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Abstract. A very recent paper by Caussinus, McKenzie, Thérien, and
Vollmer [CMTV95] shows that ACC® is properly contained in ModPH,
and TC? is properly contained in the counting hierarchy. Thus, [CMTV95]
shows that there are problems in ModPH that require superpolynomial-
size uniform ACC® circuits, and problems in the counting hierarchy
that require superpolynomial-size uniform TC° circuits. The proof in
[CMTV95] uses “leaf languages” as a tool in obtaining their separations,
and their proof does not immediately yield larger lower bounds for the
complexity of these problems. In this paper, we give a simple direct proof
of these same separations, and use it to provide “sub-subexponential”
size lower bounds on the size of uniform circuits for these problems.

1 Introduction

The central problem in complexity theory is the task of proving lower bounds on
the complexity of specific problems. Circuit complexity, in particular the study
of constant-depth circuits, is one of the (few) areas where complexity theory has
succeeded in actually providing lower bounds, and even in the study of constant-
depth circuits one quickly arrives at the limits of current lower-bound technology.
It is known that constant-depth circuits of AND, OR, and NOT gates (so-called
ACO circuits) require exponential size even to compute the parity of n input bits
[Ha87, Ya85], and similar lower bounds are known for constant-depth circuits of
AND, OR, NOT, and MODp gates where p is prime [Ra87, Sm87]. When MODm
gates are allowed for composite m, however, almost nothing is known. It remains
an open question if there is any problem in NTIME(2”O(1)) that cannot be done
with polynomial size and constant depth with AND and MOD6 gates.

There is considerable reason to be interested in circuits with AND, OR, and
MODm gates; circuits of this sort are called ACC? circuits (for “Alternating
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Circuits with Counters”; the superscript 0 refers to the fact that we are consid-
ering circuits of depth O(log® n).). The lovely result of [Ba89] characterizing NC!
(log-depth fan-in two circuits) in terms of constant-width branching programs
relies heavily on algebraic techniques, and shows that NC! corresponds to com-
putation over non-solvable algebras. Barrington also defined the corresponding
notion of computation over solvable algebras, and it is shown in [BT88] that this
notion corresponds exactly to ACCP circuits. To restate these two points:

1. The results of [Ba89] establish intimate connections between circuit com-
plexity and algebraic structure.
2. In this algebraic setting, ACC? is the most important subclass of NC?.

Although, as mentioned above, it is unknown if small ACCP circuits suffice to
compute all problems in NEXPTIME, lower bounds for uniform ACC? circuits
were presented in [AG94]. Since our results, like those of [CMTV95] and [AG94],
concern uniform circuits, it is necessary to briefly discuss uniformity.

A circuit family {C,} consists of a circuit for each input length n. If C,
is “sufficiently easy” to construct from n, then the family {C,} is said to be
uniform. Different notions of “sufficiently easy” give rise to different notions of
uniformity, and the question of which notion of uniformity is the “right” one to
use when studying classes of circuits is not always clear. For the circuit classes
considered here, convincing arguments are presented in [BIS90], arguing that a
very restrictive notion of uniformity called Dlogtime-uniformity is the correct
notion to use. Briefly, a circuit family {C,, } is Dlogtime-uniform if, given n, g, h,
a deterministic Turing machine can, in time O(|n, g, h|), determine if gate g is
connected to gate h in circuit C,, and determine what sort of gates g and h
are. The name “Dlogtime-uniformity” comes from the fact that the length of
the input n, g, h is logarithmic in the size of the circuit C),. Throughout the rest
of this paper, all mention of uniform circuits refers to Dlogtime-uniform circuits.

Throughout the rest of this paper, ACC°(S(n)) will denote the class of lan-
guages with uniform ACCO circuits of size S(n). ACC? denotes ACCO(n?(1),

In contrast to our lack of lower bounds for nonuniform ACCP circuits for sets
in NTIME(2“O(1)), it was shown in [AG94] that exponential size (i.e., size at
least 2"6) is required to compute the permanent (and other problems complete
for #P) on uniform ACCO circuits. Thus there are sets in P#F that require
exponential-sized uniform ACCO circuits.

The complexity class PP is closely related to #P (for instance, P#P = PPP),
and one might expect that similar exponential lower bounds would hold there,
but [AG94] was able only to show that sets complete for these classes require
more than “sub-subexponential” size ACC? circuits, where a function ¢ is said
to be sub-subexponential if t(¢(n)) = gn®®, (Note that for all “natural” and

interesting size bounds %, ¢ is subexponential according to this definition if and
only if for each k, t(t(n)¥) = 92°" For the rest of this paper, this will be the
definition of “sub-subexponential”. Observe that size bounds such as 208" n and
9(logn)* 1o T8 ™ sub-subexponential.)

Another class of constant-depth circuits that has attracted interest uses



threshold (or MAJORITY) gates instead of counters. Let TC°(S(n)) denote the
class of sets accepted by uniform constant-depth threshold circuits of size S(n);
TC® will denote TC?(n®(1). It is easy to observe that ACC® C TCP, and thus
we have even fewer lower bounds for the threshold circuit model than for ACC°
circuits. It is an easy consequence of the space hierarchy theorem that PSPACE-
complete sets require exponential size uniform TCC circuits, but there is still no
smaller complexity class in PSPACE that is known to require exponential-size
TCO circuits.

There are well-studied subclasses of PSPACE that correspond in a natu-
ral way to the complexity classes AC?, ACCP, and TCC. The relationship be-
tween the polynomial hierarchy and AC? is well-known and was established by
[FSS84]. One way to present this correspondence is to observe that, when one
considers alternating Turing machines that make only O(1) alternations, a poly-
nomial running time yields the polynomial hierarchy, while a logarithmic running
time yields uniform ACP. The analogous subclasses of PSPACE corresponding
to ACCP and TCP are ModPH, and the counting hierarchy, respectively.

ModPH is in some sense a generalization of the polynomial hierarchy and
of ®P (formal definitions appear in the next section). The counting hierarchy
(defined in [Wa86] and studied by several authors) consists of the union of the
complexity classes PP, PPTP, PPPPPP, ... In the next section, we present models
of computation (similar to alternating Turing machines) such that polynomial
time on this model characterizes ModPH (or the counting hierarchy) while log-
arithmic time characterizes ACC® (or TCP, respectively).

A very recent paper by Caussinus, McKenzie, Thérien, and Vollmer [CMTV95]
shows that ACC? is properly contained in ModPH, and TC? is properly con-
tained in the counting hierarchy. The proof given by [CMTV95] uses “leaf lan-
guages” as a tool, and does not explicitly present a lower bound for any language
in ModPH or in the counting hierarchy. The present work began as an attempt to
discover if these techniques could be used to present an explicit lower bound. Un-
fortunately, this attempt did not succeed. For each given language A in ModPH
(or in the counting hierarchy) it is still an open question if A has polynomial
size uniform ACCO circuits (threshold circuits, respectively).

On the other hand, this paper does give a very simple direct proof of the sep-
arations presented in [CMTV95], and shows that for every sub-subexponential
function ¢ there exist sets A in ModPH (or in the counting hierarchy) requiring
size greater than ¢(n) to compute on uniform ACC? circuits (threshold circuits,
respectively).

2 Machine Models

We assume the reader is familiar with nondeterministic oracle Turing machines.
Given natural number m and oracle A, Mod,,P# is the class of languages B
such that, for some nondeterministic polynomial-time Turing machine M, z is
in B if and only if the number of accepting computations of M# on input z is
a multiple of m. Then the class ModPH is defined to be the smallest class of



languages containing P and with the property that if 4 is in ModPH, then so
are NP4 and Mod# for every natural m. ModPH has been studied by several
authors.

It is useful to have a model of computation characterizing ACC® and ModPH,
in the same way that alternating Turing machines characterize both AC® and
the polynomial hierarchy. The appropriate model of computation was defined
in [AG94] as a variant of alternating Turing machines. For the purposes of this
extended abstract, we will not present the detailed definitions, but the reader can
probably guess what is meant by augmenting the usual existential and universal
states of an alternating Turing machine with Mod,, states. Details can be found
in [AGY4].

Let a signature o be a finite string from {V, 3, Modz, Mods, Mody, ...}*. For
any alternating Turing machine making O(1) alternations, each path in the alter-
nating tree of the machine on any input z has a signature given by the sequence
of types of states the machine enters. If M is an alternating machine such that
on all inputs z, all paths have the same signature o, then M is said to be a o
machine. For instance, the signature of a Xy machine is V3, and the signature of
a machine accepting a language in NP®PY""" is IMod,Mody. Let otime(t(n))
denote the class of languages accepted by o machines running in time #(n). The
technical lemmas in [AG94] essentially prove the following proposition.

Definition1. Let us call a function f constructible if f(n) = 29("), where g(n)
can be computed from n (in binary) in time O(g(n)).

Proposition2. Lett(n) be a constructible function, t(n) = 2(logn). Then Uni-
form ACCP(20t()) = | J_otime(O(t(n))).

It will turn out to be useful to us to note that a “tape reduction theorem”
holds for o machines; if a set is accepted in time ¢(n) by a ¢ machine with k
worktapes, then it is also accepted in time O(¢(n)) be a ¢ machine with two
worktapes. (Proof sketch: Given a k-tape o machine, follow the construction in
[AGY94] and build an ACC circuit, such that o is the sequence of types of gates
encountered in a root-to-leaf path. In the construction given in [AG94], the
deterministic linear-time machine that checks the uniformity condition needs &
tapes. However, by changing the naming convention for the gates in the circuit in
a way that makes use of the ideas in the original tape-reduction proof of [BG70]
for nondeterministic machines, we can make do with a two-tape deterministic
machine checking the uniformity condition. Now given a uniform o-circuit family
where the uniformity condition is checked by a 2-tape machine, the construction
in [AG94] yields a two-tape o-machine accepting the original language.)

Similarly, we will find it very convenient to have a single model of computa-
tion that is sufficient for describing both TC® and the counting hierarchy. For-
tunately, such a model was described in [PS88]. In their model, which they call
a “threshold Turing machine”, TC? corresponds to O(logn) time and O(1) uses
of the “threshold” operation, and the counting hierarchy corresponds to polyno-
mial time and O(1) uses of the threshold operation. The characterization of the



counting hierarchy in terms of threshold Turing machines is given in [PS88], but
the corresponding characterization of TC® is not presented there (since [PS88]
predates the uniformity considerations of [BIS90]), and it also does not seem to
have been published anywhere else. Although [BIS90] does give many equivalent
characterizations of TCP, the threshold Turing machine model is not mentioned
in [BIS90]. Nonetheless, the proof of the following proposition is quite standard
and follows along the lines of related results in [PS88, BIS90]:

Proposition3. Lett(n) be a constructible function, t(n) = 2(logn). Then Uni-
form threshold circuit depth(O(1)), size(20(t(“))) = Threshold Turing machine
time(O(t(n))), thresholds(O(1)).

As is the case with the o0 machines considered above, the Threshold Turing
machines also enjoy a tape-reduction property, proved in essentially the same
way. If a set is accepted in time ¢(n) by a k-tape Threshold Turing machine,
then it is accepted in time O(t(n)) by a Threshold Turing machine with two
tapes.

The tape-reduction properties are useful in diagonalization arguments.

3 Diagonalization

It is important to note that the techniques used to prove the nondeterministic
time hierarchy (originally proved in [SFMT78], although we will use the very
simple and general version proved by Zak [Z83]) can be used to prove analogous
hierarchies for other computational models defined in terms of nondeterministic
Turing machines (with a fixed bound on the number of worktapes). In particular,
an essentially word-for-word translation of the proof in [Z83] shows the following.

Theorem4. Let 2T be constructible. Then there is a set B in otime(T(n)) such
that, for all t with t(n + 1) = o(T(n)), B is not in otime(t(n)). Also, there
is a set in D in Threshold Turing machine time(O(T(n))),thresholds(k) such
that, for all t with t(n + 1) = o(T(n)), B is not in Threshold Turing machine
time(O(t(n)) ),thresholds(k ).

Proof: For completeness, we present the main outline of the proof. Let My, Ma,. ..
be an enumeration of 2-tape o-machines (threshold machines, respectively). Let
f be a rapidly-growing function such time T'(f(i,n, s)) is enough time for a
deterministic machine to compute the function

(i, 8) 1if M; accepts 1™ in < s steps
B 0 otherwise

(Letting f(i,7,s) be greater than T‘1(22i+n+s) is sufficient; note that it is im-

portant in our setting to handle sublinear functions T'.)
Now divide X* into regions, so that in region j = (4, y), we diagonalize against
machine M;, thus ensuring that each machine is considered infinitely often. The



regions are defined by functions start(j) and end(j), defined as follows: start(1) =
1, start(7 + 1) = end(7)+1, where end(j) = f(i, start(y), T(start(j) — 1)) (where
4 = (4,y)). The important point is that, on input 1°*9U), a deterministic machine
can, in time T, determine whether M; accepts 1°¢¢7*U) in < T(start(j)— 1) steps.

By picking f appropriately easy to invert, we can guarantee that, on input
1", we can in time T'(n) determine which region j contains n.

Now it is easy to verify that the following routine can be computed in time
T(n) by a o-machine (or a threshold machine, respectively). (In the pseudo-code
below, U is a “universal” o-machine (or threshold machine) with 4 tapes which
is therefore able to simulate one step of machine M; in about ® steps.)

1. On input 1", determine which region j contains n. Let j = (4, y).

2. If n = end(j), then accept iff M; does not accept 1°*7*0) in < T(start(j)—1)
steps.

3. Otherwise, accept iff U accepts (i, 1"T!) in < T(n) steps. (Here, it is impor-
tant that we are talking about T'(n) steps of U, which may be only about
T(n)/® steps of M;.)

Let us call the set defined by the preceding pseudo-code A. Clearly, A is in
otime(T(n)). We now claim that is is not in otime(¢(n)).

Assume otherwise, and let M; be the o machine accepting A in time #(n). Let
¢ be a a constant such that i3¢(n + 1) < T(n) for all n > c. Let y be a string of
length > ¢, and consider stage j = (4, y). Then for all n such that start(j) < n <
end(j), we have 1 € A iff 1"t1 ¢ A. However this contradicts the fact that
1start(j) c Aiff 1end(j) ¢ A. O

4 Main Result

Once the definitions are in hand, the proof is now quite straightforward.

Theorem 5. Let t be a sub-suberponential constructible function. Then there
erist sets A in ModPH requiring size greater than t(n) to compute on uniform
ACCO circuits.

Proof: Let ¢t be given. Let C' be a set complete for P under Dlogtime-uniform
projections. (For instance, the standard complete set {(4,z,07) : M; accepts
in time j} is a good choice for C.)

The proof consists of two cases.

Case 1: [C requires size greater than #(n) to compute on uniform ACC°
circuits.] In this case, of course there is nothing to prove.

Case 2: [C can be computed by uniform ACCY circuits of size ¢(n).]

Since t is constructible, let g be the function such that ¢(n) = 29(n),

In this case, it must happen that there is some o such that ACCP is in
otime(g(n°1)), because uniform circuits for any set reducible to C can easily
be constructed from the circuits for C.

Now standard translational techniques can be used to show that for any
signature 7, 7time(g(n)) is contained in otime(g(t(n)°(1))). To see this, consider



any language A4 in Ttime(g(n)). Let A’ = {2107 : j+ |z|+1 =#(|z|) and z € A}.
Our constructibility assumptions on ¢ assure that A4 is in ACCP, and hence is in
otime(g(n')) for some I. Let M be this g(n!)-time-bounded o machine accepting
A’. The o machine M’ that, on input z, simulates M on input z10*(D-lel-1
runs in time g(¢(n)?).

Since t is sub-subexponential, 2"° > t(t(n)) = 29(t(")") and thus g(t(n)!) =
o(n). Thus it follows from Theorem 4 that there is a set B in otime(n) (and
hence in ModPH) such that, for all [, B is not in otime(g(#(n'))), and thus B
is not in Ttime(g(n)) and thus B does not have uniform ACC® circuits of size
t(n). O

It is important to note that, because of the nonconstructive nature of the
proof of this theorem, the proof offers no clue as to what set in ModPH has large
ACCP circuits.

An essentially identical proof yields the following theorem.

Theorem 6. Let t be a sub-subexponential constructible function. Then there
erist sets A in the counting hierarchy requiring size greater than t(n) to compute
on uniform threshold circuits.

5 More Separations

Rather than asking for the largest lower bounds that one can prove for sets in

ModPH or in the counting hierarchy, one can ask the dual question: what is the

smallest class that one can separate from ACC® (or TC?)? That is, [CMTV95]

shows that ModPH is not equal to ACCP; is there a smaller class than ModPH

that we can show is not equal to ACC®? This section gives an affirmative answer.
First we make a simple observation:

Proposition7. For all e > 0, ACCP is properly contained in
(DTIME(n®) U, otime(lognlog" n)).

Proof: By standard padding methods, it is easy to construct a set A4 that is
complete for P in DTIME(n¢) under projections. This set A is thus also hard
for ACCP under projections. If A is not in ACCP then this yields the desired
conclusion.

Otherwise A is in ACC? and is therefore in otime(O(logn)) for some o. Since
otime(O(logn)) is closed under projections, it follows that ACCC is equal to
otime(O(logn)). By diagonalization, we obtain that ACCP is properly contained
in otime(O(lognlog” n)). O

An identical proof yields

Proposition8. For all e > 0, TCC is properly contained in

(DTIME(n®) U TC?(nOUes" n)),



(Note that one can replace DTIME(n¢) with the potentially smaller class
ATIME(elogn), where ATIME denotes alternating Turing machine time; there
is a complete problem for NC! in ATIME(elogn), for each € > 0.)

We immediately get the following corollaries, which seem only marginally
better than the results of [CMTV95] showing proper inclustion in ModPH and
the counting hierarchy:

Corollary 9. Let € be greater than 0. Then:

ACCP is properly contained in ACCO(2"").
TC® is properly contained in TC(2"").

But now we will use the technique of [ABHH] to get a better separation.

Lemma 10. Let S be a constructible function, S(n) > n.

If ACC® = ACC®(S(n)), then ACC® = ACC®(S(S(n))).

Proof: Let A be any set in otime(O(log S(S(n)))). Since a constructible func-
tion S(n) is of the form 29("), this means that A is in otime(O(g(S(n)))). Let
A’ be the padded version {z105(zD=1eI=1: 2 ¢ A}, Our assumption implies that
A’ is in ACCP, and thus is in o'time(O(logn)) for some o’. This in turn implies
that A4 is in o'time(O(log(S(n)))), and thus by assumption 4 is in ACC?. O

Corollary 11. Let T be a constructible function such that, for some k, T(k)(n) >
27 where T®) is T composed with itself k times. Then

ACCO is properly contained in ACCO(T(n)).

Corollary 12. Let T be a constructible function such that, for some k, T(k)(n) >
2". Then

TCO is properly contained in TCO(T(n)).

6 Conclusions and Open Problems

It is often harder to ask the right question than to answer that question. In
[AGY94] we presented lower bounds on the uniform circuit complexity of certain
problems in PSPACE, and did not see any way to prove lower bounds on the
ACCO circuit complexity of any given problem in ModPH. Given the inspiration
of [CMTV95], it is easy to give a direct proof showing that there erist sets in
ModPH having large ACCP circuit complexity, without giving lower bounds on
any specific set in ModPH.

An obvious question is whether the sub-subexponential lower bounds given
here and in [AG94] can be improved to exponential lower bounds. Of course, an
even more desirable step would be to prove directly that MAJORITY requires
exponential size for ACCO circuits. (The “natural proofs” framework of [RR94]
indicates that many lower bound proofs may be quite difficult to obtain. How-
ever, since ACCO is a very limited class in many respects (and in particular it is
not clear that one should expect pseudorandom generators to be computable in

ACCY), it it not clear that lower bounds for ACCP should be hard to obtain.)
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