holds for at most a \(2^{-m'} \) fraction of the \(\bar{e}_i \). Now the fact follows since \(RA \) is \(m' \)-heavy.

Fact B. If \(S_{\hat{A}, v} \geq 2^{-k m' + 2} \) then \(RA \) is \(m' \)-heavy for at least half of the pairs \((RA, e) \) with \(S_{\hat{A}, v}(RA, e) = 1 \).

Proof. If \(RA \) is not \(m' \)-heavy at most a \(2^{-k m' + 1} \) fraction of the \(e \) satisfy \(S_{\hat{A}, v}(RA, e) = 1 \). Therefore at most a \(2^{-k m' + 1} \) fraction of pairs \((RA, e) \) satisfy \(S_{\hat{A}, v}(RA, e) = 1 \) without that \(RA \) is \(m' \)-heavy. On the other hand, since \(S_{\hat{A}, v} \geq 2^{-k m' + 2} \), at least a \(2^{-k m' + 2} \) fraction of the \((RA, e) \) satisfy \(S_{\hat{A}, v}(RA, e) = 1 \).
Algorithm AL generates a random pair (RA, e) with $S_{A,v}(RA, e) = 1$. By Fact A RA is m'-heavy with probability $≥ 1/2$. After fixing (RA, e) with $S_{A,v}(RA, e) = 1$ AL generates a random \bar{e} with $S_{\bar{A},v}(RA, \bar{e}) = 1$. By Fact B $e ≠ \bar{e}$ mod $2^{m'}$ holds with probability $≥ 1/4$. □

Remark. The lower bound $S_{\bar{A},v} > 2^{-km'}$ is necessary in Lemma 4. It is possible to position a $2^{-km'}$-fraction of successes so that $e = \bar{e}$ mod $2^{m'}$ always holds.

4 Passive impersonation attacks for $m < t$

For $m < t$ we give another reduction from factoring to impersonation. The factoring algorithm generates a random public key v together with a pseudo-key \bar{s} which enables to transform successful attacks of a passive adversary A into the factorization of N.

Theorem 5 There is a prob. algorithm which on input A,N generates a random public key $v ∈ R\left(Z_N^{*2^k}\right)$, factorizes N with probability $≥ 1/2$ with respect to its coin losses, and runs in expected time $O(T_{\bar{A},v}/S_{\bar{A},v})$ provided that $S_{\bar{A},v} ≥ 2^{-k+i+1}$ and $m < t$.

Proof. Factoring algorithm

1. Pick random $\bar{s}_j ∈ R\left(Z_N^{*2^k}\right)$ and set $1/v_j = \bar{s}_j^{2^m}$ for $j = 1, \ldots, k$ (we have $v ∈ R\left(Z_N^{*2^k}\right)$).
2. According to Theorem 1 compute $AL : (\bar{A}, v) ↦ (y, \bar{y}, e, \bar{e})$ and set

 $\ell := \max\{i \mid e = \bar{e} \mod 2^i\}$, $X := y/\bar{y}$, $\bar{Z} := \Xi \bar{s}_j^{(e_j - \bar{e}_j)/2^i}$.
3. Test whether for some i, $\ell < i ≤ t$: $\{\gcd(X^{2^{i-1}} ± \bar{Z}^{2^{t+m-i}}, N)\} = \{p, q\}$.

By the construction we have $X^{2^{i}} = \bar{Z}^{2^{t+m}}$ and $\ell < t$. W.l.o.g. let $(e_1 - \bar{e}_1)/2^\ell$ be odd. Arbitrarily fix $\bar{Z}(\mod p)$, $\bar{s}_2(\mod q), \ldots, \bar{s}_k \mod q$ and X so that the probability space reduces to the 2^m solutions $\bar{s}_1(\mod q)$ of $\bar{s}_1^{2^m} = 1/v_1 \mod q$. These 2^m solutions yield 2^m many values $\bar{s}_1 ∈ Z_N^{*}$ and, since $(e_1 - \bar{e}_1)/2^\ell$ is odd, they generate 2^m many values $\bar{Z} ∈ Z_N^{*}$. Note that $X^{2^{i-1}} ± \bar{Z}^{2^{t+m-i}}$ holds for at least 2^{m-1} many \bar{Z}-values. (By Lemma 2 and since $\bar{Z}(\mod p)$ is fixed we have $X^{2^{i-1}} = ± \bar{Z}^{2^{m-1}}$ for at most 2^{m-1} of these \bar{Z}-values.) For such \bar{Z} consider the smallest $i > 0$ with $X^{2^{i-1}} ± \bar{Z}^{2^{t+m-i}}$. Then $X^{2^{i-1}}$, $\bar{Z}^{2^{t+m-i}}$ are square roots of the same square in Z_N^*. These square roots are distinct even if we change signs. Hence $\gcd(X^{2^{i-1}} ± \bar{Z}^{2^{t+m-i}}, N) = \{p, q\}$. This shows that the algorithm factorizes at least with probability 1/2.

The above proof establishes security of public keys v that are generated without a corresponding secret key s. We have generated v from a random pseudo-key \bar{s} so that $1/v_j = \bar{s}_j^{2^m}$ for $j = 1, \ldots, k$. We cannot generate first a secret key s to produce a pseudo-key \bar{s} by squaring the components of s. The components \bar{s}_j must be random in Z_N^{*}, and thus \bar{s}_j is a quadratic non-residue with probability $3/4$. In fact we cannot have v, s together with \bar{s} unless we can easily factor N.
5 Security of Ong-Schnorr signatures

We study the security in the random oracle model where the hash function h is replaced by a random oracle. This assumption has already been made in [FS86] and has been further developed in [BR93]. Under this assumption the hash function h produces for each query (x, M) a random value $h(x, M) \in_R [0, 2^r]^k$. If a query is repeated the same answer is given.

We consider most powerful attacks, adaptive chosen-message attacks as introduced by Goldwasser, Micali, Rivest in [GMR88]. The adversary, before attempting to generate a new message-signature pair, uses the legitimate signer as an oracle to sign messages of his choice.

The strength of the adaptive chosen-message attack gets somewhat diluted by the random oracle assumption. The hash values $h(x, M)$ are random in $[0, 2^r]^k$ and independent for distinct pairs (x, M). The adversary cannot get anything from correct signatures (e, y) since these are random pairs in $[0, 2^r]^k \times \mathbb{Z}_N^*$ that can easily be produced, with the same probability distribution, by anybody. In the random oracle model, adaptive chosen-message attacks on Ong-Schnorr signatures are not stronger than no-message attacks, where the attacker is merely given the public key.

For the next theorem let \tilde{A}_f be an attacker which executes an adaptive chosen-message attack on N and public key v so that the oracle for the hash function h is queried at most f times, $f \geq 1$. Let $T_{\tilde{A}_f,v}$ be its expected time and $S_{\tilde{A}_f,v}$ its probability of success with v.

Theorem 6. There is a probabilistic algorithm which on input \tilde{A}_f, N generates a random $v \in_R ([\mathbb{Z}_N^*]^k)^k$, factorizes N with probability at least $1/2$ with respect to its coin tosses, and runs in expected time $O(f T_{\tilde{A}_f,v} / S_{\tilde{A}_f,v})$ provided that $S_{\tilde{A}_f,v} \geq f 2^{-k^{1+\epsilon}}$.

Proof. Depending on whether $m \geq t$ or $m < t$ we mimic the factoring algorithms corresponding to Theorems 3 and 5. Firstly we give an informal argument for the case $m \geq t$.

The factoring algorithm picks random $s_j \in_R \mathbb{Z}_N^*$, sets $1/v_j = s_j^2$ for $j = 1, \ldots, k$, and lets \tilde{A}_f execute its attack on the public key v. For the signatures requested by \tilde{A}_f it produces random pairs in $[0, 2^r]^k \times \mathbb{Z}_N^*$. Suppose \tilde{A}_f queries the oracle for h on (x_i, M_i) for $i = 1, \ldots, f$ and outputs the message-signature pair (M, e, y).

We can assume that $(y^2 \Pi_j v_j^{\epsilon_i}, M) = (x_i, M_i)$ holds for some $i \leq f$ since otherwise $e = h(y^2 \Pi_j v_j^{\epsilon_j}, M)$ holds with prob. 2^{-kt}. If the adversary produces this x_i as $x_i := y^2 \Pi_j v_j^{\epsilon_j}$ for some preselected e and y, the oracle returns the preselected e with prob. 2^{-kt}. Thus, each such oracle query can at most add 2^{-kt} to the success rate $S_{\tilde{A}_f,v}$. Hence, at least with probability $(S_{\tilde{A}_f,v} - f 2^{-kt})$ the attacker \tilde{A}_f is able to produce two distinct pairs (e, y) and (\bar{e}, \bar{y}) with $e \neq \bar{e}$ satisfying $y^2 \Pi_j v_j^{\epsilon_j} = \bar{y}^2 \Pi_j v_j^{\bar{\epsilon}_j} = x_i$. For these pairs we have $(y/\bar{y})^2 = \Pi_j v_j^{\epsilon_j - \bar{\epsilon}_j}$ and (y, \bar{y}, e, \bar{e}) has the same properties as the output of algorithm AL of Theorem 1. It yields the factorization of N with prob. 1/2 as described in Theorem 3.

The formal factoring algorithm employs a version of algorithm AL of Theorem 1 to construct (e, y, \bar{e}, \bar{y}). It simulates \tilde{A}_f using statistically independent oracles for h.

7
Factoring algorithm

1. Pick random $s_j \in_R \mathbb{Z}_k^*$, set $1/v_j = s_j^{2^t}$ for $j = 1, \ldots, k$ and $u := 0$
2. Pick a random sequence of coin tosses RA for A_f.
3. (first signing attempt) Simulate the adversary A_f with v, RA.
 For the message signature pairs requested by A_f provide random pairs.
 Let the adversary query the oracle for h about (x_i, M_i) for $i = 1, \ldots, f$.
 If A_f fabricates a signature (e, y) satisfying $y^{2^t} \Pi_j v_j^{e_j} = x_i$ for some i (in this case we call the pair (RA, e) successful with i) then fix RA, i, x_i, M_i, e, y, set $u := 4uf$ and go to step 4.
 Otherwise increase u by 1 and go back to step 2 undoing A_f's computation.
4. (second signing attempt) Simulate the adversary A_f with v, RA.
 Let the oracle answer the first $i - 1$ queries the same way as in step 3.
 Let it answer the other queries statistically independent from previous oracle outputs.
 In particular, the oracle is repeatedly queried about the (x_i, M_i) of step 3 providing statistically independent replies.
 If A_f fabricates a signature (\bar{e}, \bar{y}) with $e \neq \bar{e}$ satisfying $\bar{y}^{2^t} \Pi_j v_j^{\bar{e}_j} = x_i$ for the x_i fixed in step 3 and the new oracle reply \bar{e} for (x_i, M_i), then go to step 5.
 Otherwise, if $u > 0$ set $u := u - 1$ and go back to step 4,
 if $u = 0$ go back to step 2 (undoing the computation of A_f in either case).
5. Compute $X := y/\bar{y}$, $\ell := \max\{i \mid e = \bar{e} \mod 2^i\}$, $Z := \Pi_j u_j^{2^t}$
 (hence $X^{2^t} = Z^{2^{t+i}}$).
6. Test whether $\{\gcd(X^{2^t-i} \pm Z^{2^{t+i-i}}, N) = \{p, q\}$ holds for some $i \leq t$.

Sketch of the analysis. On the average it takes $1/S_{\bar{A}_f,v}$ many passes of steps 2 and 3 to find i, x_i, M_i, e, y. If $S_{\bar{A}_f,v} > f \cdot 2^{-kt+1}$ the subsequent step 4 succeeds to find (\bar{e}, \bar{y}) with $e \neq \bar{e}$ at least with probability $\frac{1}{4}(1 - 2.7^{-1})$. For this we note that, with probability at least $\frac{1}{4}$, step 3 probes at least $u \geq \frac{1}{2^t} S_{\bar{A}_f,v}$ many pairs (RA, e) before fixing some RA for which the fraction of successful pairs (RA, \bar{e}) is at least $\frac{1}{2} S_{\bar{A}_f,v}^{-1}$. In this case at least a $\frac{1}{2^t} S_{\bar{A}_f,v}^{-1}$-fraction of \bar{e} succeeds in step 4 with the i fixed in step 3. Since step 4 probes at least $2fS_{\bar{A}_f,v}$ many random \bar{e}, step 4 succeeds at least with probability $1 - 2.7^{-1}$. Finally, steps 5 and 6 factorize N at least with probability $1/2$.

In case that $m < t$ the factoring algorithm generates, as in the proof of Theorem 5, the public key from a random pseudo-key δ and factorizes N according to Theorem 5. \qed

6 Ong-Schnorr ID is secure against active impersonation

In Theorem 7 we extend the reduction of Theorem 3 from passive to active impersonation attacks. In Theorem 8 we present a reduction from factoring to active impersonation attacks for arbitrary modules $N = p \cdot q$ with $m \leq t$. The latter result extends and improves the reduction given by Shoup for the case of Blum integers N. The efficiency of the reduction
depends in an interesting way on the parameter \(m \). While this reduction is quite efficient if \(m \) is close to \(t \) it is less efficient for Blum integers, i.e. for \(m = 1 \). This deficiency of Blum integers was not apparent from Shoup’s proof. Shoup’s proof of security is not entirely constructive. It requires a priori knowledge on the probability of success of the adversary \(\hat{A}_f \), given the knowledge from the \(f \) executions of the protocol \((A, \tilde{A}_f)\). We eliminate this a priori knowledge. We only use \(\hat{A}_f \)'s overall success rate \(S_{\hat{A}_f,v} \) depending on the coin tosses of the entire sequence of \(f \) executions of protocol \((A, \tilde{A}_f)\) followed by \((\hat{A}_f, B)\).

An active adversary, before the impersonation attempt, poses as \(B \) in a sequence of executions of the protocol \((A, B)\) asking \(A \) questions of his choice without necessarily following the protocol of \(B \). Then, he attempts to pose as \(A \) in the protocol \((A, B)\). For short we let \(\hat{A}_f \) denote an active adversary who asks for \(f \) ID-proofs of \(A \) via \((A, \tilde{A}_f)\) and then attempts to impersonate \(A \) in protocol \((\hat{A}_f, B)\). Let \(T_{\hat{A}_f,v} \) denote the total running time of \(f \) consecutive executions of protocol \((A, \tilde{A}_f)\) followed by \((\hat{A}_f, B)\). The probability of success \(S_{\hat{A}_f,v} \) of \(\hat{A}_f \) refers to the coin tosses of \(\hat{A}_f \), \(A, B \) in these \(f + 1 \) protocol executions. We first show that in case \(m \geq t \) Theorem 3 holds for any active adversary \(\hat{A}_f \).

Theorem 7. There is a probabilistic algorithm which given for input the active adversary \(\hat{A}_f \) and \(N \) generates a random public key \(v \in_R (\mathbb{Z}_N^*)^k \), factorizes \(N \) with probability at least \(1/2 \) with respect to its coin tosses, and runs in expected time \(O(T_{\hat{A}_f,v}/S_{\hat{A}_f,v}) \) provided that \(S_{\hat{A}_f,v} \geq 2^{-k+1} \) and \(t \leq m \).

Proof. The factoring algorithm picks \(s_j \in_R \mathbb{Z}_N^* \) for \(i = 1, \ldots, k \) and generates the public key \(v \) as \(1/v = s_j^2 \) for \(j = 1, \ldots, k \). Using the private key \(s = (s_1, \ldots, s_k) \) the algorithm executes the protocol \((A, \hat{A}_f)\) \(f \)-times providing to \(\hat{A}_f \) the information necessary to impersonate \(A \) with success rate \(S_{\hat{A}_f,v} \).

A key observation is that the protocol \((A, \hat{A}_f)\) is witness indistinguishable and witness hiding in the sense of [FS90]. The protocols \((A, \hat{A}_f)\) executed using the secret key \(s \) do not reveal to \(\hat{A}_f \) any information on which \(2^i \)-roots \(s_j \) of \(1/v \) are used by \(A \). The same distribution of data is given to \(\hat{A}_f \) in protocol \((A, \hat{A}_f)\) no matter which of the \(2^i \)-roots \(s_j \) is chosen by \(A \). For this we note that in step 1 of protocol \((A, \hat{A}_f)\), \(A \) sends \(x = r^2 \) a random \(2^i \)-power in \(\mathbb{Z}_N^* \). In step 3, \(A \) sends \(y = r \cdot \Pi_j s_j^{v_j/2} \), a random \(2^i \)-root of \(x/\Pi_j v_j^{2} \) uniformly distributed among all possible \(2^i \)-roots. This uniform distribution is based on the random choice of \(r \) and does not change with the selected \(2^i \)-roots \(s_j \) of \(1/v \).

Using the data transmitted within the \(f \) executions of protocol \((A, \hat{A}_f)\) algorithm AL of Theorem 1 produces an output \((y, \tilde{y}, e, \tilde{e})\) so that \(X^{\tilde{e}} = Z^{2^{k+i}} \) holds for \(X := y/\tilde{y} \) and \(Z := \Pi_j s_j^{(e_j - e_j)/2^i} \). The distribution of \(X \) does not change if \(s_j \) is replaced by any other \(2^i \)-root of the same \(1/v_j \) (this holds even though \(y, \tilde{y} \) are functions depending on \(s \)). On the other hand the \(2^i \)-root \(Z = \Pi_j s_j^{(e_j - e_j)/2^i} \) changes with the choice of the \(2^i \)-roots \(s_j \). Therefore the factoring method of Theorem 3 remains intact. With probability at least \(1/2 \), \(\{\gcd(X^{\tilde{e}} \pm Z^{2^{k+i}}, N)\} = \{p, q\} \) holds for some \(i \) with \(0 \leq i < t \). □

9
Secure modules. In view of Theorem 7, modules N with $m \geq t$ provide optimal security against active impersonation attacks unless N can easily be factored. This raises the question on how the difficulty of factoring a random integer N depends on the parameter m. We are not aware of a factoring algorithm that makes a relevant difference for small values of m, say for $m \leq 10$, which are most interesting for Ong-Schnorr ID.

The previous reductions cannot be easily extended to the case of active adversaries if $m < t$. The best we can do is to combine Lemma 4 with the use of pseudo-keys as in Theorem 5. The factoring method of Theorem 3 requires $\ell < m$ which in turn necessitates a large probability of success, $S_{A_f,v} > 2^{-km}$. Using a pseudo-key \tilde{s} we can factorize N with smaller success rates.

Suppose the pseudo-key \tilde{s} satisfies $s_j^{2m'} = 1/v_j$ for $j = 1, \ldots, k$ with $m \leq m' \leq t$. Using such a pseudo-key the factoring method works iff $\ell < t + m - m'$. The drawback is that the factoring algorithm, without secret key, cannot easily simulate the protocol (A, A_f) which is necessary to provide the information which the adversary needs for an active impersonation attempt. Following Shoup [Sh95] we can simulate the protocol (A, A_f) in zero knowledge fashion by guessing the exams e partly. It is sufficient to guess e mod $2^{t-m'}$ since the $[2^{m'-e_j}]$-part of the exam can be answered using the pseudo-key \tilde{s}. To guess e mod $2^{t-m'}$ we need on the average $2^{k(t-m')}$ many trials. This causes a time factor $2^{k(t-m')}$ for the factoring algorithm.

Thus we have a trade-off in case of small m-values. We can have an additional time factor $2^{k(t-m')}$ for factoring N or a required success rate $S_{A_f,v}$ that is $2^{k(m'-m)}$ times larger than the success rate required in case $m \geq t$. The trade-off is expressed in the following theorem:

Theorem 8. There is a probabilistic algorithm which on input \hat{A}_f, N, m' with $m \leq m' \leq t$ generates a random public key $v \in R (\mathcal{Z}_N^{2m'})^k$, factorizes N with probability at least $1/8$ with respect to its coin tosses and runs in expected time $O(2^{k(t-m')})_{A_f,v}/S_{A_f,v}$ provided that $S_{A_f,v} \geq 2^{-k/2+k(2^{t-m})}$.

For Blum integers this theorem contains the result of Shoup [Sh95] that factoring N is polynomial time reducible to active impersonation attacks. If the success rate $S_{A_f,v}$ is at least $1/(\log(N))^c$ for some fixed $c > 0$ and we have a corresponding a priori lower bound for $S_{A_f,v}$ we apply Theorem 8 with the maximal m' satisfying $2^{-k/2+k(2^{t-m})+2} < S_{A_f,v}$. With this m' the time factor $2^{k(t-m')}$ is polynomially bounded and together with a polynomial time adversary A_f the factoring algorithm becomes polynomial time.

Proof. Factoring algorithm

1. Pick random $\tilde{s}_j \in_R \mathcal{Z}_N^*$, set $1/v_j = \tilde{s}_j^{2m'}$ for $j = 1, \ldots, k$ and $u := 0$
2. Pick a random sequence of coin tosses RA for \hat{A}_f.

To simulate f executions of (A, \hat{A}_f) using \tilde{s}, repeat steps 2.1, 2.2 f times.

2.1 Pick $r \in R \mathcal{Z}_N^*$, $e' = (e'_1, \ldots, e'_k) \in R [0, 2^{t-m'})^k$ and set $x := r^{2^f} \Pi_j v_j^{e'_j}$.

10
2.2 Compute $e \in [0, 2^t)^k$ following \tilde{A}_f.

If $e \neq e'$ mod $2^{t-m'}$, go back to step 2.1 undoing the computation of \tilde{A}_f.

Otherwise set $y := r \cdot \Pi_j s_j^{[m'-e_j]}$ (an easy calculation shows that $y^{2t} \Pi j v_j^{e_j} = x$).

(By the f iterations of steps 2.1 and 2.2 the adversary \tilde{A}_f gets the necessary information for impersonation attempts.)

3. (first impersonation attempt) Pick $e \in [0, 2^t)^k$ and execute (\tilde{A}_f, B) with exam e.

If $S_{\tilde{A}_f,v}(RA, e) = 1$ set $u := 4u$ and go to step 4.

Otherwise set $u := u + 1$ and go back to step 2 undoing the computation of \tilde{A}_f.

4. (second impersonation attempt) Pick $\overline{e} \in [0, 2^t)^k$ and execute (\tilde{A}_f, B) with exam \overline{e}.

If $S_{\tilde{A}_f,v}(RA, \overline{e}) = 1$ and $e \neq \overline{e}$, compute the replies y, \overline{y} of \tilde{A}_f with e, \overline{e} and go to step 5.

Otherwise set $u := u - 1$, if $u > 0$ go back to step 4, if $u = 0$ go back to step 2 (undoing the computation of \tilde{A}_f in either case).

5. Compute $X := y/\overline{y}$, $\ell := \max\{i \mid e = \overline{e} \mod 2^i\}$, $\tilde{Z} := \Pi_j s_j^{[e_j-\overline{e}_j]} / 2^{t}$

(hence $X^{2^t} = \tilde{Z}^{2^{m'+t}}$).

6. Test whether $\{\gcd(X^{2^t-i} \pm \tilde{Z}^{2^{m'+t-i}}, N) = \{p, q\}$ holds for some $i \leq \min(t, m' + \ell)$.

Analysis. Each evaluation of $S_{\tilde{A}_f,v}(RA, e)$ requires f executions of protocol (A, \tilde{A}_f) followed by an execution of protocol (A_f, B). Here \tilde{A}_f is determined by its coin tosses RA while A and B follow the protocol (A, B) with independent coin flips.

The steps 2.1 and 2.2 simulate the protocol (A, \tilde{A}_f) in zero knowledge fashion using the pseudo-key \tilde{s}. This is possible by partially guessing the exams e.

Step 3 counts the number u of probed pairs (RA, e) until a successful pair is found. Then step 4 probes at most $4u$ pairs to find a second successful pair (RA, \overline{e}) for the same RA. This way steps 2, 3, 4 are passed on the average at most $O(1/S_{\tilde{A}_f,v})$ times. This follows from the argument set forth by Feige, Fiat, Shamir in Lemma 4 of [FFS88].

In step 2.2, the equation $e = e' \mod 2^{t-m'}$ holds with probability $2^{-k(t-m')}$. Guessing a correct e takes on the average $2^{k(t-m')}$ many trials. This costs a time factor $2^{k(t-m')}$. We see that the algorithm runs in expected time $O(2^{k(t-m')})T_{\tilde{A}_f,v}/S_{\tilde{A}_f,v})$.

By the construction we have $X^{2^t} = \tilde{Z}^{2^{m'+t}}$. Therefore the factorization attempt in step 6 succeeds with probability $\geq 1/2$ iff there exists i with $\ell + m' - m < i \leq \min(t, m' + \ell)$. This condition is satisfied iff $\ell < t + m - m'$. By Lemma 4 and since $S_{\tilde{A}_f,v} \geq 2^{-k(t+2(m'-m)+2}$ the inequality $\ell < t + m - m'$ holds at least with probability $\geq 1/4$. Hence the factoring of N succeeds at least with probability $1/8$.

The required lower bound on $S_{\tilde{A}_f,v}$ is nearly sharp as the inequality $S_{\tilde{A}_f,v} > 2^{-kt+k(m'-m)}$ is necessary for the condition $\ell < t + m - m'$.

Acknowledgement. The author thanks V. Shoup for pointing out an error in a draft version and J.P. Seifert for his comment.
References

12