Electronic Colloquium on Computational Complexity - Reports Series 1996 - available via:

E(:(:(: FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW:

http://www.eccc.uni-trier.de/eccc/
T R96- 022 Email: ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

Optimal Ordered Binary Decision Diagrams for
Tree-like Circuits

Martin Sauerhoff Ingo Wegener Ralph Werchner
FB Informatik, LS II FB Mathematik
Univ. Dortmund Univ. Frankfurt a. M.
44221 Dortmund 60054 Frankfurt
Germany Germany
Abstract

Many Boolean functions have short representations by OBDDs (ordered bin-
ary decision diagrams) if appropriate variable orderings are used. For tree-like
circuits, which may contain EXOR-gates, it is proved that some depth first
traversal leads to an optimal variable ordering. Moreover, an optimal vari-
able ordering and the resulting OBDD can be computed in time linear in the
number of variables and the size of the OBDD, respectively. Upper and lower
bounds on the OBDD size of the functions representable by tree-like circuits
are derived. For, e.g., 1024 inputs, we show that all tree-like circuits have
OBDDs of size at 5349 and we give an example of a tree-like circuit requiring

an OBDD of size 5152.

Email Addresses
sauerhof/wegener@ls2.informatik.uni-dortmund.de
werchner@mi.informatik.uni-frankfurt.de

Acknowledgements
The first and second author have been supported by DFG grant We 1066/7-3.

1. INTRODUCTION

Various types of decision diagrams (DDs) are often used in CAD systems for efficient
representation and manipulation of Boolean functions. Areas of applications are among
others verification of combinational and sequential circuits, automata, models, and pro-
tocols, timing analysis, and test pattern generation. The most popular data structure are
ordered binary decision diagrams (OBDDs) introduced by Bryant [2] who has also written
an excellent survey article [3].

In [2], Bryant has shown that the OBDD size is very sensitive to the variable order-
ing. Since it is NP-hard to compute an optimal variable ordering, many heuristics have
been proposed. Early attempts (Butler, Ross, Kapur, and Mercer [4], Jeong, Plessier,
Hachtel, and Somenzi [7], Malik, Wang, Brayton, and Sangiovanni-Vincentelli [8], and
Ross, Butler, Kapur, and Mercer[12]) compute a variable ordering directly from the cir-
cuit representation. These variable orderings are often not good enough and only used as
starting point for local search and simulated annealing algorithms (Bollig, Lobbing, and
Wegener|[1], Fujita, Matsunga, and Kakuda [5], Ishiura, Sawada, and Yajima [6], Mercer,
Kapur, and Ross [9], Panda and Somenzi [11], and Rudell [13]). Very good results are
obtained by the group sifting algorithm [11]. Nevertheless, it is important to choose a
good starting ordering in order to reduce the number of sifting operations.

Another problem is to increase the class of circuits such that optimal variable orderings
can be computed efficiently. This may also lead to new heuristics. For tree-like circuits
over the basis of binary gates of type AND (AND, OR, NAND, NOR, Ty, 27, T+vy, ©+7)
it is easy to see that OBDDs according to an arbitrary DFS variable ordering have the
optimal number of exactly n nonterminal nodes, where n is the number of variables. A
DFS vartable ordering is obtained by a depth first search traversal starting at the primary
output. If we also allow EXOR- and NEXOR-gates, different DFS variable orderings may
lead to OBDDs of different sizes. It is not at all obvious that some DFS variable ordering
is optimal. This situation is the starting point of our paper. Tree-like circuits are basic
types of circuits and interesting for their own sake. Furthermore, results on tree-like
circuits may lead to better heuristics for almost tree-like circuits.

In Section 2, OBDDs, DFS variable orderings, and tree-like circuits are defined formally.
In Section 3, it is proved that some optimal OBDD variable ordering for functions rep-
resented by a tree-like circuit over the full binary basis is a DFS variable ordering. This
structural result and its prootf lead directly to a theoretically and practically efficient al-
gorithm for the computation of an optimal variable ordering for tree-like circuits and the
corresponding OBDD. An optimal variable ordering can be computed in linear time with
respect to the size of the tree-like circuit. The corresponding OBDD can be computed in
linear time with respect to its size. With these results it is no problem to treat tree-like

circuits of up to 10 inputs.

Moreover, it is desirable to have a bound on the size of optimal OBDDs for functions
representable by tree-like circuits. In Section 4, we prove such a bound, which is less than
1.36n° for B = log,(3 + V/5) < 1.1943. E.g., for n = 1024, we obtain the bound 5349. In
Section 5, we present tree-like circuits such that the optimal OBDDs for the represented
functions have size ©(n”). For e.g. n = 1024, this function needs 5152 nodes.

2. DEFINITIONS AND KNOWN RESULTS

OBDDs use the syntax of general ordered decision diagrams.

Definition 1: A wvariable ordering of the variables z,...,z, is a permuted sequence
Tr(1),--.,%x(n) for some permutation 7 on {1,...,n}. An ordered decision diagram re-
specting the variable ordering (1), ..., Z(n) is a rooted directed acyclic graph G = (V, E).
The node set V' contains two terminal nodes labeled with 0 and 1 and non-terminal nodes,
each labeled with one of the variables. Each non-terminal node v has exactly two suc-
cessors denoted by low(v) and high(v). If a successor of a node with label x; has the label
z;, then x; has to precede z; in T (1),..., Zr(n).

The following definition explains the semantics of OBDDs.

Definition 2: The terminal nodes of OBDDs represent the constant functions given by
their labels. A non-terminal node v with label z; represents the function f, := 7 fisuw(w) +
T; frigh(vy (Shannon decomposition).

It is well-known that OBDDs are a canonical form of Boolean functions if the variable
ordering is fixed. I.e., the OBDD of minimal size is unique and called reduced. For
further purposes it is essential to describe which functions are represented at the nodes
of reduced OBDDs. A function f is said to depend essentially on a variable z;, if the
subfunctions (cofactors) fi,=0 and fz,=1 are not equal.

Theorem 1: Let zq,...,z, be the given variable ordering and let f be defined on
21,...,%,. The reduced OBDD for f contains as many x;-nodes as there are differ-
ent subfunctions fiu =4, ,..2i_1=a;_y» for ai,...,a;_y € {0,1}, which depend essentially on
Z;.

The proof of Theorem 1 is due to Sieling and Wegener [14].

In this paper, we consider the full binary basis B} of all ten binary operations depending
essentially on both inputs, namely zy (AND), 2 +y (OR), Ty (NAND), z +y (NOR), 7y,
2y, T4y, z+7, zHy (EXOR) and z &y (NEXOR).

3

Definition 3: A tree-like circuit is a binary tree with n leaves labeled by different vari-
ables z1,...,z,. The inner nodes are gates labeled by functions from Bj.

Applying de Morgan’s rules and the fact that + &y = T & y, we can push all negations
towards the inputs of the tree-like circuit without altering the resulting function. Elim-
inating the negations of the inputs changes the function, however, the structure of the
OBDD is preserved. Substituting ; with x; corresponds to switching the high- and low-
successor of every z;-node in the OBDD. This justifies that, subsequently, we will only
consider circuits over the basis {AND, OR, EXOR }.

Definition 4: A DFS variable ordering for a tree-like circuit is a variable ordering ob-
tained by some depth first traversal starting at the primary output of the circuit.

Obviously, there are 2"~ depth first traversals leading to different DFS variable orderings.
All these orderings are known to be optimal for OBDDs if the tree-like circuit does not
contain EXOR- or NEXOR-gates. It is easy to see that in the more general case of the
full binary basis different DFS orderings may lead to different OBDD sizes.

3. AN EFFICIENT ALGORITHM FOR THE COMPUTATION OF AN OP-
TIMAL VARIABLE ORDERING FOR OBDDS AND TREE-LIKE CIR-
CUITS

All heuristics for the computation of good variable orderings suggest to use some DFS
variable ordering for tree-like circuits. But we know for each known heuristic of a tree-like
circuit where this heuristic does not construct an optimal variable ordering. Since the
variable ordering problem has a lot of surprising features, we cannot be sure that we can
restrict ourselves to DFS variable orderings. First we prove that, searching for an optimal
variable ordering for a tree-like circuit, it is sufficient to consider DFS variable orderings
only. This proof changes a well established hypothesis into a theorem. But the proof has
even more consequences. It is the basis of an efficient algorithm for the computation of
an optimal variable ordering.

Let f be a Boolean function computed by a tree-like circuit. Then we represent f as

f(xla"'axkayla"'aym) :g(xla"'axk)®h(y17"'7ym)

for some functions ¢ and & represented by tree-like circuits and a binary Boolean op-
erator ®. A naive approach is the following. If (z1,...,2%) and (y1,...,ym) are op-
timal variable orderings for g and h resp., perhaps even DFS variable orderings, then
(T1yee s Ty Y1y vy Ym) OF (Y1seeeyYmy®1,...,2Tx) is an optimal variable ordering for f.

4

But we have to be careful. If ® = &, an OBDD for f according to (z1, ..., Tk, ¥1, -- -,
Ym) consists of an OBDD for ¢ at the top and an SBDD (shared BDD, see Minato, Ishiura
and Yajima [10]) for (h, %) at the bottom. Thus in the next stage of our analysis, we need
to consider SBDDs for (h,h) too. Can this lead to more and more cases in subsequent
stages? We prove that for each function f’ represented in the circuit we only have to
consider OBDDs for f/, OBDDs for f/ and SBDDs for (f, /). Hence, we only have to
consider a limited number of cases. Moreover, size(f') = size(f’), where size(f1, ..., f,) is
the minimal SBDD size (number of non-terminal nodes) for (fi,..., f,) according to an
arbitrary variable ordering, and the same variable orderings which are optimal for f’ are
also optimal for f'.

Lemma 1: Let f(z1,..., 25,91,y Ym) = g(T1,.. ., 2) Qh(Y1,. .., Ym) for some @ € Bj.
Then there is an optimal OBDD variable ordering for f where all z-variables are tested

before all y-variables or vice versa. The same holds for (f, f).

Proof: Since negations have no effect on the OBDD size, it is sufficient to consider the
two cases where ® = A and ® = §. Let © be a variable ordering of the variables of
f. W.lo.g. the first variable in 7 is an z-variable if ® = &, and the last variable in
7 is a y-variable if ® = A. Then we claim that the following variable ordering =’ is at
least as good as w. With respect to 7’ we start with all z-variables in the same order as
prescribed by « followed by all y-variables in the same order as prescribed by =. After
renumbering, we can assume that 7' is the variable ordering (x1,..., 2k, y1,...,Ym). Let
(i be the reduced OBDD (SBDD) for f ((f, f)) according to 7 and (' the same for 7’
We claim that G contains for each variable z at least as many z-nodes as G'. We prove
the claim applying Theorem 1, which holds for SBDDs as well. We consider eight cases
distinguishing whether we investigate f or (f, f), A or &, and z- or y-nodes.

Case 1 (f,A,x;).
There is some j € {0,...,m} such that, by Theorem 1, the number of x;-nodes in G is
equal to the number of different functions

f|$1=a1,---,l‘z‘—1=az‘—1,y1=bl,---,yj=bj = Ylzi=ay,..,wic1=ai_1 N h|y1=b1,---,yj=bj

depending essentially on x;. The number of z;-nodes in G’ is equal to the number of
different functions

f|$1=a1,---,xz‘—1=az‘—1 = Ylz1=a1,...ric1=a;_1 Ah

depending essentially on z;. Since h depends essentially on all its variables, we can
choose by,...,b; € {0,1} such that hjy,—s, .., = is not the constant 0. Already for this
replacement of the y-variables by constants we obtain in (G as many z;-nodes as in G’.

Case 2 ((/, /), A, 2i).

Here we have to consider f and f. For some j, the number of z;-nodes in G is equal to
the number of different subfunctions

Gizy=ay,..,zi_1=a;_1 A h|y1=b1,...,yj=bj and g|x1=a1,...,xi_1=a:_l A h|y1=bi,...,yj=b;

essentially depending on z;. Note that j < m by the above assumption and the fact
that we are in the case ® = A. Since by,...,b; can be chosen such that Ay, — ., -
is not the constant 0 or 1, the number of z;-nodes in G is at least twice the number of
different subfunctions g|;,=a,,...z;_,=a,_, essentially depending on z;. On the other hand,
the number of z;-nodes in GG’ is exactly twice this number.

Cases 3 (f, 3, ;).

For some j, the number of x;-nodes in G is equal to the number of different subfunctions

Ylz1=a1,...xic1=ai_1 D h|y1=bl yeeny3=by

essentially depending on z;. But this is at least the number of different subfunctions
Glzr=a1,...zi1=a;_1 D h essentially depending on x;, which is the number of z;-nodes in G'.

Cases 4 ((f,[)),®,x;).

The number of x;-nodes in G’ is equal to the number of different subfunctions

Gz1=a1,..,zi_1=a;_1 © h and g|x1=ai,...,xi_1=a§_l S h

essentially depending on x;. This is equal to the number of different subfunctions

Glz1=a1,...zi_1=a;_1 and 9|z, =al,..,ri1=al_,

essentially depending on x;. The number of z;-nodes in G is at least that much, even
considering just restrictions with y; = ... =y; = 0.

Case 5 (f,1.uy)
There is some 2 such that, by Theorem 1, the number of y;-nodes in G is equal to the
number of different functions

f|xl:a17-"7l‘l‘:ai7y1=b17---7yj—l:bj—1 = Ylz1=a1,...,zi=a; A h|y1:b17---7yj—1=bj—1

depending essentially on y;. The number of y;-nodes in GG’ is equal to the number of
different functions

f|931=a17-~~733k=ak7?11=b1,~~-7y3—1=bj—1 = Jiz1=a1,....zp=ay, A h|y1=b17---7y3—1=b;‘—1

depending essentially on y;. Obviously, gz, =q,,. cx=q, 15 @ constant. If the constant is
0, the corresponding subfunction of f cannot depend essentially on y;. Otherwise we

6

consider subfunctions of k. Similarly to Case 1, it is sufficient to choose (a1, ..., a;) such
that g|z,=a,,...z;=a; 18 Not the constant 0.

Case 6 ((fa?)’/\ayj>'

For some 7, the number of y;-nodes in (G is equal to the number of different subfunctions

Ylzi=a1,...zi=a; N h|y1=bl,---,yj—1=bj—1 and Y|z1=a},...zi=d! A h|y1:b£7"'7yj—1=bg_1

essentially depending on y;. If ¢+ < k, we can use the arguments of Case 2. If : = £,
in both G and (', the same set of variables is tested before y;. Hence, the number of
y;-nodes in (G is the same as in G'.

Case 7 (f,®,y;).

Here we obtain as many y;-nodes in G’ as there are different functions By =by .oy 1 =b,—1
and hyy,=p,,..y,_1=p,_, & 1 depending essentially on y;. Now we apply the assumption
(remembering that we are in the case ® = @) that the first variable according to 7 is an

z-variable, i.e. in ¢ we consider the functions ¢z, =a,, .. zi=a; © hpy,=t,,. for some

ws¥j—1=bj_1
2 > 1. Since ¢ depends essentially on all its variables, we obtain at least two different

subfunctions gz =q, .. s;=q; leading to the same number of y;-nodes in G as in G'.

Case 8 ((f,1),®,y;).

We can apply the arguments of Case 7. In (/, we get the same subfunctions for f as for

f 0

The assumptions of Lemma 1 are fulfilled for tree-like circuits. Nevertheless, we cannot
apply Lemma 1 directly to the subcircuits. We have to discuss which functions have to
be represented in the two parts of the OBDD for f and the SBDD for (£, f). W.1.0.g. we
consider a variable ordering where the z-variables are tested before the y-variables. The
results of the following case inspection are illustrated in Fig. 1.

Case 1 (f,N).

The OBDD G for f starts with an OBDD (4 for g. The 0-sink of (&1 is identified with the
0-sink of (&, while its 1-sink is identified with the source of an OBDD (5 for h. Considering
also the dual case (y-variables before z-variables) we obtain

size(f) = size(qg) + size(h).

Case 2 ((f, 7). A).

Here, f = g A h and f =g+ h. The SBDD G for (f, f) starts with disjoint OBDDs
and G for ¢ and §. The 0-sink of G is identified with the 0-sink of G, and the 1-sink
of 1 is identified with the 1-sink of (G. The 1-sink of (& is identified with the source for
h of an SBDD Gy for (h, k), and the 0-sink of G is identified with the source for % of

Casel Case 2

|

0] 0]

Case 3 Case 4

Figure 1: OBDDs and SBDDs for f and (f, f) resp. for the different types of gates.

(3. The resulting SBDD is reduced as we will show now. It is sufficient to prove that z-
nodes cannot be merged. If not, fiz,=a;, ...0i_1=a;y = f|x1=a; zi_1=al_, for some constants

ar,al, ... a;—1,ai_; € {0,1}. This is impossible since there exists some b with h(b) = 0.
Considering the dual case and applying the fact that size(g) = size(g), we obtain

size(f, f) = min{2 - size(g) + size(h, k), 2 - size(h) + size(q,7)}.

Note that the results of the first two cases also hold for f = gV h since size(f) = size(f).

Case 3 (f,9).

The OBDD G for f starts with an OBDD G for g. The 0-sink of (71 is identified with the
source for A of an SBDD G, for (h, k), and the 1-sink of (; is identified with the source
for h of 3. Hence, considering also the dual case we obtain

size(f) = min{size(g) + size(h, h),size(h) + size(g,q)}.

Case 4 ((£,7),0).
The SBDD G for (f, f) starts with an SBDD G for (¢,g). The source for g in Gy becomes

the source for f in G and the source for § the source for f. The 0-sink of G is identified
with the source for h of an SBDD G for (g,), and the 1-sink is identified with the source
for h. Hence, considering also the dual case we obtain

size(f, f) = size(g,q) + size(h, h).

Now we know a lot more. The upper and lower part of optimal OBDDs and SBDDs for
tree-like circuits lead to the same type of problem as the given one. In particular, we can
apply Lemma 1 to these subproblems.

Theorem 2: If f is represented by a tree-like circuit, there exists a DFS ordering which

is an optimal OBDD variable ordering for both f and (f, f).

Proof: We only have to prove that the same DFS variable ordering is optimal for f and
(f,f). This follows from our case inspection. For each gate type there is only one case
where we have to decide whether it is better to test the z-variables before the y-variables
or vice versa. For the other case both decisions are optimal. a

Our considerations directly lead to an efficient algorithm for the computation of an optimal
variable ordering for a tree-like circuit. For each gate g, we compute the size g.sizel
of an optimal OBDD for the function computed at g (which is also denoted by ¢) and
the size g.size2 of an optimal SBDD for (¢,7). Furthermore, we compute an optimal

variable ordering described as list of variables. This can be done easily in constant time,
if the corresponding results are known for both inputs of g. We only have to apply the
results of the above case inspection. Finally, for an input z; the optimal variable ordering
is z;, its OBDD size is 1, and the SBDD size of (z;,7;) is 2. We can treat the gates of a
tree-like circuit in the usual order (given, e.g., as SLIF file) or by a recursive approach
starting at the primary output. In Algorithm 1 we have followed the second approach.
Here we also have to consider negations in order to realize the full binary basis

Algorithm 1: VarOrder(g: gate), returns list of variables

list, 1listl, list2: 1list of variables;

case
g = z;:
g.sizel:=1; g.size2:=2;
list:={z;};
g = —gl:

list:=VarOrder(gl);
g.sizel:=gl.sizel; g.size2:=gl.size2;
g =gl Vg2, g=gl AN g2:

listl:=VarOrder(gl);

list2:=VarOrder(g2);

g.sizel:=gl.sizel + g2.sizel;

sl:=2.gl.sizel + g2.size2;

52:=2.g2.s1zel + gl.size2;

if s1 < s2 then g.size2:=s1; list:=listl + list2
else g.size2:=s2; list:=1ist2 + listil

fi;
g =gl @ g2:

listi:=VarOrder(gl);

list2:=VarOrder(g2);

g.slze2:=gl.size2 + g2.size2;

sl:=gl.sizel + g2.size2;

s2:=g2.sizel + gl.size2;

if s1 < s2 then g.sizel:=s1; list:=listl + list2
else g.sizel:=s2; list:=1ist2 + listl

fi;
esac;

return list;

end VarQOrder

10

Theorem 3: Algorithm 1 computes an optimal OBDD variable ordering for a tree-like
circuit on n variables in time and space O(n).

Proof: We only need time O(1) for each gate if we ensure by a pointer to the end of each
list that we can append lists in constant time, which gives the claimed time bound. For
the space bound, we remark that we create lists only for the variables. Later we append
lists, 1. e. we automatically destroy the lists for the predecessors. Hence, the total length
of all lists is always bounded by n. a

Knowing an optimal variable ordering, we can construct the corresponding OBDD with
the well-known synthesis algorithm of Bryant [2]. All gates of a tree-like circuit represent
subfunctions of the primary output. Hence, the optimal OBDD for the function computed
at some gate is always smaller than the optimal OBDD for the primary output. The
synthesis algorithm is very fast in practice but it does not guarantee a run time linear in
the size of the resulting OBDD. Our inspection of the four different cases illustrated in
Fig. 1 is also a basis of a direct construction of the OBDD. Then we can guarantee to
construct the OBDD in linear time with respect to its size. However, we do not recommend
to implement this approach, since the synthesis algorithm is fast enough for all practical
purposes. Nevertheless, it is a theoretically interesting result that for tree-like circuits
and a DFS ordering the OBDD directly can be constructed without synthesis algorithm
in linear time.

Usually, one does not work with OBDDs in its pure form presented here. Minato, Ishiura,
and Yajima [10] have introduced OBDDs with complemented edges. We show that, for
tree-like circuits, there is a DFS variable ordering which is an optimal variable ordering
for OBDDs with and without complemented edges. For this purpose, we use the notation
size.e for OBDDs with complemented edges and size(-, 7) for the size of reduced #-OBDDs.

Theorem 4: For each Boolean function f and each variable ordering 7 it holds that
size(f, f,m) = 2-size..(f, 7). If f is represented by a tree-like circuit, the variable ordering
computed by Algorithm 1 is optimal for OBDDs with and without complemented edges.

Proof: The second assertion follows from the first one. The first one implies that the
same variable orderings are optimal for SBDDs without complemented edges for (f, f)
and for OBDDs with complemented edges for f. The variable ordering computed by
Algorithm 1 is optimal for OBDDs for f and for SBDDs for (£, f).

We prove the first assertion w. 1. 0. g. for the variable ordering zy,...,x,. Let us denote
by fi,..., fr the different subfunctions f; =4, 2, ,=a,_, depending essentially on z;. If
we construct the z-level of the reduced 7-OBDD with complemented edges, we can save
the node for f;, if for some i < j, we have f; = f;. Hence, we get r — s nodes if s is the

11

number of indices 5 such that f; = 7]-, for some ¢ < j. If we construct the zj-level of
the reduced 7-SBDD for_(f, f), we can start with 2r nodes for fi,..., fu, f1,..., f,. We

can save a node if f; = f.. But then also f; = f;. Hence, we can save 2s nodes, and
size(f, f,m) = 2r — 25 = 2 - size..(f, 7). O

4. AN UPPER BOUND ON THE OBDD SIZE FOR FUNCTIONS WITH
TREE-LIKE CIRCUITS

By the previous results we are able to efficiently compute optimal variable orderings for
OBDDs and functions represented by tree-like circuits. Now we present upper bounds on
the OBDD size for all functions on n variables representable by tree-like circuits. The
best known bound n'°8% < n!5% due to Wegener [15] is improved significantly.

As before, let f be computed by a tree-like circuit where the output gate computes
f =g ® h. It has been shown in Section 3 that both size(f) and size(f, f) depend on all
of size(g), size(g, §), size(h), and size(h, k). To prove an asymptotically sharp upper bound
on size(f), we have to consider both measures size(f) and size(f, f) simultaneously. We
will inductively prove a bound on ¢(size(f),size(f, f)), for a suitable function ¢ : R —
R;. Let

©(s,t) = max(a1s + ayt,als + aht, als + ajt),

where ay, ay, ay, al,ay,ay € Ry are defined in the Appendix. In the sequel, we will show
that size(f) = O(n?) with 8 = log,(3 + V/5) < 1.1943.
We obtain the main technical tool with the following lemma which is proved in the Ap-

pendix.

Lemma 2: Let s,t, 3,1 be nonnegative real numbers with

IAN A A IA

3
oY

»

e W
VANIVAN
NI

S
—~
V)
o~
— 2

S

N

5 ?

o~

N—
3 Y-}
)

Then we have
99(3+§,23+f) < (m+7h)ﬁ if

and

12

Lemma 3: Let f be a function on n inputs representable by a tree-like circuit. Then we
have

¢(size(f),size(f, F)) < ¢(1,2)n”.
Proof: We prove the lemma by induction on n. For n = 1 the claim holds since, in this

case, size(f) < 1 and size(f, f) < 2.

Let n > 1 and let f be computed by f = ¢ ® h, where ¢ and h are functions on k and m
variables respectively. Set @ = ¢(1,2). By the induction hypothesis we have

plsize(g),size(g,9)) < (&' k)’
o(size(h),size(h, h)) < (a/Pm)P.
We distinguish two cases according to ®.
Case 1 ® = A.
We assume w.l.o.g. that
size(g) < size(h)
or size(g) = size(h) A size(h,h) < size(g, 7).

Then the Cases 1 and 2 in Section 3 together with the first inequality of Lemma 2 yield

o(size(f),size(f, f)) <
<

©(size(g) + size(h), 2 size(g) + size(h, h))
(a'Pk + aPm)?
a

n”.

Case 2 ® = 3.

We assume w.l.o.g. that

or size(h,h) = size(g,g) A size(g) < size(h).

Then the Cases 3 and 4 in Section 3 together with the second part of Lemma 2 yield

©(size(g) + size(h, h),size(g, g) + size(h, h))
(O_él/ﬁk + O_él/ﬁm)ﬁ
a

p(size(f),size(f, [)) <
<

n”.

13

Theorem 5: Let f be a function on n inputs representable by a tree-like circuit. Setting
= ¢(1,2)/p(1,1), we have size(f) < an”.

Proof: By the preceding lemma, ¢(size(f),size(f, f)) < ¢(1,2)n?. Using the fact that
©(1,y) is monotonically increasing in y and that, for s,¢,¢ € Ry, p(cs,ct) = cp(s,t), we
have

size(f) = o(size(f),size(f, f)) p(1,size(f, f)/ size(f))™

< o(1,2)n% (1, 1)

= anﬁ.

O

In the Appendix it is shown how we can fix the parameters in such a way that o < 1.35916.

Theorem 6: Let f be a function on n inputs representable by a tree-like circuit. Then
f can be represented by an OBDD with complemented edges of size at most n”.

Proof: We have

sine(f,) = wlsize(f),size(f,) g(size(f)/ size(f,), 1)
< ol1,2) (0.5, 1)
= 207,
The claim follows with the result of Theorem 4. O

In Table 1 we present concrete values of our upper bounds.

number of | old upper bound new upper bound upper bound for
variables for OBDDs for OBDDs OBDDs with
compl. edges

n nlos3 an® nP

32 243 85 62

64 729 195 143

128 2187 446 328

256 6561 1021 751

512 19683 2337 1719

1024 59049 5349 3935

Table 1: Upper bounds for OBDDs for functions representable by tree-like circuits.

14

Our improvement of the upper bound for OBDDs is significant. Moreover, we have
obtained an even better bound for OBDDs with complemented edges. The use of com-
plemented edges decreases the upper bound by approximately 26.4%. We conclude that
functions with tree-like circuits have small OBDDs which can be computed efficiently.

5. TREE-LIKE CIRCUITS WITH “LARGE” OBDDS

We have seen that no tree-like circuit requires “really large” OBDDs. Now we are inter-
ested in relatively hard tree-like circuits for a given number of inputs. The results will
show how tight the upper bounds of Section 4 are.

We restrict ourselves to circuits consisting of A- and &-gates only. In general, &-gates
are more difficult than A-gates. Moreover, the proofs of the upper bounds suggest to
use tree-like circuits based on balanced trees. We investigate complete binary trees with
alternating levels of A- and B-gates, where the last gate is an G-gate. Since x1Bx.Bx3P 4
is harder than x;x9 @ x3x4 for OBDDs without complemented edges, we have decided to
sometimes start with two levels of @-gates. This leads to the following function, called
Reed-Muller-tree RMT, since the Reed-Muller decomposition rule is based on A- and
d-gates.

Definition 5: RMT, is defined on n = 2* variables. If n = 1, RMT)(x;) = z;. Oth-
erwise, the tree-like circuit is a complete binary tree with k& gate levels. The root is an
B-level. If k£ is odd, the levels alternate between & and A. If k£ is even, the levels also
are alternating with the exception that the first level below the leaves consists also of
d-gates.

Theorem 7: Letn=2k,r=3-|—\/5,3=3—\/5, A1=%<3\/5—|—7),31=%(7—3\/5),

Ay = 11—0 (7\/5 + 15), and B, = 11—0 (15 - 7\/5) Then the minimal OBDD size of RMT,
fulfills

Ayrkl2=1 4 B, gk/2-1 if kis even

AorB=1)/2 1 B, g(k=1)/2 if L is odd.

Moreover, size(RMT,) = ©(n?) for # = log,(3 + V/5).

size(RMT,) = {

Proof: Because of the symmetry of the circuit the DFS variable ordering zq,...,z,
enumerating the leaves from left to right is optimal. Tt is sufficient to compute the size
of the resulting OBDD. Let S; be this OBDD size for n = 2% and T} the corresponding
SBDD size for (RMT,,, RMT,). We know by case inspection that S; =3, 7Ty =4, S, =T,
and T, = 8.

15

Now we apply the results of Section 3 and consider the last two levels of the circuit for
RMT,. Hence,

RMT,(u,v,2,y) = (RMT,/4(u) N RMT,/4(v)) & (RMT,/a(x) N RMT,4(y)) .
We abbreviate this as f = (fi A f2) @ (fs A f1). Then, by the results of Section 3,

size(f) = size(fi A f2) + size ((fg A fa), (fs A f4))
= size(fi) + size(f2) + 2 - size(f3) + size(f4, f1)-

Hence,

Sk = 45k—g + Ti—s.
Also by the results of Section 3
size(f,f) = size (1 A f2), (Fr A F2)) + size ((fs A fa), (T A 1)
= 2-size(f1) + size(fy, fa) + 2 - size(f3) + size(fy, f1)-

Hence,

Ty =4Sk + 2Th—,.
The exact solution for Sy follows with standard techniques. O
We only remark that we also are able to compute exact formulas for Ty. This is interesting

since Ty /2 is the size of the optimal OBDD with complemented edges for RMT, and
n = 2%. We present the exact results for k£ € {1,...,10}.

k 1 2 3 4 5 6 7 8 9 10
Sk 3 7 16 36 84 188 440 984 2304 5152
Te/2 |2 4 10 22 52 116 272 608 1424 3184

Table 2: S is the minimal OBDD size for RMT, and n = 2%, Ty/2 the corresponding
value for OBDDs with complemented edges.

For n = 512 we know that RMT, needs OBDDs with 2304 nodes and no function rep-
resentable by a tree-like circuit needs more than 2337 nodes. Hence, our results are very
precise. For n = 1024 the bounds are not so close, 5152 vs. 5349. This can be explained
by the formula for size(RMT,) in Theorem 7. Since s < 1, the second term is small. The
first term equals

(Aq/r)n® ~ 1.309n", if k is even,

and

(Ay/r7)n’ ~ 1.340n7, if k is odd.

16

CONCLUSION

The variable ordering problem is crucial for successful applications of OBDDs. Vari-
able orderings are computed with simple heuristic algorithms on the circuits and then
improved with sifting, group sifting, and simulated annealing. Better initial variable or-
derings reduce the cost for the improvement steps. In order to better understand the
variable ordering problem, circuits of the simplest structure namely tree-like circuits are
investigated. The computation of an optimal variable ordering is easy if we consider the
restricted basis of gates of type AND. Otherwise, it has been a lot of work to prove the
hypothesis that some DFS variable ordering is optimal. All known heuristics compute on
some tree-like circuit a nonoptimal variable ordering. A careful case inspection leads to an
algorithm which computes in linear time and space an optimal variable ordering. General
tree-like circuits are the first nontrivial case where such an algorithm is presented. The
size of optimal OBDDs for functions with tree-like circuits cannot become large even if
the full binary basis is available. But there are functions not representable by OBDDs of
linear size.

ACKNOWLEDGEMENTS

We thank Bernd Becker and Rolt Drechsler for many stimulating discussions on the subject
of this paper.

REFERENCES

[1] B. Bollig, M. Loébbing, and 1. Wegener. Simulated annealing to improve variable
orderings for OBDDs. In Int’l Workshop on Logic Synthesis, pp. 5.1-5.10, 1995.

[2] R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Trans. on Comp., vol. C-35(8), pp. 677-691, 1986.

(3] R. E. Bryant. Symbolic boolean manipulation with ordered binary decision diagrams.

ACM Comp. Surveys, vol. 24, pp. 293-318, 1992.

[4] K. M. Butler, D. E. Ross, R. Kapur, and M. R. Mercer. Heuristics to compute variable
orderings for efficient manipulation of ordered binary decision diagrams. In Design
Automation Conf., pp. 417-420, 1991.

[5] M. Fujita, Y. Matsunga, and T. Kakuda. On variable ordering of binary decision
diagrams for the application of multi-level synthesis. In European Design Automation

Conf., pp. H0-54, 1991.

17

[6]

7]

8]

[10]

[11]

[12]

[13]

[14]

[15]

N. Ishiura, H. Sawada, and S. Yajima. Minimization of binary decision diagrams
based on exchanges of variables. In Int’l Conf. on CAD, pp. 472-475, 1991.

S.-W. Jeong, B. Plessier, G. D. Hachtel, and F. Somenzi. Variable ordering and
selection for FSM traversal. In Int’l Conf. on CAD, pp. 476-479, 1991.

S. Malik, A. R. Wang, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Logic
verification using binary decision diagrams in a logic synthesis environment. In Int’l

Conf. on CAD, pp. 6-9, 1988.

M. R. Mercer, R. Kapur, and D. E. Ross. Functional approaches to generating order-
ings for efficient symbolic representation. In Design Automation Conf., pp. 614-619,
1992.

S. Minato, N. Ishiura, and S. Yajima. Shared binary decision diagrams with attrib-
uted edges for efficient boolean function manipulation. In Design Automation Conf.,

pp. 52-57, 1990.

S. Panda and F. Somenzi. Who are the variables in your neighborhood. In Int’l Conf.
on CAD, pp. 74-77, 1995.

D. E. Ross, K. M. Butler, R. Kapur, and M. R. Mercer. Fast functional evaluation
of candidate OBDD variable orderings. In European Design Automation Conf., pp.
4-10, 1991.

R. Rudell. Dynamic variable ordering for ordered binary decision diagrams. In Int’l

Conf. on CAD, pp. 42-47, 1993.

D. Sieling and 1. Wegener. NC-algorithms for operations on binary decision diagrams.
Parallel Processing Letters, vol. 3, pp. 3-12, 1993.

I. Wegener. Comments on “A characterization of binary decision diagrams.” IEEE
Trans. on Comp., vol. C-43(4), pp. 383-384, 1994.

18

APPENDIX

We still have to prove the rather technical Lemma 2. We have some freedom to choose
the parameters in the definition of . Remember that

©(s,t) = max(ass + ast,a}s + ayt,afs + ajt)

and B = log,(3 + v/5) = log,(1/3 ++/5). The upper bound in Theorem 5 is @(ﬁ)nﬁ.

Hence, we do not have to care about constant factors of .

Minimizing %(%nﬁ subject to the validity of Lemma 2, we obtain the following choice of

parameters.

Let

p o= \/3+\/5/2=25—1

po= 24VE) [V3+VE=(24 VB2
= (3+V5)/4=4"""

Then we define ay, az,ay,ay, ay,ay as the unique solution of the the following system of
linear equations:

apr +azp; = 1
ajpr +ayp; = 1
ajq +ahg, = 1
ajq+aye = 1

al = 0

ay+2a; = 27°(3d, +4d))

One can verify that aq,aq, a}, a}, af, al are nonnegative.

We only consider ¢ on the region of all (s,¢) with s < ¢ < 2s. This region is shown in
Fig. 2. One can verify that the set of all (s,¢) with ¢(s,t) = 1 consists of three segments
which meet in (p1, p2) and (g1, ¢2), as shown in Fig. 2. Therefore, we divide the considered
region into three sectors by the lines t = (p2/p1)s and t = (¢2/q1)s. We number the sectors
from bottom to top by I, II, and III. Note that ¢ is linear within each sector.

19

Figure 2: The positive quadrant with p = (p1,p2) and ¢ = (¢1,¢2) and the set of (s,t)
with (s, 1) = 1.

20

Lemma 2: Let s,t, 3,1 be nonnegative real numbers with

s <t <2s
§<1<25
p(s,1) <m?
0(8,1) <mf

Then we have
4,9(3+§,23+t~) < (m+7h)ﬁ if
or

»w
A
e We
>
2
VAN
o~

and
(s +1,t+1) < (m+m)° if
or

Sy S

<

S e
VAR

N s < 3.
Proof: We start with the first inequality. From now on assume that s,3,¢,¢ fulfill the
condition of the first claim of the lemma. We have to show that u(s, 3,t,#) is nonnegative,
where p : Ry — R is defined by

u(s,3,0,0) = (2(s,)% + 0(3,1)8)” = (s + 5,25 4+ 1),

Denote by ¢1(s,t) the partial derivative of ¢(s,t) with respect to s and, accordingly,
denote by @y(s,t) the partial derivative with respect to t. p is monotonically increasing
in § since it is continuous and, on every line in §-direction, % is defined on all but at

most 4 points with
N g-1 1

O /8 : 1)1/8 B, (5
3 = Bes 0 e)T S ela D 6)

(VALY
=)

The last inequality follows from the fact that, in the positive quadrant, moving in the
direction of the vector (1,2) never increases ¢;. The function ; is constant within each of
the sectors I, TT, and IT1, with the smallest value in T and the largest value in ITI. Since the
lines bounding the sectors have a slope of at most 2, the last inequality is correct. Thus,

21

t

Figure 3: The triangle D divided into the 6 regions.

22

we can further restrict ourselves to the case of s = §, ¢ < t. Since p is multiplicative, we
can even assume s = 5§ = 1.

Now define 2 on the triangle D C R3 with the corners (1,1),(2,1),(2,2) by
p(tt) = p(1,1,t,7)
= (o107 4 o(1,0)7)] — (2,2 41).

It remains to show that i is nonnegative on D. As shown in Fig. 3, the four lines t = ¢2/¢1,
t =pa/p1, t = q2/q1, and 1 = py/py partition D into 6 regions, which are triangles and
rectangles. Restricted to each of those regions, fi is a “linear transformation” of the
function ¥ : RY — R} defined by

P(z,2) = (zl/ﬁ + él/ﬁ)ﬁ.
This means, there are linear functions [y, l3, [3 such that

At 1) = L(t,1) + o (a(1), 1s(1))

(note that also (2,2 + 7) is linear on each of the 6 regions since 2 + ga/q1 = 2py/p1).
Since v is concave on IR? (the matrix of second order partial derivatives is negative semi-
definite), [is concave on each of the 6 regions of D. Thus the minimum value of 4 on D
appears on a corner of one of the 6 regions.

It is 1(q2/q1,92/q1) = 0. With the help of a computer one easily verifies that [is positive
on the other 9 corners of the regions. Thus, p is nonnegative on D and we have proved
the first inequality of the lemma.

The second claim of the lemma is proved analogously. Assume that s, 3,t,7 fulfill the
condition of the second claim. Setting

- ~ .~ 5} ~ n
v(s,5,t,8) = (s,)" + 0(3,D)7)" = p(s + 1, + 1)

we need to show that v(s,3,t,) > 0. Since

v o (260
ot

AVARAYS
©
%)
B
=

I
©
%)
=
|
\.k‘i-

~~
|
Sb

23

v is monotonically increasing in t. Again, the last inequality follows from the fact that
moving in direction of (1, 1) never increases ¢,. Thus we can restrict ourselves tot =1 =1

and s < 8. Define 7 on the triangle D’ C R% with the corners (0.5,0.5),(0.5,1),(1,1) by
v(s,8) = v(s,§,1,1)
_ 1/8 : e’ .
= (¢(s,1)"7 + (3, 1)%)" = (s + 1,2).
The four lines s = pi/p2, s = ¢1/q2, $ = p1/p2, and 3 = ¢1 /g, divide D’ into 6 regions.
On each of those regions ¥ is a linear transformation of ¢, and thus concave (note that
even (s + 1,2) is linear on every region since p;/ps + 1 = 2¢1/¢2). Evaluating 7 on the

10 corners of the regions shows that o(py /pa, p1/p2) =0, £(0.5,0.5) = 0, and » > 0 on the
other corners. This completes the proof of the second claim. a

24

