Electronic Colloquium on Computational Complexity - Reports Series 1996 - available via:
E( :( :( : FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW:  http://www.eccc.uni-trier.de/eccc/

T R96- 026 Email:  ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

Finite Limits and Monotone Computations
(Preliminary Version)

Stasys Juknal*

20 March 1996

We prove a general combinatorial lower bound on the size of monotone circuits. The ar-
gument is different from Razborov’s method of approximation, and is based on Sipser’s
notion of ‘finite limit’ and Haken’s ‘counting bottlenecks’ idea. We then apply this crite-
rion to the CLIQUE function on n variables and obtain an exp(Q(n'/4)) lower bound for
it, improving the best previous lower bound exp(Q((n'/®/(logn)'/?)) for this function
obtained by Alon and Boppana using the method of approximations. The bound holds
for circuits with unbounded fan-in AND, OR gates and any monotone Boolean functions
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of fan-in at most n'/* at the bottom. This supplements previous result due to Yao that

the clique function has no polynomial size monotone circuit with fan-in n¢ monotone

gates.

1. Introduction

A natural idea to prove a lower bound on the size of a circuit is to introduce a notion
of ‘progress” which any one gate in a circuit can do towards the final goal — computing
correctly a given Boolean function f. The Method of Approximations due to Razborov
([9, 10]) provides a general scheme on how such a progress could look of: replace each
gate by a special gate and take the error of this approximation as a progress (made
by an original gate against the new one). This idea was used to prove non-trivial lower
bounds for monotone circuits [9, 1], bounded depth circuits over {A, @} [11], switching—
and-rectifier networks [12], span and &-branching programs [7], and monotone circuits
over the reals [8]. Another approach to proving lower bounds for monotone circuits was
recently described by Haken in [3]. The method employs the ‘counting bottlenecks’ idea
(n!

from [2] and was used in [3] to prove a 22("'/*) lower bound on the size of a monotone

circuit computing some special Boolean function (‘broken mosquito screens’ function), a

version of the CLIQUE function.

In this paper we develop the approach of [3] in two ways: we prove a general (and easy
to apply) combinatorial lower bound for unbounded fan-in monotone circuits, and use it
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to prove a 22("'"*) Jower bound for the CLIQUE function, improving the best previously
known lower bound [1], which was exponential in exp(£2(n'/6/(logn)*/?).

Our main tool is the concept of ‘finite limit’ due to Sipser [13, 14]. A vector is a k-limit
for a set of vectors if on every subset of k& coordinates, this vector coincides with at least
one vector from the set. If f(z) = 0 and z is a k-limit for the set f~*(1) then z is a ‘hard’
instance for a circuit computing f since the value f(z) cannot be determined when looking
at only k bits of z. It is therefore natural to define the progress made at a particular gate
as the set of all vectors which are hard for this gate and which were not hard for previous
gates. The key of the whole argument is one simple ‘limit lemma’ (Lemma 2.2) stating
that no gate can make too large progress. If the function f is such that f~'(0) has many
k-limits for f~'(1), then the progress made by the whole circuit must be large, and hence,

there must be many gates.

In Section 2 we use this approximation scheme to derive a general combinatorial lower
bound for circuits with unbounded fan-in AND, OR gates and arbitrary monotone Boolean
functions of bounded fan-in as input—gates (Theorem 2.1). The combinatorial part of this

argument is simple, essentially trivial.

In Section 3 we apply this criterion to CLIQUE,, , function. This is a monotone Boolean
function on n = (7;) variables, which, given a graph G on m vertices, computes 1 iff G con-
tains a k-clique, i.e. a complete subgraph on k vertices. The best previously known lower
bound for this function, proved by Alon & Boppana [1] using Method of Approximations,

was 297 for any k < (m/8log m)2/3. For maximal possible k& this bound is exponential

in exp(Q(n'//(logn)'/?). We prove a lower bound 2%¥) for any k < m'/? (Theorem 3.1).
This almost matches the trivial upper bound 2°*10(*/¥) "and for k < m'/?, is exponential
in Q(n'/*). Moreover, this bound holds for quite general model of monotone circuits: we
allow unbounded fan-in AND, OR gates and arbitrary monotone functions of fan-in n'/*
at the bottom. This supplements previous result due to Yao [15] that the clique function

has no polynomial size monotone circuit with fan-in n° monotone gates.

Finite limits have already been shown to work for other models of computation: AC°-
circuits [4], syntactic read-k-times branching programs [5] and depth-three threshold cir-
cuits [6]. The main advantage of using limits in all these applications is the simplicity and
transparency of the whole lower bounds argument. The main aim of this paper is to show

that limits can do the same job for monotone circuits.

2. The General Lower Bound

Let N be a finite set, |N| = n. Elements of N are called bits. An input is a mapping
z: N — {0,1}. A Boolean function is a mapping f : {0,1}¥ — {0,1}. An (-circuit is

a usual Boolean circuit of unbounded fan-in AND and OR gates; the input-gates can be
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arbitrary Boolean functions depending on at most ¢ variables. A circuit is monotone if all
these input—gates are monotone functions.

A witness of input z against a set of inputs Y is a set of bits S such that z differs
from every input y € Y on at least one bit from S. In the criterion we are going to state,
only two parameters of witnesses will be important: their ‘length’ and their ‘legality’. To
define the length, take a mapping = (called a projection) which assigns to each set of bits
S C N a set m(S) (of arbitrary nature)! and define the length of S as the number |7 (S)]
of elements in 7(.5). Throughout this section we fix a pair of projections (7o, 71) with the
following cross—intersection property: if SNT # () then 7o(S) N 7y (T) # 0.

Definition. If S is a witness of an input z (against some set) then we say that this
witness is legal if z(7) = f(z) for all 7 € S. It’s length is ‘ﬂ'f(l.)(S)‘. We say that x is a
k-limit for Y if x has no legal witness against Y shorter than k. Let limg(Y') denote the
set of all k-limits for a set Y. For a set X C f~1(e), its k-th degree #(X) is the maximum
of?

U X[
S:me(S)DH
over all k-element sets H, where X[S] is the set of all inputs @ € X with z(¢) = f(z) for
all ¢ € S.

Our main result is the following general combinatorial lower bound for monotone (-

circuits.

Theorem 2.1. Let1 < { < s,r < n be integers, f be a monotone function on n variables,
and let X° C f71(0) and X' C f~*(1). Then every monotone {-circuit computing f, has
size at least

min{ X0 N lim, (X)X Tim, (X)) } "
(

F— 1) # (X0 (s — 1) (X))

The proof is based on the following simple lemmas concerning transversals and limits.
A cover of (or a transversal for) a family of sets F is a set T' which intersects every
member of F. The cover number 7(F) of a family F is the minimum number of elements

in a transversal for it.

Lemma 2.1. Let F be a family of sets, each of cardinalilty at most s. Then for every

! For example, in case of graphs, bits in N correspond to edges, and one can take 7(S) be the set of
vertices covered by the edges in S.
2 Notice that X[T] C X[S] if T D S, so that it is enough to consider only minimal sets S.
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r < 7(F) there is a family H, of at most s™ r-element sets such that every transversal of
F contains at least one member of H,.

Proof. Let F = {5y,...,5:} and fix this order of sets. We will construct the desired
family H, by induction on r. For r = 1 we can take as H; the family of all one element
sets {x} with z € S;. Assume now that H,_; is already constructed. For each set H in this
family choose the first index ¢ for which HNS; = §§ (such an 7 exists since r — 1 < 7(F)),
and put in H, all the r-element sets H U {z} with z € S;. Then |H,| < s+ |H,—1| < ",
and we are done. ®

Lemma 2.2. (Limit Lemma) Let 1 < s,7 < n be integers, € € {0,1}, and let A C X°
and ) # B C X“¥' be such that: (i) every inpul from A is an r-limit for B, and (ii) no
input from B is an s-limit for A. Then |A| < (s = 1)" - #,(A).

Proof. Let B = {y1,...,y:} and let = be an arbitrary input from A. By (ii) there exist
subsets S; C N, ¢ = 1,...,t such that |7.g1(S;)] < s — 1 and all the inputs from A,
including z, differ from y; on at least one bit j; € S; for which y;(j;) = ¢ & 1. Thus, for
every 1 = 1,...,t we can choose one bit j; € S; such that z(7;) = € # y:(j). Let T, = {j; :
i = 1,...,t} be the set of all such bits, corresponding to z, and let 7 = {7, : v € A}.
Since T is a legal witness of @ against B, we have by (i) that |7.(7})| > r. On the other
hand, every T' € T is a transversal for the family {Sy,...,S;}, and, since the projections
7o and 7 have the cross—intersection property, the sets 7.(7') are also transversals for the
family {m.1(S1),. .., Tep1(S:)}. By Lemma 2.1 there is a family H of (s — 1)" r-element
sets such that every set #.(7) with 7' € 7, contains at least one set H € H. Thus,
A =Urer A[T] € Unen Uﬂ'e(T):_)H A[T], and hence, |[A| < Ypen #|H|(A) < (s=1)"-#.(A),

as desired. H

Proof of Theorem 2.1 Set ky := s and k; := r. Let C' be an {—circuit computing
f. That is, C is a straight-line program C = (¢1,...,¢:); every gate ¢; has the form
gi = é(hy, ..., hy,) where ¢ is either AND or OR, and each h; is either one of the previous
gates ¢1,...,¢;,—1 or an arbitrary monotone Boolean function on at most ¢ variables. To
unify our notation, we say that ¢; is a 1-gate if ¢ = A, and a 0-gate if ¢ = V. For a gate ¢
and e € {0,1}, let X7 = {z € X°: g(z) = ¢} denote the part of inputs separated correctly
at g.

Say that an input x is hard for a gate g if g is the first gate (in C') such that x € X for
some € € {0,1} (i.e. g classifies x correctly) and z is a k.-limit for X¢#1. Let Y, denote the
set of all inputs which are hard for g, and let Y be the union of sets Y, over all e-gates g

of C.
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If g is an input-gate then Y, = (). Indeed, in this case ¢ is monotone and depends on
at most ¢ variables. Hence, for every pair of inputs « € X‘S and y € X‘; there must be at
least one of these (fixed) ¢ coordinates ¢ such that x(¢) = 0 and y(¢) = 1. Thus, no input
from X can be a {-limit for the other part X“®! and hence, no input can be hard for g¢.

Let now g = ¢(h1,..., hy) be an e-gate. Observe that then Y, C X7, i.e. that no input
from X ®! can be hard for g. Indeed, in this case X = N2, X} and X ®' = U, X,i?l.
Hence, if for some j, Xi?jl would have an input, which is a limit for X¢, then this input
would be also a limit for X , meaning that this input already was hard for h;; or some
previous gate. Thus, Y, C ng, and hence, no of the inputs from X;®1 can be a k.g-limit
for the set Y, € X/. (Note that XgEel # () since otherwise we could replace the gate g
by the constant ¢). On the other hand, every input from Y, is a k.-limit for Xgﬁeal, by the
definition. Applying Lemma 2.2 with A =Y, and B = X;EBl we obtain the following upper

bound on the progress made by one gate:
Vo] < (kegn — 1)% - g5 (X°). (2)

It remains to observe that the progress made by the whole circuit cannot be too small,
namely, that for at least one ¢ € {0,1},

Ve > | XN Timy (X°2)) (3)

Indeed, the last gate g of ' being an e-gate means that every input from X; = X°,
which does not belong to Y, can be hard neither for ¢ nor for any previous gate, and in
particular, is not a kc-limit for the set X:®' = X“®'. Thus, X\ Y C X\ limy, (X"),
which gives the desired lower bound (3).

Since size(C') > &g - [Y°] 4+ &1 - [Y'| where 6. = 1/ max, |V, | over all e-gates g, estimates
(2) and (3) imply the desired lower bound (1), completing the proof of Theorem 2.1. ®

3. Lower Bound for Clique Function

Let N be the family of all n = (g“) 2-element subsets (called edges) of some set V of m
vertices. This way every input  : N — {0, 1} can be identified with the graph G, = (V, F)
where (u,v) € E iff 2(u,v) = 1. The clique function CLIQUE, , is a monotone Boolean
function on n variables, which given an input z computes 1 iff the graph (G, contains a
k-clique, i.e. a complete subgraph on k vertices.

Using the method of approximations, Razborov in [9] proved the super-polynomial
lower bound nf1°8™) for this function. Subsequently, Alon and Boppana [1], by strength-
ening the combinatorial part of Razborov’s proof, were able to extend this bound un-
til exp (Q(n1/6/(log n)1/3). More exactly, they proved a lower bound 20k for any

k < (m/8log m)2/3. These bounds were proved for usual model of fan-in 2 AND, OR
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gates. Yao [15] considered monotone circuits with arbitrary monotone Boolean functions
of fan-in < n as gates, and proved that any such circuits computing CLIQUE, , with
k = log log m, requires super-polynomial size.

Theorem 2.1 leads to a 2%F) lower bound for any k < m!'/2, improving the bound of [1]
until exp (Q(n1/4)> . Moreover, our bound holds for circuits with unbounded tan-in AND,

OR gates and arbitrary %—ary monotone Boolean functions at the bottom.

Theorem 3.1. Let /¢ < min{;n—k, %}, and let C be a circuit with unbounded fan-in AND,

OR gates and arbitrary monotone Boolean functions of fan-in { at the bottom. If C' com-
putes CLIQUE, , then C' has size omin{kn/kY) - In particular, if k < m'? then the size
of C 1is 20(n!/)

Proof. Let X' be the set of all (inputs corresponding to) ¢-cliques, so that | X!| = (7;3) Let
X be the set of all (inputs corresponding to) graphs formed by assigning each vertex one
of k—1 colors and then putting edges between those pairs of vertices with different colors.
Additionally, we require that all the colors be used, so that the number of such colorings is
(k—1)"—(k—2)" > (k—2)™. (Two colorings can lead to the same graph but we consider
them as different for counting purposes). Define the projections by: 7o(S) = 71(.S) = the
set of all vertices incident with at least one edge from S. The cross—intersection condition
is then trivially satisfied. We are going to apply Theorem 2.1 with s := [m/2k] and
r:= [k/2].

Observe that every k-clique is a (k — 1)-limit for the set of all (k — 1)—partite graphs
because every (k — 1)—clique lies entirely in at least one of such graphs. Thus, X' N
limg(X?) = X'. On the other hand, adding one new edge e ¢ E to any complete (k — 1)-
partite graph G = (V, E) we obtain a graph with a k-clique. Put otherwise, no proper
subset of N\ E can witness the difference of G from graphs with k-cliques, and hence, G
has no legal witness against k-cliques of length shorter r. Thus, again |X° N lim,(X")| =
| X°| > (k — 2)™. Next, observe that #,(X?') is the number of k-cliques containing some
fixed set of r vertices, and hence, is at most (Z__:) On the other hand, #,(X?) is the
number of colorings with a pre-determined value on some fixed set of s vertices, and hence,
is at most (k — 2)"~%.

Putting these estimates into (1), a simple calculation shows that the first term is at
k=2Y)° _ 90Q(m/k) - " 99(k) -
least (T_l) =2 and the second is at least ( ) =2 as desired.

(sinl)k ’
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