Electronic Colloquium on Computational Complexity - Reports Series 1996 - available via:
E(:(:(: FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW: http://www.eccc.uni-trier.de/eccc/

T R96- 025 Email: ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

The Computational Power of Spiking Neurons Depends on the
Shape of the Postsynaptic Potentials

Wolfgang Maass Berthold Ruf

Institute for Theoretical Computer Science
Technische Universitaet Graz
Klosterwiesgasse 32/2
A-8010 Graz, Austria
e-mail: {maass, bruf}@igi.tu-graz.ac.at

Abstract

Recently one has started to investigate the computational power of spiking neurons (also
called “integrate and fire neurons”). These are neuron models that are substantially more
realistic from the biological point of view than the ones which are traditionally employed in
artificial neural nets. It has turned out that the computational power of networks of spiking
neurons is quite large. In particular they have the ability to communicate and manipulate analog
variables in spatio-temporal coding, i.e. encoded in the time points when specific neurons “fire”
(and thus send a “spike” to other neurons).

These preceding results have motivated the question which details of the firing mechanism of
spiking neurons are essential for their computational power, and which details are “accidental”
aspects of their realization in biological “wetware”. Obviously this question becomes important
if one wants to capture some of the advantages of computing and learning with spatio-temporal
coding in a new generation of artificial neural nets, such as for example pulse stream VLSI.

The firing mechanism of spiking neurons is defined in terms of their postsynaptic potentials
or “response functions”, which describe the change in their electric membrane potential as a
result of the firing of another neuron. We consider in this article the case where the response
functions of spiking neurons are assumed to be of the mathematically most elementary type:
they are assumed to be step-functions (i.e. piecewise constant functions). This happens to
be the functional form which has so far been adapted most frequently in pulse stream VLSI
as the form of potential changes (“pulses”) that mimic the role of postsynaptic potentials in
biological neural systems. We prove the rather surprising result that in models without noise the
computational power of networks of spiking neurons with arbitrary piecewise constant response
functions is strictly weaker than that of networks where the response functions of neurons also
contain short segments where they increase respectively decrease in a linear fashion (which is
in fact biologically more realistic). More precisely we show for example that an addition of
analog numbers is impossible for a network of spiking neurons with piecewise constant response
functions (with any bounded number of computation steps, i.e. spikes), whereas addition of
analog numbers is easy if the response functions have linearly increasing segments.

1 Introduction

It is a widely accepted result in neurophysiology that timing phenomena are of crucial importance
for computations in biological neural systems. It is not only the average spiking frequency, but also
the temporal difference between spikes that matters (see e.g. [Abeles 91|, [Aertsen 93] [Bialek 92],
[Bair 94], [Sejnowski 95|, [Thorpe 89], [Hopfield 95], [Kandel 91]). Thus the communication and

also the “computation” of biological neurons completely differs from the way in which processors
in digital computers and also “neurons” in artificial neural networks operate.

The basic mechanism, on which computations in biological neural systems are based, is the
following: A neuron has a resting membrane potential at the soma which lies below that of its
extracellular fluid. This potential can be changed (hyper-/depolarized) by so-called postsynaptic
potentials caused by the firing of other neurons. If the depolarization exceeds a certain threshold
(which may vary depending on the last firing time of that neuron) the neuron fires by generating
an action potential or “spike”, which is propagated along the axon of that neuron. Branches of the
axon can transmit action potentials to other neurons via synapses, where they cause a postsynaptic
potential. If the firing of the presynaptic neuron causes an increase of the membrane potential in
the postsynaptic neuron (and thus increases its chance to fire), then this postsynaptic potential
is called an excitatory postsynaptic potential (EPSP). In the case of a hyperpolarization, which
moves the potential of the neuron further away from its threshold, one speaks of an inhibitory
postsynaptic potential (IPSP’s) .

Recently one has started to explore related new types of artificial neural nets such as pulse
stream VLSI, whose computational units communicate via streams of pulses ([Murray 94], [Pratt 89],
[Horinchi 91], [Jahnke 95], [Watts 94]). However the principles and limitations of computations
with artificial spiking neurons are so far only poorly understood. One important task for the the-
oretical investigation of computations in formal models of spiking neurons is to find out which
aspects of the assumed model are accidental for its computational power, and which ones are es-
sential. As part of this program we investigate in this article the effect of the assumed shape of the
response functions (i.e. the postsynaptic potentials) on the computational power of an SNN (which
is a formal model for a spiking neuron network).

It has been shown that SNN’s with piecewise linear response functions can perform with a small
number of spikes basic operations on analog variables in temporal coding such as addition, subtrac-
tion, and multiplication with a constant (see [Maass 95a], [Maass 95b], [Maass 95¢|, [Maass 96]).

In this article we focus on SNN’s where the EPSP’s and the IPSP’s are described by piecewise
constant functions (i.e. step-functions). This is certainly the most elementary assumption from
a mathematical point of view. We show that the computational power of such SNN’s is indeed
considerably weakened: They can no longer carry out the abovementioned operations on analog
variables in temporal coding. Thus there exists a significant difference in the computational power
of spiking neurons with response functions of the types (b) and (c) in Figure 1.

Besides our investigation of computations with numerical (i.e. analog) inputs we also consider
the case of computations of SNN’s on bit strings, and show that their computational power drops
from that of an arbitrary Turing machine to that of a deterministic finite automaton if their response
functions are required to be piecewise constant instead of piecewise linear. In particular we will
show that such SNN’s can no longer carry out basic pattern matching operations in polynomial
time.

SNN’s use threshold functions in order to model the absolute and relative refractory periods of
neurons. These functions describe for every neuron how its threshold varies after it has just fired.
We show in this article that the shape of the threshold functions has much less influence on the
computational power of SNN’s.

We review in section 2 of this article the precise models that are used. In section 3 we show
that for numerical inputs and outputs the computational power of networks of spiking neurons with
piecewise constant response functions can be characterized completely in terms of a conceptually
very simple variation of the familiar random access machine (“N7-RAM”). We then use this char-
acterization in Theorem 3.3 and Corollary 3.4 to derive the main results of this article. In section

4 we analyze the computational power of the here considered SNN’s for digital computations, and
prove that SNN’s with piecewise constant response functions cannot carry out in polynomial time
a simple pattern matching task, which can be carried out in linear time by SNN’s with piecewise
linear response functions.

An extended abstract of this article was presented at the ICANN’95 ([Maass 95d)).

2 Basic Definitions and Assumptions

In [Maass 95a] and [Maass 96] a rather general formal definition of a spiking neuron network (SNN)
has been introduced, which allows the investigation of the computational power of different types
of response- and threshold functions. We recall here this definition:

Definition 2.1 Spiking Neuron Network (SNN):
An SNN N consists of
— a finite directed graph (V, E) (we refer to the elements of V as “neurons” and to the elements
of E as “synapses”)

— a subset Vi, CV of input neurons
— a subset Vo CV of output neurons

— for each meuron v € V — Vi, a threshold function ©, : RT — R U {oo}
(where RY :={z € R:2>0})

— for each synapse (u,v) € E a response function €y, : Rt — R and a weight w,, € RT.

We assume that the firing of the input neurons v € Vj, is determined from outside of N, i.e. the
sets F, C R™T of firing times (“spike trains”) for the neurons v € Vi, are given as the input of N.

For a neuron v € V — V;, one defines its set F,, of firing times recursively. The first element
of F, is inf{t € RY : P,(t) > 0,(0)} , and for any s € F, the next larger element of F, is
inf{t € R" : ¢ > s and P,(t) > O,(t — s)} , where the potential function P, : Rt — R is defined

by
Pt =0+ Y D wupeup(t—s)

w:(u,v) EE s€F,:s<t

(the trivial summand 0 makes sure that P,(t) is well-defined even if F, = ¢ for allu with (u,v) € E).
The firing times (“spike trains”) F, of the output neurons v € Vi that result in this way are
interpreted as the output of N.

The complezity of a computation in an SNN is evaluated by counting each spike as a computation
step.

This formal model is essentially a noise-free version of the spike response model as described
in [Gerstner 91], [Gerstner 92| and [Gerstner 94]. One uses the response function ¢, , in order to
describe the potential change or “postsynaptic potential”) wy, , - €4, (t — 5) at the trigger-zone of
neuron v at time ¢, as a result of a firing of neuron » at time s. For simplicity the resting value of
the membrane potential at the trigger-zone of neurons is normalized to 0.

For the constructions in this article it suffices to make the following rather weak assumptions
about the response- and threshold functions in an SNN.

EPSP

time

(a) Typical shape of EPSP’s and IPSP’s for biological neurons.

e

PN

1 |
Ayy Ayy TOuy

(b) Simple piecewise linear response functions ey .

vV A

| i
! I

Ay Au,v +GCyuy

(c) Simple piecewise constant response functions €y, .

14 N

A v

V
AM,V AZI,V to u,v
| |
v
/
V
AHV Au,v +GlI,V
| |
! !
|
I
Au,v +GZI,V

(d) Ezample for a complicated piecewise constant response function e, that satisfies our

conditions 1 - 3. 4

©,(0) |

Tv, ref Tv, end

(e) Typical shape of the threshold function ©, for biological neurons v.

Q0

©,(0) |

| S

I
Tv, ref (=Tv, end)

(f) Simple piecewise constant threshold function ©,.

©,(0) |

| |
I | -

T

T

v, ref v, end

(9) Example for a more complicated piecewise monotone and continuous threshold function ©, that
satisfies our condition 4.

Figure 1: Ezamples for response- and threshold functions.

All response functions e,, : Rt — R and threshold functions ©, : Rt — R* U {oco} are
some arbitrary functions with the following properties: There exist constants A,in, Amaz, Omin,

Omaz € RT with 0 < Apin < Apaz and 0 < 0pmin < Omaz such that the following conditions are
fulfilled:

1. For every ¢, , there exists some delay A, , € [Apin, Amag) and some oy, € [Omin, Tmaz| Such
that €,,(z) = 0 for all € [0, Ay] U [Ayy + 0w,).

2. Every e, either satisfies g, ,(z) > 0 for all € (Ay 4y, Ayy + 0up) (in which case we refer to
it as an EPSP) or g, ,(z) < 0 for all z € (Ayp, Ayp + 0up) (in which case we refer to it as
an IPSP).

3. For every EPSP-response function £,,, there exists some &7'3® > 0 with 77’07 = max{ey () :
z € (Aup; Ayy + 0up)}. Furthermore for all z1,29 € (Ayy, Aup + Ouw) With g, ,(21) =

Eun(T2) = €y” it follows that e, ,(z) = ey for all x € [z1, o).

4. For every v € V — Vj, there exist constants 7, ref , T.ena € RT, such that ©,(z) = oo for all
z € (0, 7yrer) (“absolute refractory period”), 0 < ©,(0) < Oy(z) for all € [Ty et , Tv,end)
("relative refractory period”), and ©,(z) = ©,(0) > 0 for all z > 7, ¢ng-

In this article we focus on the computational power of SNN’s with piecewise constant response
functions ey, : R"™ — R and piecewise monotone and continuous (respectively piecewise linear)
threshold functions ©, : RT™ — RTU{cc} . When considering piecewise constant response functions
we assume that for every e, , there exist constants m,, € N and ¢}"*,. .. ,tfn’z,v_l € R\ {0} with
t"" < 1,1 < i < myy — 2 such that the domain R of that function can be partitioned into m,,
intervals [0,2""), [t;"",#;"]) with 1 <4 < my, — 2 and [t%qi’v_l,oo) such that e, is constant on
each of these intervals. We will choose ¢}"" = Ay, and t;‘,;z ,—1 = Dupt+0oyy. A piecewise constant
threshold function ©, is defined in the same fashion (see Figure 1).

In biological models one usually assumes in addition that the sign of the derivative of each
response function ¢,, changes only once. It turns out that our negative results (i.e. lower bound
results) even hold for the larger class of models where this assumption is not imposed, and hence
we do not make this assumption in our formal model.

In this article we are interested in relating the computational power of various kinds of SNN’s
to other computational models. We employ for that purpose the common notion of a real-time
simulation from computational complexity theory (see e.g. [Leong 81|, [Paul 84|, [Reischuk 90],
[Maass 96]). One says that M’ simulates M in real-time if M’ can simulate each step in a compu-
tation of M with a fized number of computation steps (i.e. the simulation of “later” computation
steps of M does not require more steps of M’ than the simulation of the first ones).

It is obvious that if M’ simulates M in real-time, then it also simulates M in polynomial time
(in fact: in linear time).

For biological neural systems the precise timing of computations is essential, and most com-
putations are completed within a fixed number of “clock-cycles”. Hence the notion of a real-time
simulation is better suited for their investigation than the more common but too coarse notion of
a polynomial simulation.

When we say in the following that a class C of machines can be simulated in real-time by SNN’s
with response- and threshold functions of a certain type (e.g. piecewise constant), we mean the
following: We can construct for any machine M in C an SNN M’ that simulates M in real-time,
where we choose the architecture of M’ as well as the values of delays A, , and weights w,,, in

M’ and the “sign” of the response function (i.e. EPSP or IPSP). However we allow that the exact
shape of the response- and threshold functions of M’ is given to us, i.e. they can be arbitrary
functions of the specified type (e.g. piecewise constant) that satisfy the conditions 1. - 4. specified
above. Hence a simulation result of this type yields a real-time simulation of M with the simplest
examples of such response- and threshold functions (see Figure 1, ¢ and f), but also with any other
response- and threshold functions that happen to satisfy the same conditions (see Figure 1, d and
g). Thus a result of this type automatically implies that the exact shape of the response- and
threshold functions of the considered type does not matter for this simulation result.

In the next section we will show that SNN’s with piecewise constant response functions are real-
time equivalent to a special type of random access machine (RAM), which we will call N"-RAM.

Definition 2.2 (N--RAM)

An N--RAM is a random access machine (RAM) with a constant number of registers that receives
as its input, stores in its registers, operates om, and outputs real numbers from some bounded
interval [—B, B]. The contents of a register R is denoted by [R]. The machine uses some designated
register A as an accumulator. It can execute arbitrary programs of finite length, where each program
statement has some unique label and consists of one of the following instructions:

ADD(S): given some arbitrary constant § € [0, B], this command adds 3 to [A] (provided that
[A] — B € [-B, B]) and stores the result in A.

SUBTRACT(f): given some arbitrary constant 3 € [0, B], this command subtracts § from [A]
(provided that [A] — B € [—B, B]) and stores the result in A.

IF COMPARE(R) THEN GOTO label: this command compares the contents of the registers
R and A. If [A] > [R], then a jump to “label” is executed.

GOTO label: jumps to “label”.

LOAD(R): loads the contents of R into A.

STORE(R): stores the contents of A into R.

HALT: unique instruction that ends the execution of the program.

The input is given as the initial content of certain registers, and the output is given as the difference
between the contents of two other distinguished registers when the machine halts. The complexity
of a computation is evaluated according to the unit-cost criterion, where each execution of an in-
struction is counted as one computation step (regardless of the complexity of the operands).

Our output convention for N"-RAM’s is motivated by the goal to prove that N"-RAM’s and
SNN’s with piecewise constant response functions are real-time equivalent (Theorem 3.3). For
SNN’s we adopt the natural output convention that analog output values are represented as the
difference between the firing times of two output neurons.

In [Maass 95b] the stronger model of an N-RAM had been considered that can in addition exe-
cute the instructions ADD, SUBTRACT (on two arbitrary reals from some bounded interval), and
MULTIPLY(B). This machine model was shown in [Maass 95a] and [Maass 95b] to be real-time
equivalent to SNN’s with piecewise linear activation functions and to recurrent analog neural nets
with piecewise linear activation functions.

We will use the adjectives analog, numerical and real-valued interchangeably throughout this
article.

3 Characterization of the Power of Restricted SNN’s for Analog
Computations

Theorem 3.1 Any SNN with piecewise constant response functions and piecewise monotone and
continuous threshold functions can be simulated for real-valued input and output from a bounded
range in real-time by an N -RAM.

PROOF We will show that for any given SNN A of the here considered type one can construct
an N"-RAM M that can simulate A in real-time. The basic idea of the proof is that given the
firing time ¢ of some neuron in A/, the simulating N"-RAM M computes for each neuron v in N
the potential firing time t, > t, i.e. the first time where v would fire provided that no other neuron
fires within the time-interval (¢,t,). From Definition 2.1 it follows that the neuron v for which ¢, is
minimal actually fires (there might in fact be several neurons that fire simultaneously at time ¢,).

M reserves for each neuron in N a fixed number of registers. The firing times of the input
neurons of A’ are assumed to be given to M as input in the form of the initial content of some
registers. For each firing time ¢ of an input neuron and for each later firing time ¢ that it has
already “constructed”, M proceeds as follows: We assume that M stores for each neuron u all its
firing times < ¢t which can still be relevant at times > ¢ for some other neuron v, i.e. which occured
within the time-interval (! — omaz — Amagz,t]-} With 7, := min{7y, ,er : u € V} it follows that at
most (|(0maz + Amaz)/Tmin] + 1) - |V| registers are needed for that, since a neuron u can generate
in a time interval of length o4z + Amaz at most |[(Omaz + Amaz)/Tures] + 1 spikes.

We now show how P,(t) can be computed by M: Observe that P,(¢) can assume only finitely
many values, since v can receive only a bounded number of EPSP’s respectively IPSP’s which are
still relevant at time ¢ from some neuron u with (u,v) € E. With our assumption on the shape
of the response functions it follows that each of them can contribute to P,(¢) only one of finitely
many values (of the form wy, , - €y ,(t — t,), with ¢, being some firing time of neuron).

In order to compute P,(t) at some time ¢, M has by definition to compute for every neuron u
with (u,v) € E and all firing times ¢, < t of u, which can be relevant to P,(¢) the contribution
Wy Eup(t—1y) to Py(t). Therefore M has to find the greatest t;-”’" (see Section 2) with t;-“’ <t—ty,.
Since ey, (t) is assumed to be piecewise constant, all possible values of ¢;”” and wy, ;- £y, (t;") can be
stored in a lookup-table (provided in the form of constants in certain registers of M). If j < my, ,—1
then M also stores in some register the next time ¢, = ¢, + tﬁi , when P,(t) changes again due to
the firing of neuron u at t,.

With the knowledge of P,(t) and of the first time ¢’ when the potential changes after ¢ (given
by the minimum of all the ¢, for all u with (u,v) € E), M can easily check whether there is
some potential firing time during the time-interval [¢,¢'), i.e. a time where the potential function
P, meets the threshold function ©,. Since P, can assume only finitely many values, it is possible
to store in a lookup-table for all v and for every possible value P of P, all £ for which ©,(#) = P. If
©, has some constant segment of value P, M simply stores the corresponding interval-boundaries.
Note that there are only finitely many values of £ , to be stored due to our assumptions about the

'Tt would be sufficient to consider the time-interval (t — omaz,u — Amaz,u,t] for every neuron u with Aep. =
max{Ay,y : v € V} and omaz,w = max{ow,w : v € V}, but this gain in efficiency is irrelevant for our proof.

threshold function. Using this table M can find out whether there exists some #, such that ¢, + ¢
is within [t,#') and whether ©,(f) = P,(t, +) with ¢, being the last firing time of neuron v (if v
has not fired before ¢ then we set ¢, = 0 and replace ©,(%) by ©,(0)). If such £ can be found, then
the smallest £ fulfilling this condition yields the next potential firing time ¢, + ¢ of v. Otherwise M
has to check iteratively whether the threshold is exceeded within the next constant segment of P,.

Obviously it is sufficient to search for the potential firing times of v within the time-interval
[t,t + Omaz + Amaz) since no spike which occured before ¢ can have any influence on v at times
> t+ Omaz + Dimaz- As mentioned above the neuron with the smallest potential firing time actually
fires. Then M stores this time in a register dedicated to this neuron, then continues its simulation
in the same manner (taking this new firing into account).

The registers containing (potential) firing times of M have to be kept bounded. Since only a
bounded “time-window” of previous firings is relevant for determining future firings, M can sub-
tract from the contents of all registers containing such firing times a suitable constant C and can
erase those among these registers whose content is < C. [|

Theorem 3.2 Any N -RAM can be simulated in real-time by an SNN with piecewise constant
response- and threshold functions.

PROOF We show that SNN’s of the here considered type can store real numbers from some
bounded interval with the help of oscillators, and that they can simulate within a bounded number
of spikes every possible N"-RAM instruction. The argument is based on a proof given in [Maass 96]
for the real-time simulation of Turing machines by a less restricted class of SNN’s.

In our SNN model, oscillators can be realized using two neurons u and v with (u,v) € E,
(v,u) € E, €4, and gy, being EPSP-response functions. The weights are chosen such that wy,, >
0,(0)/ene” and wy,, > 04(0)/eyy®. Once started, a spike “cycles” periodically through these two
neurons. Such an oscillator has two inputs with which the oscillation can be started respectively
halted, and one output, through which spikes with the oscillation period are sent out. These
oscillators can be used in two ways for storing data: They can be used for storing single bits using
their two states oscillating/dormant. Assuming the existence of a designated oscillator, which we
call the pacemaker PM with oscillation period 7pys, any other oscillator O with the same oscillation
period can also be used for representing real numbers modulo 7pjs as the phase difference between
O and PM. In order to represent negative numbers we assume that each oscillator representing
some real number is associated with a second oscillator Oy representing the sign of that number.
Numbers greater equal zero are represented by O as described above where O; is dormant, for
negative numbers we assume that O is oscillating with the same frequency and phase difference to
PM as O. Note that for arbitrary a € R™ we get (—a = mpas — a) mod wpys. In order to represent
for the given constant B of a given N~-RAM all possible register contents € [—B, B], we assume
that mpas > B.2 The oscillator corresponding to the accumulator A as described in Definition 2.2
will be denoted with O4.

The program control can be realized in the same way as in [Maass 96], where it has been shown
how SNN’s can simulate arbitrary threshold circuits with boolean input, and thus simulate the
control of some Turing machine in a very efficient way. This construction can also be applied for
the type of SNN’s considered here. A given N™-RAM-program P can be described by a boolean

max

If B is greater than the sum of the lengths of the time-intervals it takes €, , and &, , to reach €y TESpectively
€y, then one has to use a cycle of more than two neurons.

function if we assume that each N"-RAM-program statement is associated with a certain unique
state. Each state can be described in a binary way using oscillators where a “1” (“0”) is represented
by an oscillating (dormant) state. We will refer to these oscillators as “state-oscillators”. For every
N--RAM-operation occuring in P we will construct one module which is started by the firing of
some designated neuron, which acts as input neuron for that module. Thus there are as many
ADD-modules as ADD-statements in P using different parameters (the same holds for the other
parametrized statements). By using a layer of inter-neurons between the state-oscillators and those
modules, it can be easily achieved that a certain state of the state-oscillators activates one unique
module, executing the corresponding N--RAM-operation.

We now show how the N"-RAM-operations can be realized on SNN’s of the here considered
type. For the COMPARE(R) operation we assume that the contents of R has been copied to some
designated register R'. We use one neuron u that fires iff [A] < [R'] . It receives input only from
some inter-neurons u; and ug with equal delays, which receive within one period wpys of PM at
time ¢; and ¢y a spike from the oscillator representing [R'] respectively from O4. We assume that
the connection from u; to u is inhibitory, from uy to u excitatory, that A,, , = A,,, and that
Wy and Wy, 4 are chosen such that ey (1) - Wyy u < —€pyry - Wuyu for all t € (Ayy uy Auyu+ 0w u)
and €y, 4,(t7") - Wyyu > O4(0). The firing of u; has to contribute to the potential of u at least
—Eps * Wy, during the time-interval (t1 + Ayy s t1 + Ay, u +7pur) (note that [t — 22| < Tpur).
Therefore it might be necessary to add some inhibitory inter-neurons. Hence u fires if the EPSP
from uy reaches u before the IPSP from wu; (which occurs if to < ¢ , ie. iff |[4]| < |[R]|. By
using suitable inhibition and excitation modules which inhibit 4 from firing for a sufficiently long
time in the case that [R'] < 0 and [A] > 0, respectively guarantee that u fires in the case that
[R'] > 0 and [A] < 0 (one simply has to check the corresponding “sign-oscillators”), we achieve
that u fires iff [A] < [R']. The N"-RAM uses the COMPARE operation only in connection with a
conditional jump. This can be simulated in the SNN by representing the two possible subsequent
states in the same way as the state-oscillators. The firing of u causes one of them to be copied
to the state-oscillators. In case that u does not fire within a certain time-interval, it can be easily
achieved that the other subsequent state is copied to the state oscillators.

The simulation of the operation ADD(3) can basically be achieved by “sending” the spike of
O 4 through a delay module with delay 3, i.e. a chain of neurons having only EPSP-links such that
the delay of a spike passing through this chain adds up to 8. In order to compute the sign of
the addition, the result of that operation is temporarily stored in some oscillator O. Depending
on the sign of the input [A], O, has to be started/halted, which can be easily realized using a
COMPARE-module. Finally the “content” of O is copied to O4. SUBTRACT() can be realized
in the same fashion.

The simulation of the LOAD(R)-operation signals to the oscillator representing [R] to send a
spike through its output to O4. The delays have to be chosen such that O4 will actually represent
[R]. We assumed that each LOAD-operation occuring in P corresponds to a unique state of the
state oscillators. The proper register can be addressed in the same fashion as the different states
of the state-oscillators address different modules.

The STORE(R)-operation can be realized in an analogous way by first halting the oscillator
containing [R] and then copying the “contents” of O4 to this oscillator. [|

Theorems 3.1 and 3.2 immediately imply:

10

Theorem 3.3 SNN’s with piecewise constant response- and threshold functions are for computa-
tions with bounded real-valued input and output real-time equivalent to N"-RAM’s.

A closer look reveals that Theorems 3.1 and 3.2 together also imply the following result:

Corollary 3.4 SNN’s with piecewise constant response- and threshold functions are real-time equiv-
alent to the class of SNN’s with piecewise constant response functions and piecewise monotone and
continuous threshold functions.

It has been shown in [Maass 96] that an SNN that has small linearly increasing and decreasing
segments in its response functions can add and subtract arbitrary bounded real numbers and also
multiply arbitrary real bounded numbers with a given real constant. However with piecewise
constant response functions this is not possible, as the following Theorem shows.

Theorem 3.5 No SNN with piecewise constant response functions and piecewise monotone and
continuous threshold functions can carry out with a bounded number of spikes any of the operations
ADD, SUBTRACT, MULTIPLY(B) (for any B > 0 with 8 # 1) on arbitrary small differences
i firing times between meurons. This holds even if the simulating SNN may employ arbitrary
real-valued parameters.

PrROOF We prove by contradiction a slightly stronger result: no such SNN can decide with a
bounded number of spikes for given (arbitrarily small) differences a, b, ¢ > 0 in firing times between
certain neurons whether a +b=c¢,a—b=¢, or a-f = ¢ (for any fixed § > 0 with § # 1). Assume
that there exists an SNN of the considered type that solves any of these decision-problems with a
bounded number of spikes. By Theorem 3.1 this implies that there exists an N"-RAM M that can
solve this decision problem for arbitrarily small inputs a,b,¢ > 0 with a bounded number of (say:
at most £) computation steps. Consider first the case where M decides whether a + b = c.

All possible computations of length < £ of this N"-RAM M can be simulated by a decision
tree T of depth £ with some rather special form of linear decision at its branching nodes. All
register contents of M can be represented as a sum of at most one of the inputs a, b, ¢ and a finite
number of constants §. The linear decisions at the branching nodes of T' represent applications of
the instruction COMPARE to two sums of this type. Thus assuming that 7" contains m branching
nodes, for every 1 < ¢ < m the sth linear decision is of the form “r; +v; > s; + 6;”, where
75, 8; € {a,b,¢,0} and 7;,8; € RT are certain constants for this branching node.

Now we consider arbitrary inputs a,b,c¢ with 0 < a < b < ¢ < €/2 with € = min{|y; — 6| :
vi # 6; and 1 <4 < m}. It follows that each comparison “r; +-; > s; + 6;” in T holds for all such
a,b,c if v; > 6;, and holds for no such a,b,c if v; < 6; (if v; = 6;, its validity is predetermined by
the pre-arranged order a < b < ¢). This results in a contradiction since the computation of 7" will
arrive for all these inputs (a, b, c) at the same leaf of T' (and hence give the same output), in spite
of the fact that a + b = ¢ holds for some of these inputs, and does not hold for others.

Since a — b = ¢ holds if and only if a = b+ ¢, the preceding argument automatically also covers
the case of decisions “a — b = ¢”. The argument for “a - 8 = ¢’ is analogous. [

Corollary 3.6 No SNN with piecewise constant response functions and piecewise monotone and
continuous threshold functions is able to double through computations that involve at most a bounded
number of spikes a difference in firing times between neurons, or a phase-difference between two
oscillators (not even for arbitrarily small phase-differences).

11

PROOF This follows directly from Theorem 3.5 (consider the operation MULTIPLY(2)).]

4 Characterization of the Power of Restricted SNN’s for Digital
Computations

In this section we consider the case where the SNN receives an input w € {0,1}* in an online
fashion, i.e. bit by bit, where {0,1}* is the set of all binary strings of finite length. We allow that
the SNN signals through the firing of a designated neuron vy, omp: that it wants to receive the next
input bit. If the next input bit is “1”, a designated neuron v;, € Vj, will fire with a certain given
delay A € Q after the firing of vpromps. If the next input bit is “0”, v, will not fire before the next
firing of vprompt-

The following Theorem provides a stark contrast to the result in [Maass 96|, where it was shown
that SNN’s with piecewise linear response- and threshold functions and rational parameters can
simulate arbitrary Turing machines.

Theorem 4.1 SNN’s with piecewise constant response functions and piecewise linear threshold
functions with rational parameters are for online boolean input real-time equivalent to DFA’s.

PROOF Assume that some SNN N as in the claim is given. Since N uses only rational param-
eters, the times ¢t where the potential of some neuron changes or some neuron fires can be shown
to be a multiple of some constant § € Q. We will represent the current state of all neurons of N’
at such time ¢ as some state of the DFA A and compute by a transition-function the next state at
time ¢ + 6.

The construction of the simulating DFA is carried out as follows: We will define a finite set of
SNN-states in terms of the states of all neurons of A/ in such a way that every SNN-state has a
unique successor-state. For that purpose it suffices if the state of some neuron v at time ¢ contains
the following information:

e the spiking history of v, given as the time difference between ¢ and all firing times of v which
can be still relevant to other neurons at times > ¢, i.e. all firing times of v which occured
within (¢ — omer — Amazs t)-

e for every neuron v with (u,v) € E and every firing time ¢, < ¢ of u given by t — ¢, with
t—ty € (0, Omaz + Amaz), the contribution of this spike to P, (1), i.e. wyy - €40(t — t,) and
furthermore the time-difference ¢’ — ¢ between the smallest ¢ > ¢ (if any) and ¢ with e, , (' —
tu) # €up(t —ty). The state of v also depends on the number 7 of the current segment of ¢, ,,
with 1 <4 < my, — 1 such that ¢/ — ¢, = ;2. If no ¢’ exists then ¢ = My .

e the current threshold ©,(t — t,), where t, is the last firing time of v. ¢ — ¢, is given by the
smallest element from the spiking history of v. If v has not fired before ¢ or if t — ¢, > 7y cp4,
then the current threshold is ©,(0).

As shown in the proof of Theorem 3.1, P,(¢) can assume only finitely many values, which are in
this case rational. For each possible value P of the potential function of some neuron v it follows
that each ¢ for which P = ©,(t) (if any) such that ¢ is within a non-constant segment of O, is
rational, since the threshold functions were assumed to be piecewise linear. We denote all these
possible times with 6,1, ..., 8,5, for some suitable constant n, € N.

12

If a neuron v # wv;, fires at time ¢, then there has to be at least one neuron u, which fired at
some time ¢, < t and which caused the “last jump” in the potential function of v before or at .
We can express ¢ in terms of previous firing times: Either ¢ = ¢, +¢;"" for some i (i.e. the threshold
was exceeded at a “jump” of the potential function) or ¢t = ¢, + 6, ; for some j with ¢, being the
last firing time of v (i.e. the threshold was exceeded during a non-constant segment of the potential
function). Obviously the latter case cannot occur if v did not fire within [t — 7, ¢ng, t). Finally we
observe that if the input neuron v;, fires at time ¢, then ¢ = t' + A for a firing time #' of the neuron
Uprompt-

By induction it follows that for every neuron v any time ¢ where v fires or its potential changes

is rational and of the form
t:Zniti+Zﬁj0j+ﬁ-A (1)
J
with n;, 75,7 € N, ¢; of the form tu” and ©; of the form ©; > with 4,7 € N and 4,9 € V. The last
term of equation 1 takes into account the delay A of the 1nput neuron v;, after the firing of vprompt
(as described at the beginning of this section). Now we can easily choose a constant § € Q such
that for any such ¢ there exists some n € N with t =n - 6.

The preceding analysis implies that it is sufficient to consider A/ only at times ¢ = n -6 and that
every neuron and thus also A/ can assume at those times only finitely many states. We model every
state s of A as described above by a state s’ of the DFA A. Those states of N' where vppomp: fires,
will be mimicked by states of the DFA A where it reads its next input bit. A ”1”-input causes the
DFA to assume a state reflecting an SNN state where v;, fires at the corresponding time. Since
there exists according to the preceding construction for each state of N” and each time é§ a unique
successor state of A at time ¢+ §, we can define a corresponding transition function on states of A
which allows A to simulate A for arbitrary online boolean input.

On the other hand a DFA can be simulated in real-time by an SNN of the here considered type
in the same way as described in the proof of Theorem 3.2, since the simulation of boolean circuits
on SNN’s described there can be achieved using exclusively rational parameters. The states of the
DFA are simulated by an array of oscillators in the SNN with binary states oscillating/dormant. m

An SNN of the type considered in Theorem 4.1, but with real-valued parameters, is computa-
tionally more powerful than a DFA, as the following corollary indicates:

Corollary 4.2 Any Turing machine M can be simulated by an SNN with piecewise constant re-
sponse functions and threshold functions (although not in real-time)

PROOF In order to prove this result we have to design a mechanism which allows a fized size SNN
to store and manipulate bit sequences of arbitrary length.

It is well known that any Turing machine M can be simulated (however not in real time) by a
counter machine M’, having no tapes but two counters (see e.g. [Hopcroft 79]). At each step M’
can either increase or decrease one counter by one, or check if one counter is zero. An SNN can
realize a counter with an oscillator O using the same idea as described in the proof of Theorem
3.2 by representing the current value of a counter as the phase-difference between O and some
pace-maker wppr. We choose a suitable constant § such that k-3 = [-7pps for any k,1 € N implies
that £k =1 = 0. Now the SNN can realize a counter incrementation (respectively decrementation)
by using the ADD(8) and SUBTRACT() modules, as described in the proof of Theorem 3.2. In
order to check if the counter is zero one can use the same idea as for the COMPARE-module. =

13

The preceding result shows that SNN’s with piecewise constant response- and threshold func-
tions can simulate arbitrary Turing machines, as it has been shown before for SNN’s with response
functions that contain linearly increasing and decreasing segments ([Maass 96]). However our next
result exhibits an important difference between both classes of SNN’s with regard to speed of these
simulations. Whereas with the latter class of SNN’s one can simulate arbitrary Turing machines in
real-time (hence in linear time), no polynomial time simulation is possible if the response functions
are piecewise constant.

Theorem 4.3 Assume that a language L C {0,1}* is accepted in polynomial time by some online
SNN N with arbitrary piecewise constant response functions and arbitrary piecewise monotone
and continuous threshold functions, whose definition may involve arbitrary real-valued parameters.
Then for every n € N the initial segment L N {0,1}<" of L can be accepted by some DFA with at
most polynomially in n many states.

PROOF Theorem 3.3 also holds for online SNN’s: One simply has to consider online N"-RAMs,
which have in addition to the N"-RAM introduced in Definition 2.2 a READ-command, causing
the next input-bit to be stored into some designated register.

An on-line N--RAM M which simulates the given SNN A in real-time accepts L N {0,1}<" in
at most polynomially in n many steps. The program of M is by definition of finite length and thus
uses a finite number of constants. The possibilities of M to change the contents of registers are
very limited (it can basically only add or subtract constants). Each of the (say k) registers of M
can assume within polynomially in n many steps at most p(n) different values for some polynomial
p, independent from the input. Hence the registers of M can assume at most p(n)* “states” within
polynomially in n many steps. Therefore a DFA with polynomially in » many states can simulate
M for inputs up to length n, and hence accept LN {0,1}<". [

Corollary 4.4 No SNN of the type considered in Theorem 4.3 can decide in polynomial time
whether w = @ for two sequentially presented bit strings w,w € {0,1}" (i.e. ww, or wH#w with a
separation marker #, is given as input in an online fashion).

PRrROOF By Theorem 4.3 it is sufficient to consider some DFA which carries out such a decision
for a fixed n. It can be easily shown that such a DFA has to employ at least 2™ states to record
the first half w of the input. [

The pattern matching task from Corollary 4.4 can obviously be carried out by a Turing machine
in linear time. Hence no SNN of the type considered in Theorem 4.3 and Corollary 4.4 can simulate
an arbitrary Turing machine in polynomial time (i.e. in such a way that the simulation of ¢ Turing
machine steps requires at most polynomially in ¢ many spikes). This provides a strong contrast to
the situation for SNN’s with linearly increasing and decreasing segments in their response functions,
that can simulate any Turing machine in real-time (hence in linear time) even if all their parameters
are rationals.

5 Conclusion

We have shown that both for numerical and boolean inputs a noise-free SNN with piecewise con-
stant response functions has much less computational power than a noise-free SNN whose response

14

functions have linearly increasing and decreasing segments. In addition, Theorem 3.3 provides a
complete characterization of the computational power of the former type of SNN’s in terms of a
mathematically very perspicuous (and easy to program) computational model: the N"-RAM.

Acknowledgement: We would like to thank Eric Allender and Pekka Orponen for helpful
comments.

References

[Abeles 91] M. Abeles. (1991) Corticonics: Neural Circuits of the Cerebral Cortex. Cambridge
University Press.

[Aertsen 93] A. Aertsen. ed. (1993) Brain Theory: Spatio-Temporal Aspects of Brain Function.
Elsevier.

[Bair 94] W. Bair, C. Koch, W. Newsome, K. Britten. (1994) Reliable temporal modulation in
cortical spike trains in the awake monkey. Proc. of the Symposium on Dynamics of Neural
Processing, Washington, USA.

[Bialek 92] W. Bialek, F. Rieke. (1992) Reliability and information transmission in spiking neurons.
Trends in Neuroscience, vol. 15, 428-434.

[Gerstner 91] W. Gerstner. (1991) Associative memory in a network of “biological” neurons. Ad-
vances in Neural Information Processing Systems, vol. 3, Morgan Kaufmann: 84-90.

[Gerstner 92] W. Gerstner, R. Ritz, J. L. van Hemmen. (1992) A biologically motivated and ana-
lytically soluble model of collective oscillations in the cortex. Biol. Cybern. 68: 363-374.

[Gerstner 94] W. Gerstner, J. L. van Hemmen. (1994) How to describe neuronal activity: spikes,
rates, or assemblies? Adwvances in Neural Information Processing Systems, wol. 6, Morgan
Kaufmann (San Mateo), 463-470.

[Hopcroft 79] J. E. Hopcroft, J. D. Ullman. (1979) Introduction to automata theory, languages and
computation. Addison- Wesley Publishing Company Inc.

[Hopfield 95] J. J. Hopfield. (1995) Pattern recognition computation using action potential timing
for stimulus representations. Nature, vol. 876, 33-36.

[Horinchi 91] T. Horinchi, J. Lazzaro, A. Moore, C. Koch. (1991) A delay-line based motion de-
tection chip. Advances in Neural Information Processing Systems, vol. 8, Morgan Kaufmann
(San Mateo), 406-412.

[Jahnke 95] A. Jahnke, U. Roth, H. Klar. (1995) Towards efficient hardware for spike-processing
neural networks. Proc. of the World Congress on Neural Networks, July 1995 in Washington.

[Kandel 91] E. R. Kandel, J. H. Schwartz, T. M. Jessel. (1991) Principles of Neural Science.
Prentice-Hall.

[Leong 81] B. Leong, J. Seiferas. (1981) New real-time simulations of multihead tape units. J. of
the ACM 28, 166-180.

[Maass 95a] W. Maass. (1995) On the computational complexity of networks of spiking neurons
(extended abstract). Advances in Neural Information Processing Systems, vol. 7, MIT-Press,
183-190.

[Maass 95b] W. Maass. (1995) Analog computations on networks of spiking neurons (extended
abstract). Proceedings of the 7th Italian Workshop on Neural Nets, to appear.

15

[Maass 95¢] W. Maass. (1995) An efficient implementation of sigmoidal neural nets in temporal
coding with noisy spiking neurons. IGI-Tech Report 422 der Technischen Universitit Graz,
submitted for publication.

[Maass 95d] W. Maass and B. Ruf. (1995) On the relevance of the shape of postsynaptic potentials
for the computational power of spiking neurons. Proc. of the International Conference on
Artificial Neural Networks (ICANN), Paris, vol. 2, 515-520.

[Maass 96] W. Maass. (1996) Lower bounds for the computational power of networks of spiking
neurons. Neural Computation, vol. 8, issue 1, 1-40.

[Murray 94] A. Murray, L. Tarassenko. (1994) Analogue Neural VLSI: A Pulse Stream Approach.
Chapman & Hall.

[Paul 84] W. Paul. (1984) On heads versus tapes. Theoretical Computer Science 28, 1-12.

[Pratt 89] G. A. Pratt. (1989) Pulse Computation. Phd-dissertation, MIT, Dept. of Elect. Eng.
and Comp. Sci.

[Reischuk 90] K. R. Reischuk. (1990) Einfiihrung in die Komplexitatstheorie. Teubner (Stuttgart).

[Sejnowski 95] T. J. Sejnowski. (1995) Time for a new neural code? Nature, vol. 376, 21-22.

[Thorpe 89] S. J. Thorpe, M. Imbert. (1989) Biological constraints on connectionist modelling. In:
Connectionism in Perspective, Pfeifer, R., Schreter, Z., Fogelman-Soulié, F., and Steels, L.,
eds., Elsevier (North-Holland).

[Watts 94] L. Watts. (1994) Event-driven simulation of networks of spiking neurons. Advances in
Neural Information Processing Systems, vol. 6, Morgan Kaufmann: 927-934.

16

