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Abstract

We analyse a continued fraction algorithm (abbreviated CFA) for arbitrary
dimension n showing that it produces simultaneous diophantine approxi-
mations which are up to the factor 2("+2)/4 hest possible. Given a real
vector & =(x1,...,2n-1,1) €R” this CFA generates a sequence of vectors
(pgk), e ,p,(lk_)p q(k)) €Z", k=1,2,... with increasing integers |¢(*)| satisfying
fori=1,...,n-1

2= p®)/g®)] < 24N g2 )

By a theorem of Dirichlet this bound is best possible in that the exponent
1+ an1 can in general not be increased.
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1 Introduction

We analyse a CFA which computes for real vectors z € R™ diophantine ap-
proximations to z that are up to the factor 2(*+2/4 best possible. Given z € R™
this CFA constructs a sequence of lattice bases of the lattice Z™ consisting of
vectors that approximate the line zR. For given ¢ > 0, this CFA either finds
an integer relation m € 7™ — 0 for z |, i.e. <m,z >= 0, of Euclidean length at
most 27/2¢=1 or it proves that no integer relation of length < ¢! exists. For
this the algorithm uses O(n* (n + |logel|)) arithmetic operations on real num-
bers with exact arithmetic. For a rational input vector z :=(¢1,...,¢n)/¢n , with
q1,---,qn € Z the algorithm has polynomial bit complexity in the input size
St Noglgi|l + |loge| . Our analysis relies on the dual lattice basis which we
show to consist of very short vectors, see Theorems 1, 2. From this we greatly
improve the known bounds for the primary lattice basis and for diophantine
approximation. The crucial role of the dual basis escaped 1n all previous studies.

Our algorithm is a variant of the HJLS—algorithm of Hastad, Just, Lagarias,
Schnorr [HJT.S89] for finding integer relations for a real vector # which in turn
relies on the algorithms of Bergman [Berg80], Ferguson, Forcade [FFT79] and
Lenstra, Lenstra, Lovdsz [LLL82]. Tt also incorporates ideas of Just [Ju92], Fer-
guson and Bailey [FB92] and Rdssner, Schnorr [RS95]. We present a stable float-
ing point version of this algorithm, prove stability in Theorem 6 and demonstrate
its stability by experimental data.

The problem of higher dimensional CFA has been widely studied by Ja-
cobi [Jal868], Perron [Pel907], Bernstein [Bern71], Szekeres [Sz70], Ferguson,
Forcade [FF79], Bergman [Berg80] and Lenstra, Lenstra, Lovasz [LLL82]. The
HJLS-algorithm of [HJLS89] is a variant of the algorithms in [FF79], [Berg80]
and [LLL82]. It finds short integer relations for z in polynomial time using
exact arithmetic on real numbers. Just [Ju92] showed that a variant of this
algorithm provides diophantine approximations satisfying |z; — p;(®) /¢(®)| <
2(n+2)/4 /1 4 m?/|q(k)|1+mhj.7 . We improve the analysis of [Ju92].

Ferguson and Bailey [FB92] have implemented a close variant of the HJLS—
algorithm which they call the PSL.Q-algorithm. Their experimental results show
that this CFA produces simultaneous diophantine approximations that are far
better than for any other known algorithm. Recenty Bailey, Borwein, Plouffe
[BBP96] found surprising new approximation algorithms for 7, In(2) using this
CFA. While this CFA could so far not be analyzed we prove for the first time
the superiority of this CFA.

2 Preliminaries

Let R™ be the n—dimensional real vector space equipped with the ordinary inner
product < ., . > and Euclidean length ||y|| :=< y,y >Y2 We let [y1, ..., Ym]
denote the matrix with column vectors y1, ..., ym and [ .| is the nearest integer
function to a real number r, [r] =7+ 0.5] .



A non—zero vector m € Z" is called an integer relation for x € R™ if
< z,m >= 0. Welet A(z) denote the length [|m|| of the shortest integer relation
m for z, A(z) = oo if no relation exists.

Throughout this paper, b1,...,b, is an ordered basis of the integer lattice
7™ and its dual basis a1, ..., ay is defined by [a1,...,a,]" :=[b1,...,bs]"". Let
z € R™ be a non—zero vector, set by := 2. We associate with the basis by, ... b,
the orthogonal projections

Tig R”™ — span(z, b, ..., bi_1)*t and
7ri:R"—»span(bl,,...,,bi_l_)J‘ fori=1,...,n,
where span(bj,...,,bi_1) denotes the linear space generated by b;,...,b;i_1
and span(bj,...,b;_1)t its orthogonal complement in R". We abbreviate

o~

biw = mz(b;) and /I;Z := m;(b;) . The vectors /I;Lza .. .,/I;n7$ (resp. /I;]r, .. ,/I;n)
are pairwise orthogonal. They are called the Gram-Schmidt orthogonaliza-
tion of z,by,... b, (vesp. by,..., b, ) The Gram-Schmidt coefficients p; ; of
the factorization [z, b1, ...,bs] = [z, by e bn,r] (“’J)S—SZ,J,SH are defined as
pij =< bz,EJgg>/||/I;Jz||2 IbeIZO we set p; ;=0 for i £ j and p;; = 1.

The matrix (p;, J)0<Z i<n is lower triangular with all diagonal elements 1. Finally
we note that a,, = b /||b ||? since both a,, and b are orthogonal to by, ..., b,_1.

The (ordered) vectors z,by,...,b, are size-reduced if |uy ;| < % holds

for 1 <j<k<n and L3-reduced if they are size-reduced and the inequality
1 ||7r;c 1,0(br—1, ||2 < lmg- 1x(bk)||2 holds for k=2,...,n. If L3-reduced the

vectors satisfy ||bz z||2 <2 ||bz+1 z||2 fori=1,...,n—1.

Models of Computation. We distinguish three models of computation for the
CFA.

Ezact Real Arithmetic. For real input € R™ we use exact arithmetic over real
numbers. This version of the CFA can use either Gram—-Schmidt orthogonaliza-
tion or Givens Rotation with square roots. The analysis of the HJLS—algortihm
applies.

Eract Integer Arithmetic. For rational input z € Q™ we can use exact arith-
metic over the integers. The rational numbers p; ;, ||b; +||* are represented by
their numerator and denominator. This version of the CFA uses Gram—-Schmidt
orthogonalization. The analysis of the L3-algorithm [LLL82] for lattice basis
reduction applies.

Floating Point Arithmetic. For rational input x we can speed up the CFA in that
we replace the exact arithmetic on the rationals y; ;, ||bj7x|| by floating point
arithmetic. The vectors x,bq,...,b, , a1,...,a, are kept in exact representa-
tion. In order to minimize ﬂoating point errors we use, instead of the y; ;, the
normalized coefficients 7; ; :=p; ; ||/1;J,z|| . We call the entities 7; ; for 0 <4,j <mn
the orthonormalization of z, by, ..., b, . Note that 7, ; = ||/f;z7z|| . The L3-property
2 Ime—1,2(bk—1)lI* < llmk—1,0(bi)||* is expressed by %7'1?—1,k—1 < Tl?,k + Ti?,k—r
The 7; ; are not rational but require square roots, we compute them in floating
point arithmetic using Givens Rotation.



We present our algorithm in its floating point version. From this description
the details for the other models of computation are straightforward and left to
the reader.

3 The Algorithm Description

This algorithm improves the HJLS—-algorithm [HJLS89] towards numerical sta-
bility. Given a real vector # € R™ and ¢ > 0, the HJLS—algorithm either finds
an integer relation m for z with [|m| < 2°/2~" min{\(z), ¢~} or it proves
A(z) > e¢71. The HJLS-algorithm performs reduction and exchange steps on the
linearly dependent system of vectors of the matrix z,b,...,b, where initially
bi,..., b, are set to the unit vectors in R™. The vector z remains unchanged and
the vectors by, ..., b, remain a basis of the lattice Z” . The HJLS-algorithm us-
es exact arithmetic on real numbers. Its reduction and exchange steps minimize
maxi<i<n ||bi,ql -

The HJLS-algorithm terminates if either x € span(bi, ..., by—1), ie.if a
swap b,_1 < b, results in /I;n_Lx =0, or if maxi<i<n ||317T|| < €. In the first
case, the last vector a, of the dual basis is an integer relation for 2. In the latter
case, we have A(z) > ¢~' which follows from

[HILS89] Proposition 3.1. Every basis by, ..., b, of Z" satisfies
> Az' zl|| -
A#) 2 1/ ma (Bl 1)

Our main modifications of the HJLS-algorithm are as follows:

1. We iteratively swap vectors bg_1, b with 2 < k < n — 1 that do not satisfy

the L3-condition % ||7rk_1’x(bk_1)||2 < ||7rk_1,m(bk)||2 . The selection of k, either

minimal as in the L3-algorithm or so that i := k maximizes 2° ||/b\z7$||2 as pro-
posed by Bergman, is irrelevant.

2. Before swapping the last two vectors b,_1 and b, the basis
T,2(01), .., m1,0(bn) is L3-reduced. Here we follow Just [Ju92]. In the model
of exact real arithmetic our algorithm essentially coincides with the algorithm
of Just [Ju92] and her analysis of diophantine approximation properties applies.

3. We apply reduction in size, i.e. we reduce by so that |ug;| <1/2 for
i=1,...,k— 1. Reduction in size has been neglected in [HJLS89] since it is
pointless for the exact real arithmetic.

4. In the floating point version orthonormalization of the vectors z,by,...,b,
is done by Givens Rotation with a floating point error that is linear in n and
maxo<;i<n ||bi||, see [GeT5, GL89]. Givens Rotations has already been used in
the parallel L3-algorithms of Heckler, Thiele [HT93] and Joux [Jo93]. Ferguson
and Bailey[FB92] essentially use Givens Rotation in connection with the HJLS-
algorithm.

The test on 7, » # 0 actually checks whether 7, , > 27" where r is the number
of precision bits of the floating point arithmetic.

Stable Continued Fraction Algorithm (SCFA)



InpUT 2 €R™0,€e>0.

1. Initiation. Let b; € Z™ be the i-th unit vector. Compute the orthonormaliza-
tion 7; ; for 0 <i4,j < n of 2,by,...,b, using Givens Rotation (see Section 5).
s:=1.

2. L3-reduction of T a(b1), T e (b))

While there exists & with 1 < &k < n and %T3_17k_1 > 7'3713 —|—7'k27k_1 slze—
reduce by, with respect to by_1 by setting by := by — [T g—1/Tk—1 k—1] br_1, swap
bi_1 and by and update the orthonormalization using Givens Rotation.

Reduce by,...,b, in size. While |7, ;| < € increment s to s + 1.

Output (p1,...,Pn-1,¢) := b1, the next approximation for z , see Theorem 3.

3. Swap the last vectors. Swap b,_1 and b, , and update the orthonormalization
using Givens Rotation. If 7, , = 0 and s < n then goto 2.

4. Termination. Compute [a1,...,a,]" =[b1,...,ba]"".

If 7, n, > 0 a relation for z is found. Output the nearby point 2’ := x and the
relation a,, for z.

If s=nthen 7;; <choldsfori=1,...,n.
Compute m,(z) € span(by,...,b,_1)t, output the nearby point 2z’ :=
z — m,(x), the relation a,, for ' and “A(z) > e~1”.

If ¢ = 0 then SCFA produces a possibly infinite sequence of vectors by, oc-
curing after L3-reduction, that are good diophantine approximations to z .

Correctness Properties. 1. Upon termination of step 2 we have 7; ; < ¢ for
i=1,...,5—1 and the projected basis 71 ;(b1), ..., T1 z(by—1) is L?-reduced.
2. Before swapping b,_1 and b, we have s < n (note that s # n since 7, , = 0)
and 7'3_78] < e~ 1. Therefore the L3-reducedness of T,2(01), ..., 7,z (bp—1) implies
that ||/11;n_17x||_1 < 2n=1=5)/2 =1

3. We recall from [RS95], Theorem 6 that SCFA computes a nearby point z’ and
a non—zero vector a, € 7" so that < a,,2’ >=0 and A(ZF) > ¢~ '/2 holds for

all T € R” with ||z — Z|| < ||z — 2'||/2. If 2’ # x we have A\(z) > ¢~ !.

4 Analysis of SCFA in Exact Real Arithmetic

Theorem 1. Throughout the computation we have
[lan|] < 27/2 min{ e~ A(x) }. Moreover, ||a,|| < 9n/2+1 A(z') holds upon ter-
mination.

For the first time we prove in Theorem 1 that SCFA outputs a relation a,, for
the nearby point 2’ # z which has, up to the factor 2*/2+' minimal length.

Proof. Welet by, ..., b, ,@,...,d, denote the dual bases before and by, ..., b, ,
ai,...,a, after an arbitrary swap b,_1<b, of SCFA. Let Hi j be the Gram-—

Schmidt coefficients and b; ,, be the orthogonal vectors of z, b1, ..., b, . We have

~
~

_ = . _ 1
bﬂ—17l‘ :/'an—lbn—l,l‘ with |f’Ln,n—1| S 9 -



From the characterization of a,_1 as < an_1,b; >= dn_1;, which holds through-
out the algorithm, we infer that

~

bn—l,r _ < bn;bn—l,r > a

[ [

Ap—1

Applying this equation to the vectors bi,...,b, , @,...,an and 7 o1l < %
implies the recursion formula
llanll = 1[@n-1ll = llba=1,2ll ™" + [ 1| @]

< Mlbn-1ell ™ + 3 [Tl -

From the L3-reducedness of 71'1@(51), Ce 7r17x(5n_1) and inequality (1) we see
that

20D |- oll 2 max 272 1Biel] 2 2772 M) 7"

Using ||E,1_1,I||_1 < 2”/2_1/\(1‘) and ||En_1,m||_1 < gn/2=1 =1 , which follows
from correctness property 2, we can rewrite the recursion formula to

llanll < 2*/°7  min{e™!, A(z) } + & [[@l .

This inequality holds for every exchange b, _1+b, of SCFA. Suppose that there

are exactly ¢ such exchanges and using that initially ||a,|| = 1 we obtain the first
claim:
t—1
llan]] < 2"/27  min{ ™, A(z)} D277 4270 < 272 min{c?, A(2)} (2)
j=0

Since the inequality ||a,| < 27/2 min{e~!, A(z)} holds after any swap
b, _1<b, it must always hold because a,, does not change between two swaps.
It remains to prove the second claim in the case z’ # « . For this we use

[RS95] Lemma 5(3). The terminal basis by,... b, of SCFA satisfies with
' =z — m,(z) the inequalities

Bie =Bl < [Biell  for i=1,..,n—1. )
From A(x’) > 1/maX1§ign ||Zi,z’||; ||an|| = ||/b\n7z,||—1 and ||/5n—1,z’|| — 0 we
see that
[lon |[Bi ] -
< = 1, [[bs o .
Alz!) — 11%’11?2&1 1[5 1Sr{1$anx_1{ s |1Bi || [lan || }

From ||/Z;Z,I|| < ¢, which in case 2’ # z holds upon termination of SCFA, and

from the inequality ||3w,|| <2 ||E7z|| , which follows from (3), we infer

(2)
x| < max{l, 2¢||a,||} < max{l,2e2"/2e 1} = 2.2%/%

Az

which finishes the proof. O



Theorem 2. The dual bases by,...,b, and ai,...,a,, occuring after the L3~
reduction step of SCFA, satisfy fori=1,...,n—1

L flaif| < 157" (maxijcn [[BjwlI=t +2%/2 min{e=!, A()})
n o i n=1,7 |- i
2. ()bl < 2*? min{e™", A2)} 3252, [Tazr bk ol = 4 3 el -

Proof. 1. Since SCFA did not terminate previously we know that /b\mz =0, and
thus ,l;jyx # 0 holds for j=1,...,n—1. Let y; ; be the Gram-Schmidt coeffi-
cients of x,bg,..., b, and define the v;; by (v;j)i<ij<n = (:“i,j)1_<1i,j<n~ We
observe that

n—1 ’b\
ai = Z vj i == S T Vnidn (4)
j=i 11652l

holds for i = 1,..., n. In fact this formula implies



k
<ai;bk>— Z 7,8 2 Vn,ian;Z)uk,jbjx>
IIbJ,zII =0

n—1
= E Vi +Vni <p,bpg>= 8ip—Vpifthn—Vni <ap by >= .
7j=1

The L?-reduction step terminates with |y, ;| < % for 1 <j<i<n.Hence
lvij] <1577 for 1<j<i<nm.
Now, equation (4) yields fori=1,...,n

llail|? < 1.5°=) max [[b; .]|72 4+ 1.52=9 ||an||?.
= i<j<n O

Using the inequality [|an| < 27/2 min{e 1, A(z)} of Theorem 1 this proves the
first claim:

Jlag]| < 15"~ (max [[bj]| ™" +2"/* min{e=t, A()}).
1<g<n s

2. We rewrite the equations (4) as

lat, ..., an] = El’x R /:Z;n—l,z s an | (Vig)icij<n -
[1b1,2(1? [[bn—1,2(* T
Since the vectors glm . ,/I;n_Lx are pairwise orthogonal there is an orthogonal
matrix U, i.e. U = UT , such that
by, by
S PN — an =
[ [ [ x||° ’
L0 afy T | el 0
U , : 0 )
0 laj, ,,_ ~ L
el H I P ol
o 0 1
with (a! ap 1 - - .,aﬁlyn)T :=U a, and a;w :||317z|| o ||3n_17x|| . From the previ-
ous equations and [by,...,b,]" =[a1,...,a,]"! we see that
[b1,...,bn] =
1 0 | [ IBal 0
U 0 0 (,Ui,j);rgi,jgn )
0 1 : 0 [[bn=1,z| :
Tp1 .- Gnp-18nn ... 0 R |



where @, ,, := a};} and @, ; := —aj, ;/a}, , for i <n.Since U is orthogonal ||b;]| is
the length of the i—th Column vector of the cofactor of U/ in this matrix product.

Froma, , _||b1 | It ||bn 1,z||7" and since the matrix (y; J)1<”<n is upper
trlangular with |p; ;] S 1 we have fori =1,...,n—1
i
[18:11* < llanl® Z H [Br o7 + leb”HQ (5)
—1 k=1
k#j

Now the claimed upper bound of ||b;]| follows from the inequality [la,| <
272 min{ A(z), ¢=' } of Theorem 1. O

Theorem 3. For real mput r=(x1,...,2n-1,1) every vector
(p1,---,Pn=1,q) :=b1 occuring after the Ls—reductzon step of SCFA satisfies for

i=1,...,n—1:|e;—pi/q| < 275 + ,/]+zi/|q|1+n_1 .

By a theorem of Dirichlet [Di1842] the upper bound maxi<i<n |[2; — pi/q| <
1/|q|1+ﬁ is best possible for diophantine approximations to z in that the
term 1/(n — 1) can in general not be increased. SCFA looses at most the factor
2(n+2)/4 || z|| compared to this best general bound. This loss is due to the L3-
reduction. The factor 27/* can be reduced to (1+ 5)”/4 with an arbitrarily small
¢ > 0 by using block reduced bases [Sc94].

Proof. For n = 2 the sequence of rationals p1/q occuring before a swap b,,_1-b,
corresponds to the continued fraction expansion of 21 . Here we have the stronger
inequality |21 — p1/q| < 1/|q|*. Now consider n > 3. From Theorem 2, the L3-

reducedness of w1 ;(b1),..., ™ +(bn_1) and ||3171|| < 1 we see that
n—1 N N N

[ball < 227 et T 1bsoll™" + brell < 2772 € [by o220 D=2 4 1
j=2

A look into the proofs of Theorem 1 and 2 shows that all inequalities, in partic-
ular inequality (2), hold with ¢=' replaced by ||b1 .||~", and thus:

n>3
||b1|| < ||b1 H n+lon/2 o(n- 1)(n—2)/4+1 < H ” n+1o(n—1)(n+2)/4

)

||/(;1’$|| < ||bl||—n+1 o(n+2)/4 < m—ﬁ 9(n+2)/4

It can easily be seen that every vector b1 =(p1,...,pn-1,q) satisfies for
i=1,...,n—1

2 g — 2api| < |[broll\/1+ 22,

see e.g. equations (18), (19) of [Ju92]. Now the claim follows from the previous
upper bound on ||b1 .|| and z, = 1. |



Theorem 4. If SCFA outputs &' # x then a, is, up to a factor on/2+l g
shortest almost relation for x in the following sense. If m € Z™ — 0 satisfies
| < z,m/||m|>| <|<z a/l|an|| > |/2 then ||m]|| > ||a,| 27"/%~".

Proof. Put T = z— < z,m/||m|| > m/||m]| and note
that 2’ := x— < x,an/||an|| > an/||an||. Hence ||z —ZF| < ||z —2'||/2. From
[RS95], Theorem 6 we have A\(Z) > €¢~'/2 whereas ||a,|| < 272 ¢=1 holds by
Theorem 1. Hence ||m|| > A(Z) > ||an||2_”/2_1. |

Theorem 5. For rational input x = (q1,...,4qn)/qn with integers qi,...,qn,
SCFA performs at most |log, |qn|| swaps bp_1-b, .

Proof. The vectors z,bq,...,b,_1 before a swap b, _1+b, are linearly indepen-
dent, they generate a parallelepiped that has the non-zero volume:

n—1 n—1
N N =1
Izl TT W8sall = TT bsli lIma(@)ll = 15all =" lima(@)l] = llanll [|ma ()]l
Jj=1 Jj=1
Hence H;z_ll ||/b\J7x|| = | < z,a, > |||z||7! . This equation holds for the dual
bases @i, ...,@n, b1, ..., by before and the dual bases ai,...,an, b1,..., b, after

the swap. This yields

~ I e
bl TS el | <20, > |
Baorell  TIZ Byl <%0 >
Using b1 oll = [T il oot oll < L [Ba_1 el we see that

|<z,a,>|< 5| <2,@ >].

Let ¢ be the number of swaps b,_1<b, . Since initially < z,a, >= 1 we have
upon termination of SCFA that ¢;! < | < x,a, >| < 27¢. This proves the
desired bound t < |logs |gn|] on the number of swaps b,—1<b, . ad

Running Time. We refer to the models of computation introduced in
section 2. Arithmetic operations are +, —, -, /, [ | (the nearest integer func-
tion) and < (comparison). In the floating point model we also use va (square
root).

Eract Real Arithmetic. For real input € R™ SCFA performs O(n* (n + |loge|))
arithmetic operations on real numbers and O(n? (n + |loge|)) many swaps
bi_1—br with 2 < k < n. This follows from the analysis of the HJL.S—algorithm
[HJLS89]. The algorithm either uses Gram—Schmidt orthogonalization via the
wi ; and ||/I;j}x||2 or Givens Rotation with square roots via the 7 ; .

Ezxact Integer Arithmetic. For rational x = (q1,...,qn)/¢n € Q" SCFA per-
forms at most O(n* (n + |loge|)) arithmetic operations on integers of bit length
O(n + maxi<i<n |logg;| + |loge|). Arithmetic steps use the coordinates of the



vectors b;, a; and the numerators and denominators of the rational numbers
pi iy ||bj2||? . The algorithm uses Gram—Schmidt orthogonalization. The claimed
upper bound on the bit length of all integers follows by adjusting the analysis
of the L3-algorithm in [LLL82] to our algorithm.

5 Numerical Stability of the Floating Point Algorithm

The algorithm is given a rational input = = (q1,...,¢n)/¢n € Q™. Orthonor-
malization of z,b1,...,b, is done by Givens Rotation via the floating point
numbers 7; ; 1= p; ;||bj 2| . We study floating point errors of the 7 ; and the
correctness of swaps bg_1<>bg .

Every arithmetic operation +, —, -, /, Vo [ | generates a floating point
error when its result is rounded to the nearest floating point number. Let ¢’
denote the floating point value of a real number ¢ with (floating point) error
t —t' and relative error (1 —t'/t). Let r denote the number of precision bits of
the floating point arithmetic and 27" the maximal relative error. We use ITEEE
754 double precision format with r = 53.

Givens Rotation. The n x (n+ l)-matrix B :=(b; ;) = [#,b1,...,b,] has
a unique decomposition B =U -LT where L is a lower triangular ma-

trix and U 1is an orthogonal n x n-matrix. Hence L =(7;)o<ic<» and
15520
bl,r bn—l,r

U= H%H, T . Since U is orthogonal we have LT =UT B.
: [ 1,:0” [ n—l,x”

UT = U~ is product of elementary rotations (ER) G; ; with 1 < j <i<n.If

B =(b;;) = [;13,31_, ..., b,] denotes the product of B with all previous ER then

B — G; j B puts b; ; to zero by transforming the column vectors b; EJ-.

Floating Point Errors. Let |B| := maxg<;i<n ||bi||. Note that |B| = |B]| holds
since the G; ; are orthogonal. Multiplying B with G; ; yields an error ||b; — 3;” ,
[|6; — E:H < 7n277|B|, see pp. 131-139 in [Wi65]. This also holds for the multi-
plication by several G; ; with pairwise disjoint sets {i, j} . Following Gentleman
[GeT5] we can distribute the (n —2) (n — 1)/2 many ER G, ; for U into 2n — 3
stages, each containing pairwise disjoint (; ;. This way the error of the 7; ;
produced by Givens Rotation is at most 7 (2n — 3) 277 | B|, see [GeT5], [H95].

We call a swap by, _1 by good if it decreases 7;_1 _1,1.e. if the swap condition
The1 k-1 > (Tgyk + T1;27k_1)1/2 holds before a swap.

Theorem 6. If %Téz_l’k_l > Tlfk + Tlfk_l holds for the rounded T-values of a
Givens Rotation for the actual basis B and 1951277 |B| < m,_q k_1 the swap
by _1by 1s good.



Proof. Above, we have shown that the error of the matrix [31, .. .,En] = (TM)T
satisfies ||bx_1 — 52_1” |16 = B;H <7(2n-3)27"|B| and thus

2 2 1/2
Th—1k—1— (Tok + T k—1) >

(1_\/% Tk—lyk—l‘*\/gﬁé—ucq—(Té?k—1+ﬂfk)]/2_(\/§+l) 7(2n-3)27"|B|.

By assumption \/gré_17k_1— \ /Tlfk_l + Tlfk-i— 27"*1 > 0 holds where 27"F!

bounds the errors in evaluating the swap condition. These inequalities imply
Tholk—1 > (7‘37k + 7'1371,\7_1_)1/2 since 14(\/§+ 1)/(1 - %) < 195. |

By the argument of Theorem 6 the inequalities %TkZ_l o1 > TR+ TR 1
1651 27" |B] < Th_1 k-1 imply that the swap condition

3 72 /2 /2 _
T Th—1 k-1 2 Thk—1 T Thk holds for the rounded r—values. (Here we use that

14 (\/g—k 1)/(\/§ - \/g) < 165). Therefore the L3-reduction step generates a

reasonably good approximation of an L3-reduced basis.

Good Swaps for SCFA. From inequality (5) and since the basis B before
a swap is reduced in size we have |B| < /n2%/2¢ 1 (320, ¢?)*/?. Hence by
Theorem 6 a swap bg_1-br of SCFA is good if 741 x—1 > ¢ and

195022727297 max|q;| < 1.

E.g.for r =53, ¢! =16, |¢;| < 220 this inequality holds up to n = 18. Since
Te—1,k—1 > ¢ holds for all but a few exceptional swaps we see that SCFA is stable
for 71 =16, max; |¢;| < 22° up to dimension 18. In fact our experiments show
that the stability of SCFA is even much better.

Exzperimental Results. We distinguish the two cases of termination:

— an exchange step b,_1 < b, results in 7, , # 0 and in an integer relation a,,
for x

— maxj=1,. n ||)b\z7x|| < € yields a nearby point 2’ # z .

The last column of our table reports the number of occurences of the second
case. In the first case we check that the vector a, satisfies < a,, 2 >= 0.

Each line of the table shows the results for 10 input vectors
z:=(q1,...,qn)/qn €EQ™ where the g; €r[0,29 — 1] are random integers. With
@ = 45 we almost exhaust the 53 precision bits of double precision floating point.
We see that the average length of the output vector a,, increases at most linearly
with €', For n = 10 we have 16 < A(z) < 58.45 for all 10 inputs.



n, €: parameters

of SCFA
| n|e_]| Q|av. len| av. dist|av. time|ﬁ af:’| Q: the above
10[ 4[45] 7.53[1.987e+7[  0.18] 10 parameter
10{ 8|45] 8&.71 20.76 0.28| 10 av. len : average length
10| 16|45 21.46 4.7 0.47| 10 of the output
10| 24|45| 20.40 0.54 037 9 vector a,
10| 32{45| 30.23 0.0 0.37] 3 per 10 inputs
10] 6445 29.95 0.0 047 0 av. dist : average distance
20| 2|45 4.17|2.256e+4 3.07] 10 from z to z'
201 3|45| 6.27|1.124e+3 4.26| 10 per 10 inputs
20| 4)45)  8.68 0.04 54114 av. time :average time in
20| 6|45 7.92 0.0 5.34] 0 d
seconds per
modified SCFA 10 inputs on
20| 16|45 7.92 0.0 541 0 a HP 715/50
40| 16|45 7.87 0.0 75.01 0 with 62 MIPS
60| 16|45 10.83 0.0 328.14| 0 42! number of
80| 16|45 7.45 0.0 958.77| 0 nearby points
100| 16{45| 6.32 0.0 2268.43| 0 z' + x for
10 inputs

In dimensions n > 20 and @ = 45 SCFA runs out of numerical precision.
To improve the stability we perform before each size-reduction step and before
each swap bg_1<bg a fresh Givens Rotation for the actual vectors z,b1,...,b,,
so that Theorem 6 applies. With this modification, SCFA becomes numerically
stable up to dimension 100 and @ = 45.

Reasonable running times demonstrate not only the efficiency but also the
stability of SCFA, they show that good swaps bg_1<=by prevail. Then the output
a, 1s most likely correct since a faulty output a, means a bad swap b,,_1 b, .
The fact that SCFA always finds integer relations a,, as expected shows its
stability.
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