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1 Introduction

One of the important questions in computational complexity theory is whether every NP problem is solvable
by polynomial time circuits, i.e., NP C?P/poly. Furthermore, it has been asked what the deterministic time
complexity of NP is if NP C P/poly. That is, if NP is easy in the nonuniform complexity measure, how
easy is NP in the uniform complexity measure? Let P7(SPARSE) be the class of languages that are
polynomial time Turing reducible to some sparse sets. Then it is well known that P7(SPARSE) = P /poly.

Hence the above question is equivalent to the following question.
NP C?’P;(SPARSE).

It has been shown by Wilson [18] that this question is oracle dependent. Hence it seems difficult to give
an absolute answer to this question at present. In the past, many efforts have been made to consider the
question whether NP is not included in some subclasses of Py (SPARSE). Since P (SPARSE) is the class
of languages that are Turing reducible to some sparse sets, one way of obtaining subclasses of Py (SPARSE)
is to consider some restrictions on the reducibility. For example, Mahaney [10] showed that if all NP sets are
many-one reducible to some sparse set, then P = NP. Subsequently this result was improved by Ogihara

and Watanabe [12] to the case of truth-table reducibility with constant queries, i.e.,

NP # P = NP ¢ P,,;(SPARSE).



Other subclasses of P7(SPARSE) are obtained by considering P-selective sets introduced by Selman [13].
A set A is P-selective if there exists a polynomial time computable function that selects one of two given
input strings such that if any one of the two strings is in A, then also the selected one. Let SELECT denote

the class of P-selective sets. Then we know the following facts:
1. (Selman and Ko (see [14])) Py (SPARSE) = P (SELECT).

2. (Watanabe [17]) P7(SELECT) ¢ P,,(SELECT).
Regarding our above question, the following results are known:

1. (Selman [13]) If P # NP, then NP ¢ P,,(SELECT).

2. (Agrawal and Arvind [1], Beigel, Kummer and Stephan [3], Ogihara [11]) If P # NP, then NP ¢

P,ot(SELECT) for all o < 1.

The condition @ < 1 in the item 2 seems difficult to be removed. In the following, we will remove this

condition under a stronger, reasonable hypothesis. We show that
up(NP) #0= NP ¢ P,(SELECT).

Many evidences have been presented by Lutz and Mayordomo [9] and Kautz and Miltersen [6] that this

stronger hypothesis is reasonable. For example, the following results are known:

1. (Lutz and Mayordomo [8]) If p,(NP) # 0, then there exists an NP search problem which is not

reducible to the corresponding decision problem.

2. (Lutz and Mayordomo [8]) If u,(NP) # 0, then the “Cook versus Karp-Levin” conjecture holds for
NP.

3. (Lutz and Mayordomo [9]) If pu,(NP) # 0, then for every real number a < 1, every <I,_,,-hard

language for NP is dense.
4. (Kautz and Miltersen [6]) For a Martin-Lof random language A, ul‘;‘(NPA) # 0.

We also give a partial affirmative answer to a conjecture by Beigel, Kummer and Stephan [3]. They
conjectured that every <P,-hard set for NP is P-superterse unless P = NP. We will prove that every

<P.-hard set for NP is P-superterse unless NP has p-measure 0.



We close this section by introducing some notation. N and Q(Q™) are the set of natural numbers and
the set of (nonnegative) rational numbers, respectively.

Y = {0, 1} is the binary alphabet, ¥* is the set of (finite) binary strings, and X" is the set of binary
strings of length n. The length of a string z is denoted by |z|. < is the length-lexicographical ordering on
T* and z, (n > 0) is the nth string under this ordering. A is the empty string. For strings z,y € ¥*, zy is
the concatenation of z and y.

A subset of ¥* is called a language, a problem or simply a set. Capital letters are used to denote
subsets of X* and boldface capital letters are used to denote subsets of X°°. The cardinality of a language
A is denoted by ||A||. We identify a language A with its characteristic function, i.e., z € A iff A(z) = 1.
For a language A C X* and a string z € X*, Alxz denotes the finite initial segment of A below z, i.e.,
Ale = {y 1 y < 2 & y € A}, and we identify this initial segment with its characteristic string, i.e.,
Alzn = A(z0) - - A(zn-1) € T*.

We will use P and E; to denote the complexity classes DT IM E(poly) and DTIM E(2F°Y), respectively.

2 Resource Bounded Measure and Polynomial Time Membership
Comparable Sets

We first introduce a fragment of Lutz’s effective measure theory which will be sufficient for our investigation.

Definition 2.1 A martingale is a function F : ¥* — Rt such that, for all x € ¥*,

)= £ 45 F(20)

A martingale F succeeds on a set A if limsup,, F(A]z,) = co. S®[F] denotes the class of sets on which the

martingale F succeeds.

Definition 2.2 (Lutz [7]) A class C of sets has p-measure 0 (u,(C) = 0) if there is a polynomial time
computable martingale F : ©* — Qb which succeeds on every set in C. The class C has p-measure 1

(11, (C) = 1) if up(C) = 0 for the complement C = {A: A ¢ C} of C.
We need the following two theorems by Lutz.

Theorem 2.3 (Lutz [7]) Let F : N x ©* — Q% be a function such that

1. Forallk € N and x € ¥*, F(k,x) is computable in time polynomial in k + |z|.



2. For each k € N, Fy(z) = F(k,z) is a martingale.
Then C = {A: Fj, succeeds on A for some k € N} has p-measure 0.
Theorem 2.4 (Lutz [7]) pp,(E2) # 0.

Jockusch [5] defined a set A to be semirecursive if there is a recursive function f such that for all z and

Y,
L f(z,y) € {z,y}-
2. If {z,y} N A # 0, then f(z,y) € A.

We call the function f a selector for A. Selman [13] considered a polynomial time version of semirecursive
sets and defined a set A to be P-selective if A has a polynomial time computable selector. P-selective sets
have been widely studied, see, e.g., [1, 3, 11].

For a set A, we identify A and its characteristic function. Let f be a selector for A. If f maps a pair
(z,y) to y, then we have “z € A - y € A”, equivalently, “A(z)A(y) # 10”. Thus we can view a selector for
A as a function f that maps (z,y) to z = 01 or 10. Here we require z € {01,10}. One natural extension is

to remove this condition, i.e., let z € X2

Definition 2.5 (Beigel [3]) A set A is P-approximable if there is a k € N and a polynomial time computable
function f : Hi.:ol Y* — F such that for all g, -+, 25_1 € X%, f(zo, -, 25_1) # A(20) - A(ws_1). A set

A is P-superterse if and only if A is not P-approzimable.

Note that the above definition of P-superterseness is a little different from Beigel’s [2] original definition.

Ogihara [11] further introduced the following notion of polynomial time membership comparability.

Definition 2.6 (Ogihara [11]) Let g : N — N* be a monotonic, nondecreasing, polynomial time computable

and polynomaial bounded function.

1. A function f is called a g-membership comparing function (a g-mc-function for short) for A if for

every xo, -+, Em—1 with m > g(max{|zo|, -, |tm=-1]}),

flzo, ,2m=1) € X" and A(zo) -+ A(®m=1) # f(zo, , &m=1).

2. A set A is polynomial time g-membership comparable if there exists a polynomial time computable

g-me-function for A.



3. P-me(g) denotes the class of all polynomial time g-membership comparable sets.
Theorem 2.7 (Ogihara [11]) Py(SELECT) C P-mc(LOG), where LOG = {clog : ¢ > 0}.
Theorem 2.8 (Ogihara [11]) P-mc¢(LOG) C P-me(n).

The following proposition is obvious.

Proposition 2.9 1. If A 1s P-selective, then A 1s P-approzimable.
2. If A is P-approzimable, then A € P-me(c) for some constant ¢ € N; Moreover,
P-appro = U.e nP-me(c),
where P-appro is the class of P-approrimable sets.

The next proposition gives an important property of P-approximable sets which we need latter. If A
is P-approximable then, for strings zg, -+, 2,-1 € ¥*, we can compute in polynomial time a subset of ¥*

which contains A(zg) -+ A(zs-1).

Proposition 2.10 (Beigel [2]) If A is P-approzimable via k € N, then there is a polynomial time computable

function which computes for any s strings xg, - xs—1 a set of at most

sen=()+ (1))

elements from £° which contains A(zg) - A(zs_1). For a fired k, S(s, k) is a polynomial in s of degree
k—1.

Let Py (P-appro) be the class of sets which can be <!,-reduced to some P-approximable sets. Then we

have the following theorem.
Theorem 2.11 P (P-appro) C P-mc(n).

Remark: Theorem 2.11 is actually a corollary of Corollary 2.7 in Beigel et al. [3]. For the reason
of completeness, we will give the proof here. The idea underlying the following proof is the same as that
underlying the proof of Theorem 3.3 in Ogihara [11].

Proof. Let A be a P-approximable set via k € N, and let L <!, A via a machine M. Assume that the

number of queries in the reduction I <, A is bounded by a polynomial f. Givenn € N and zq, ---2,_1 € B*



such that n > max{|zo|, -, |®n-1|}, for each i < n, let @; denote the set of queries of M on z;, and

=QoU---UQ@,_1. Then |l < f(n) and, for sufficiently large n
Q=Q Q < fln : y large n,
1QI* < (nf(n))* < 2.

By Lemma 2.10, we can compute, in time polynomial in ZyEQ ly|, and thus, in time polynomial in n, a set
of at most ||@Q||* elements which contains the characteristic sequence of A on domain Q. So we can compute
in time polynomial in |z| a sequence g(zq,---,2,—1) € X" such that L(zg) - - L(zn-1) # g(zo, -+, Zn_1).

Le., g witnesses that L € P-mc(n). [ |

In order to prove our main theorem, we prove a lemma at first.

Lemma 2.12 Let 1 < nq,ns,--- be a sequence of numbers such that for all i, njy1 < n; +logn;. Then

) n 1
limy, oo [T, (1 + n_) = 00.

Proof. By a simple induction, it is easy to check that, for almost all i, n; < ilogiloglogi. Hence

li — > 1l — ] =
n1—>n;ozljl:<1+nz> —ner;oE<1+ilogiloglogi> >

Theorem 2.13 P-mc(n) has p-measure 0, i.e., p,(P-mc(n)) = 0.

Proof. Let fq, f1, -+ be an enumeration of all polynomial time computable functions.
For each k € N, define a martingale Fy, as follows. Let n; = i for 7 < 5 and n;y1 = n; + [logn;] for i > 5.
For |z| < ns, let Fi(z) = 1. For z € £+ (i > 5), fix the initial segment y € "¢ of z and let
Fr(z) = (]+m) Fi(y) if e # yfi(zni, s 2nig0-1)
' 0 ifx:yfk(znn"'aznzﬂ—l)

And, for x € ¥* such that |z| # n; (i € N), let

Fk(T) _ Fk(x‘O) —;— Fk(xl)

Now we show that for any set A, if fi witnesses that A is n-membership comparable, then Fj succeeds

on A. Obviously, for i > 5,

1 1 1 1
Fk(Arzni+1) = <1+ 2[1Ogn5] — 1) <1+ 2[]087741] — 1) Z <1+ E) <1+ n_z> .

By Lemma 2.12, limsup; Fi(A[zn,;) = o0, i.e., F) succeeds on A.



It is straightforward that for all k € N and 2 € ¥*, Fi(z) is computable in time polynomial in k + |z|.
Hence p, (P-mc(n)) = 0. [

By combining Theorem 2.4 and Theorem 2.13, we get
Theorem 2.14 Es ¢ Py (P-appro).
Corollary 2.15 (Toda [15]) Es € P(SELECT).

Note that Toda proved Corollary 2.15 using a direct diagonalization. The importance of Theorem 2.13

is that it has implications on the structure of NP. By combining Theorem 2.13 and Theorem 2.11, we get

Theorem 2.16 If NP does not have p-measure 0, then no P-approzimable set is <,-hard for NP, i.c.,

every <U,-hard set for NP is P-superterse unless pi,(NP) = 0.
Corollary 2.17 If NP does not have p-measure 0, then no P-selective set is <!,-hard for NP.

Theorem 2.16 gives a partial affirmative answer to the conjecture of Beigel, Kummer and Stephan. Note
that our hypothesis pu,(NP) # 0 is a reasonable scientific hypothesis (see Lutz and Mayordomo [9]). It is
worthwhile to mention that, in the above, we used the uniform constructive method initiated by Lutz and
Mayordomo [9]. At first, we proved Theorem 2.13, a measure-theoretic result concerning the quantitative
structure of Eg, and then get the qualitative separation result: Theorem 2.14. More precisely, the proof of

Theorem 2.14 consists of the following two components:
1. Prove that p, (P (P-appro)) = 0.
2. The measure conservation theorem: Theorem 2.4.

One of the important feature of this method is that it gives an automatic witness for the qualitative
separation. For example, in our setting, by Theorem 2.13, for large enough k, every n*-random language A

is not <%,-reducible to any P-approximable set.
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