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Abstract

Our main result is a general and easy to apply combinatorial lower bounds
criteria for: (a) circuits with unbounded fan-in AND and OR gates, and (b)
circuits with arbitrary non-decreasing real functions of large fan-in as gates. The
combinatorial part of our argument is very simple. It combines the ”bottlenecks

counting” idea of Haken with the notion of "finite limit” due to Sipser.

1 Introduction

In this paper we consider two models of monotone computations: (a) circuits with
unbounded fan-in AND and OR gates, and (b) circuits with arbitrary non-decreasing
real functions of large fan-in as gates. Our main result is a general combinatorial
lower bound for such circuits (Theorems 3.1 and 3.2). Apparently, this is the first
simple and easy to apply lower bounds criterion for monotone computations. When
applied to concrete Boolean functions, this criterion directly yields exponential lower

bounds for explicit functions in NP.

Our argument combines two ideas: a bottlenecks counting idea of Haken [8, 9]

and an idea of finite limits due to Sipser [20, 21]. The bottlenecks counting idea was
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first used by Haken in the lower bounds proof for resolution [8]. In [9] he applied this
idea to monotone circuits and proved a 22 %) Jower bound on the size of a monotone
circuit computing some special Boolean function (‘broken mosquito screens’ function),
a version of the clique function. In [10] this lower bound was extended to constant
fan-in monotone real circuits. As shown by Cook and Rosenbloom [7], such circuits
are quite powerful in that they can compute any Boolean slice function in linear size,
whereas most of such functions require (non-monotone) Boolean circuits of super-

polynomial size.

The combinatorial part of our argument is different from that used in the famous
method of approzimations proposed by Razborov [15, 16, 17, 18, 19] (see also [5] or
[22] for expositions). But general idea is essentially the same: we map a large set of
input vectors to gates in the circuit so that not too many vectors are mapped to any
one gate. The mapping manages to hit “bottlenecks” in the circuit by sending an
input vector to the first gate in the circuit for which this input is “hard” and which
nevertheless classifies this input correctly. To measure the “hardness” we use the
concept of finite limit due to Sipser [20, 21]. A vector x is a k-limit for a set of vectors
A if on every subset of k coordinates, z coincides with at least one vector from A. If
f(z) = 0and z is a k-limit for the set f~(1) then  is a ‘hard’ instance for any circuit
computing f since the value f(z) cannot be determined when looking at only k bits
of . The key of the whole argument is one simple "limit lemma” (Lemma 5.2) saying
that in monotone circuits no single gate can make too large progress in classifying
such instances. If the function f is such that f='(0) has many k-limits for f='(1) (and
vice versa) then the progress made by the whole circuit must be large, and hence,

there must be many gates.

The paper is organized as follows. In Section 2 we describe the model of monotone
circuits over the reals. In Section 3 we formulate the general lower bounds criterion
for such circuits (Theorem 3.1) and its modification for unbounded fan-in AND/OR
circuits (Theorem 3.2). In Section 4 we define limits and loosely describe the main
idea. All necessary combinatorial properties of limits are stated and proved in Sec-
tion 5. Both theorems are proved in Sections 6 and 7. In the last section we apply
our general lower bound to explicit Boolean functions and derive exponential lower
bounds for them. For the clique function the bound is exponential in Q(n!/¢=°(1)),
For other natural function in NP (‘drawing polynomials’ function) the bound is expo-

nential in Q(n'/*). This last bound is almost optimal and was the largest lower bound
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proved in [1] using the method of approximations. We get these bounds in a unique
manner: all we need is to compute several very simple combinatorial characteristics
of a given Boolean function. Moreover, these bounds hold for more general and, due

to the above mentioned result in [7], exponentially more powerful models:

e circuits with arbitrary nondecreasing real functions of large fan-in (up to n'/4)

as gates, and

o circuits with unbounded fan-in AND and OR gates, and arbitrary monotone

Boolean functions of large fan-in (up to n'/4) on the bottom.

In the Boolean case, this supplements previous result due to Yao [23] that one needs
super-polynomial size to determine small clique in a graph even allowing gates capable

to perform arbitrary monotone Boolean operation of fan-in at most n°.

The results in the present paper have also an application to cutting plane proofs
[6] in the propositional calculus. Cutting plane proofs provide a complete refuta-
tion system for unsatisfiable sets of propositional clauses. They efficiently simulate
resolution proofs, and in fact are known to provide exponentially shorter proofs on
some examples (the pigeonhole clauses). Bonet et al [4] and Pudldk [14] reduced the
problem to lower bounds for circuits with nondecreasing real functions of fan-in 2 as
gates. Thus, our general lower bound for such circuits (Theorems 3.1), as well as

lower bounds for explicit functions, are also lower bounds for cutting plane proofs.

2 The model

In this section we recall some (more or less standard) notions concerning Boolean
functions and circuits. Let N be a set of n elements, called bits. Subsets of N
are called bit sets. An input is a mapping z : N — {0,1}. A Boolean function is
a mapping [ : {0,1}" — {0,1}. The value f(z) of f on an input z is defined by
flz) = f(z(1),...,2(n)). A Boolean variable is a projection v; : {0,1}" — {0,1} onto

a single coordinate, i.e. v;(z) = z(¢); there are n such variables.

A real circuit (or straight-line program) over the basis ® is a sequence C' =
(g1,---,9:) of mappings (called gates) ¢g; : {0,1}" — R such that for every: =1,... 1,
gate g; has the form ¢g; = ¢(hq,..., hy,) where ¢ : R™ — R is a function from

the basis ®, and each h; is either a Boolean variable or one of the previous gates
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gis-..,9i—1. If all the h; are Boolean variables, then g; is called the bottom gate. The
number m; is a fan-in of g;. The number ¢ is the size of C. The function computed

by C' is the function ¢g; computed at the last gate.

Remark. The arithmetic structure of real numbers R will not be used for the lower

bounds, one can take any totally ordered set instead of R.

Let, in what follows, f be arbitrary (but fixed) Boolean function. In order to define
the monotonicity of circuits, we look at the behavior of their gates g on bipartite
graphs D, C f='(0) x f='(1) defined by: (z,y) € D, iff g(z) # g(y). Intuitively, the
larger D, is, the better g ‘approximates’ the function f. Given a subgraph F, C D,
and an input z, let E () C f~'(f(x) @ 1) denote the set of all neighbors of z in the
graph F,. We say that a graph F, is monotone if, it is possible to order all the inputs
T1,...,2, in f71(0) so that E,(x1) C ... C E,(xp).

One more characteristic of gates will be important for us, namely - their ‘degree’,
which also depends on the properties of associated graphs E,. If g = ¢(hy,..., hy,) is
a gate then clearly £, C Ej, U...UFE), , because (z,y) € E implies that g(z) # g(y),
and hence, h;(z) # h;(y) for at least one i. That is, every edge (z,y) of the resulting
graph F, must appear in at least one of the input graphs F,, ,..., F,, . Given a
vertex z of the graph F, we are interested in the minimal number of these input
graphs covering all the edges incident to z. Namely, define the e-degree of a gate ¢
as the maximum of deg(z,¢) = min{|/|: I C [m] and E,(z) C U;cs En.(z)} over all

inputs x € f~!(¢). The degree of a gate is the maximum of its 0- and 1-degrees.

Given a real circuit C' = (g1,...,9:), which computes a Boolean function f, we
say that C' is a monotone circuil of degree d if it is possible to associate with each its
gate g; a monotone graph £, C f~'(0) x f~'(1) so that £, = f~'(0) x f~'(1) and

the degree of each gate is at most d.

Remark. Since the domain R of gates is totally ordered set, it is always possible
to associate with any gate g a graph, which is monotone. For example, the graph
E, C D, defined by (z,y) € E, iff g(x) < g(y) is monotone: list f~1(0) = {z1,...,2,}
and f~'(1) = {y1,...,y,} so that g(z;) > ... > g(z,) and g(y1) < ... < ¢(y,). Thus,
most restrictive condition in the definition of monotone circuit is the requirement

that the graph F,,, associated with the last gate ¢;, must be complete.

"Note that monotonicity means that we actually can order inputs from both sides f~'(0) and

7).
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Example 1 (Monotone real circuits). Let ® be the set of all monotone nonde-
creasing functions ¢ : R™ — R, m > 1. Specifically, if aq < fq,..., am < By are reals
then ¢(ay,...,an) < é(B1, ..., Bn). Associate with each gate g the graph E, C D,
defined by (z,y) € E, iff g(z) < g¢(y). By the remark above, we have only make
sure that the graph F,, associated with the last gate ¢ = ¢; of a circuit computing
f, is complete. Since D, = f710) x f~'(1), we have only to verify that F, = D,.
This can be easily shown by the induction on the number of gates. Take an edge
(z,y) € D, and let g = ¢(hq, ..., hy). By the induction hypothesis, D,, = Ej, for all
gates h; (¢ =1,...,m). Since ¢ is nondecreasing, this means that g(z) < g(y), which
together with the assumption that (z,y) € D,, implies that ¢g(z) < ¢g(y), meaning
that (z,y) € E,, as desired.

Example 2 (Unbounded fan-in AND/OR circuits). Such circuits are special
case of monotone real circuits. Specific property of AND and OR gates is that the
e-degree of such a gate g = ¢(hy,..., hy) equals 1if ¢ = A and € =0, or ¢ =V and
¢ = 1. Indeed, if ¢ is the AND and ¢g(z) = 0 then FE (z) = FEy, (z)N...NEy (z). The
same holds if g is the OR and g(z) = 1.

3 The result

In this section we state our main result - general combinatorial lower bound for
monotone real circuits. Throughout this section, let f be an arbitrary (but fixed)

Boolean function.

We want our criterion to work in different situations, so we state it in most flexible
form. By a norm we will mean any mapping p : 2V — {0,1,...} which is monotone
under the set-theoretic inclusion, i.e. S C T implies p(S) < p(7T). Given such a
norm, the length of a set S is the number y(S). The deviation of y is the function
A(t) = max{|S| : p(S) < t}. The defect of y is the maximal length ¢ = max{pu({e}) :
e € N} of a single bit. These two characteristics connect the length p(S) of S with
its cardinality: p(S) < ¢-|S] and |S| < A(p(S)). For an input z we denote by I(z)
the set of all bits e for which z(e) = f(z). We say that a bit set T' respects a norm g
if we cannot add a bit from outside the set T to no of its subsets without increasing
their length, i.e. if p(S U {e}) > p(S) + 1 for any subset S C T and any bit e & T.
We say that an input x respects p if the set I(z) does this. For example, if we take
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the trivial norm p(S) = |S| then ¢ = 1, A({) = ¢ and every input respects p. In case
of graphs, bits correspond to edges and one can, for example, take p(S) to be the
number of vertices incident to at least one edge from S. In this case ¢ = 2, A(t) = (;)
and only inputs, corresponding to cliques, will respect such a norm.

Given random input x and a set of inputs A C f~'(¢), define

e Min; [x, A, z] = minProb[x € A and x(5) = ¢ @ 1] over all sets S C N with
p(S) < b,

e Max, [x, A, u] = maxProb[x € A and x(S5) = ¢] over all sets S C N with
p(S) = a.

Given a pair (fig, pt1) of (not necessarily different) norms, we will be interested in the

following characteristic of x :

Minb [X7 X€7 ;ufﬂﬂ]

Fe 1, b, d) = ]
f(X,(I, > ) (d )\(bc))a - Max, [X,XE”ME] ( )

where X¢ denotes the set of all inputs from f~'(¢) respecting the norm p; ¢ and A
are the defect and the deviation of y.g1. Given a random input x it is an easy task
to find a lower bound for this characteristic. In particular, the numerator in (1) can

be estimated by
Minyg [x, X, preg1] > Prob[x € X¢] — A(be) - p(x, ¢) (2)

where p(x,€) is the maximum of Prob[x(e) = ¢] over all bits e € N.

Our main result is the following general lower bounds criterion for monotone real

circuits.

Theorem 3.1 Let [ be a monotone Boolean function on n wvariables and let C be
a monotone real circuil computing f. Then for any random inpuls X,y, any norms

to, p1 and any integers 1 < a,b < n,
size(C') > min {F(x,a,b,dy), F}(y,b,a,do)} (3)

where d. (e € {0,1}) is the mazimum e-degree of a gate in C.
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The lower bound (3) depends on the degree of gates. The degree is always at most

the fan-in, and hence, the criterion works well for small fain-in gates. If we want to
allow large fan-in gates, we have to restrict their power since otherwise the whole
circuit could consist of just one gate. Let us look at the most restrictive case: the
case of unbounded fan-in ANDs and ORs. We have seen in Example 2 that for such
gates one of degrees dy or dj is very small: dy = 1 for AND gates and d; = 1 for
OR gates. But, in general, the dual degree d.q; of these gates can be as large as the
fan-in. Nevertheless, the proof of Theorem 3.1 can be easily modified so that to get

the following theorem.

Theorem 3.2 Let C be a Boolean circuit with unbounded fan-in AND and OR gales
and arbitrary monotone Boolean functions of fan-in £ at the bottom. If C' computes

[ then, for any ¢ < a,b < n, the bound (3) holds with dy = d, = 1.

4 Limits, Witnesses and the Idea

In this section we define finite limits and describe the idea. Recall that ](:v) denotes
the set of all bits e such that z(e) = f(z).

Definition. A witness of an input x against a set of inputs A is a set of bits § C N
such that for every y € A there is a bit ¢ € S for which z(e) # y(e). A witness S
is legal if S C I(z). A k-limit for a set A under a norm g is an input z such that
p(S) > k+ 1 for any legal witness S of = against A.

Before we go to formal proofs, let us first loosely describe the idea in the simplest
case when both norms are trivial, i.e. when po(S) = p1(S) = |S|, and we have only
fan-in 2 AND and OR gates. (The general case follows the same idea taking more

care about the possible deviations of norms from this trivial one.)

Given such a circuit C' = (g1, ..., ¢:) we associate with every its gate g the graph
E, C f7(0) x f='(1) defined by: (z,y) € E, iff g(z) = 0 and g(y) = 1. These graphs
are clearly monotone (in fact they are complete subgraphs), and E, = f~1(0) x
S7H(1). TIf some input = € f7'(0) is a k-limit for the set F,(z) then we can treat
x as a "hard instance” for the gate g because g correctly separates = from all its
neighbors, even though this requires knowledge of more than &k bits. We will use
this property (of being a limit for the set of own neighbors) to color the nodes of the
graph f~1(0) x f='(1). We do this step-by-step going through the graphs E,,, ..., E,,.
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Initially no node is colored. At the i-th step (¢ = 1,...,t) we color a node z iff + was
not colored so far and if z is a k-limit for the set of all its uncolored neighbors in the
i-th graph F,,. To get a lower bound on the number ¢ of gates in (' it is enough to
show that:

(i) after ¢ steps most of the nodes in at least one part of E,, must be colored;
(il) not too much new nodes are colored at each step.

Towards (i). If all the nodes in at least one of the parts f~'(0) or f~'(1) are
colored, there is nothing to do. Suppose therefore that both parts have a uncolored
nodes z. Take an uncolored node = € f~'(0) and let Y be the set of all colored nodes
in f~'(1). The fact that = remains uncolored means, in particularly, that = was not a
k-limit for the set E,, (z)\'Y = f~'(1)\ Y, where g; is the last gate. This means that
x must have a legal witness of length & against the set of uncolored nodes f='(1)\ Y.
Le. there must be a set of bits S C I(z) such that |S| < k and every uncolored input
input from f~'(1) takes the value f(z) @1 =1 on at least one bit in S. Thus, all the
remaining inputs y € f~!(1) with y(.S) = 0, must be already colored.

Towards (ii). Consider the i-th step of our coloration procedure. Take a gate
gi = ¢(hy1, hy) and assume w.lo.g. that ¢ = A (the case of ¢ = V is dual). First,
observe that no new input z € f~'(0) is colored at the i-th step. This is because in
this case we have that E,,(z) = Ej, (z) N Ep, (), and hence, if 2 would be a limit for
the set of its uncolored neighbors in the graph F,, then x would also be a limit for
the sets of neighbors in both previous graphs Ej, and Fj,, meaning that x should be
already colored at some previous step. We have therefore only to show that not too
much inputs from the other part f~'(1) are colored at the i-th step. Let A C f~'(1)
be the set of all inputs which are colored at the i-th step, and let B C f=1(0) be the
set of those inputs from the other side, which were not colored in previous steps. In
terms of limits this means the following: every input from A is a k-limit for the set B
and no input from B is a k-limit for A. It appears that this information is enough to
show that A cannot be too large. This is the content of the ‘limit lemma’ (Lemma 5.2)
which we prove in the next section. In our simplest case (of trivial norms), they state
that |A| is at most &* times the maximum number of inputs from A, all of which take

the value 1 on some fixed set of k bits.

We now turn to formal proofs. The notations and statements are somewhat more
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cumbersome because now we allow arbitrary norms. We first prove desired limit

lemma.

5 Limit lemma

We will make use of the following simple lemma about transversals. Let F =
{S1,...,5:} be a sequence of bit sets and let g be a norm. A k-critical transver-
sal for F under the norm g is a set T, which respects g and for which there is an
index [ € {1,...,t} such that T intersects all the sets Si,...,.S; but no its subset
T'" C T with u(T") < k does this. We also say that a set 7' covers a set S if T' D .

Lemma 5.1 Let F be a sequence of bit sets, each of cardinality at most r. Let p be
a norm and ¢ be its defect. Let T be a family of ac-critical under p transversals for
F. Then there is a family H, of bit sets such that: (i) [Hy| < r%, (ii) a < p(H) < ac
Jor all H € H,, and (iii) every set from T covers al least one set from H € H,.

Proof. Let F=1{5,,...,5;}. We will construct the desired family H, by induction
on a. For a = 1 we can choose the first set S; such that p({e}) # 0 for all e € 5;,
and take as H; the family of all one element sets {e} with e € S;. This family has at
most |S;] < r sets, each of which has length at most ¢, as desired. Suppose now that
the family H,_; is already constructed. For a set of bits H, let ext(H) denote the set
of all transversal in 7 covering H. We can assume w.l.o.g. that ext(H) # () for every
set H in H,_; (if not, remove all other sets). We construct the desired family H, by
applying the following procedure to the family H,_;.

Take a set H in H,—_; and choose the first index ¢ such that H N S; = § but
TNS; # 0 forall T € ext(H) (such an i exists since pu(H) < (a —1)c < acand H is a
subset of an ac-critical transversal). There are two possibilities: either there is some
bit e € S; for which p(H U{e}) = p(H), or not. In the first case replace the set H in
H.—1 by HU{e}. Since all the transversals in ext(H ) respect the norm g, we have that
p(H U{e}) = p(H) implies ext(H U {e}) = ext(H). Hence, no transversal gets lost
during this step, and we can repeat the procedure with the new family. In the second
case include in H, all the sets H U {e} with e € S;, remove H from H,_; and repeat
the procedure to this smaller family H,—; \ { H}. No transversal gets lost also during
this step, since every transversal covering H, must cover at least one of these new sets

HU{e} with e € S;. Moreover, we have that u(HU{e}) > p(H)+1> (a—1)+1=ua
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and p(H U {e}) < p(H) + ¢ < (a — 1)c 4+ ¢ = ac, as desired. Since every set in

H,—1 produces at most |S;| < r new sets, the resulting family H, will have at most

r | Hao1| < 7 sets, as desired.®

Main property of finite limits, which we will use in our lower bounds argument is

expressed by the following ‘limit lemma’.

Lemma 5.2 Let 11 and py be norms; ¢ be the defect of p11 and X be the deviation of
po. Let A = {xq,... x4} be a sequence of inpuls from f~'(€), each of which respects the
norm py, and suppose that there is a sequence of sets £ B; C ... C B, C f~HeD 1)
such that, for every1=1,...,1

(i) input x; is an ac-limit for B; under the norm p;,
(ii) no input from B; is a b-limit for the set A; = {xi,...,x:} under the norm ps.

Then for any random input x, Prob[x € A] < A(b)* - Max, [x, A, yu1].

Proof. By (ii), every input from B; has a legal witness of length at most b against
the set A;. That is, for every input y € B; there 1s a subset of bits 5;, such that
|S:y] < A(b) and every input = € A; takes the value z(e) = y(e) & 1 = € on at least
one bit e € S;,. This, in particular, means that for every x € A;, the set I(z) intersects
all the sets in the sequence F; = {S;, : y € B;} (with sets S;, arranged in arbitrary
order). Now, for each j = 1,...,¢ the input z; belongs to all the sets A;,..., A;, and
hence, the set I(x;) must intersect all the sets in the sequence F7 = {Fy,..., F;}.
On the other hand, by (i), no subset S of I(x;), such that u(S) < ac, can do this,
since any such S would be a legal witness of z; against B;. Since z; respects the
norm g1, the set I(z;) also respects it. Thus, for every j = 1,...,1, the set I(z;) is
an ac-critical transversal for the sequence F7, and hence, is such a transversal for the
whole sequence F'. By Lemma 5.1 there must be a family H consisting of A(b)* sets
H such that y,(H) > a and every set I(z) with € A, covers at least one of these
sets. Thus,

Prob[x € A] < > Prob[x € A and x(e) = ¢, Ve € I(z)]

r€A

< Z Prob[x € A and x(H) = ¢] < A(b)" - Max, [x, A, 1],
HeH

as desired.m

We finish this section with one trivial but useful fact.
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Lemma 5.3 If x is an sd-limil for a sel A then, for any partition A = Ay U...U Ay

of A into d sels, x is an s-limil for al least one of these sels.

Proof. If x would have a (legal) witness S; of length s against A;, forallt =1,...,4d,
then S = S;U...US; would be a (legal) witness of = against the whole set A, and

(by the monotonicity of norms) this witness would have length at most ds.m

6 Proof of Theorem 3.1

To unify notations, set kg = a-cy and k; = b- ¢y, where parameters a and b are from
the statement of Theorem 3.1, and ¢, is the defect of the norm p.. Let C' = (g1,. .., g:)
be a monotone real circuit computing f. For € € {0, 1}, let X© denote the set of all the
inputs in f~(¢) which respect the norm p.. For a gate g, let Ej(z) = FEy(x)N X/@er,
Say that an input z is hard for a gate ¢ if z € X/®) and g is the first gate (in C') such
that  is a kg(;)-limit for the set of all those inputs in £/ (z) which were hard for no
previous gate. Let Y, denote the set of all inputs which are hard for a gate g, and set
Yo=Y U--- Y where Y =Y, N f7"(e), e € {0,1}. Thus, Y = Y°UY" is the set of
inputs which were hard for at least one gate of C. Theorem 3.1 follows directly from

the following two claims.
Claim 1: There is an ¢ € {0, 1} such that for any random input x we have that

Prob[x € Y| > Miny [x, X, pregn] - (4)

Claim 2: For every gate g of C, any random input x and both ¢ = 0,1 we have that
Prob [x € Yﬂ < Mdegr - kegn)” - Max, [x, X, p1c] (5)
where r = k./c. and A is the deviation of the norm pi.q;.

Proof of Claim 1. If Y = X¢ for some ¢ = 0,1 then (4) is trivial. Otherwise,
we have that X“\'Y # 0 for both ¢ = 0 and ¢ = 1. This, in particular, means
that (for both ¢ = 0,1) there is at least one input z such that f(z) = e® 1,
respects the norm p.g1 and z is hard for no gate of C, including the last gate ¢g;. By
the definition of hardness,  must have a legal witness S of length pr.g1(S) < kegn
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against the set F} (z)\Y = X\ Y. Here F| (z) = X because C' computes f which
means that F, (z) = f~'(f(z) @ 1) for all inputs z. The legality of S means that
z(e) = f(z) = ed1forall e € 5, and hence, every input in X\ Y must take a value €
on at least one bit from S. Thus, Prob[x € Y] = Prob[x € X‘| —Prob[x € X\ Y] >
Prob[x € X¢| — Prob[x € X and x(S) Z ¢ @ 1] = Prob[x € X and x(S)=e® 1] >
Ming [x, X, preg1] , as desired. ®

Proof of Claim 2. If g is a bottom gate then YO Y1 = (). This is because for every
monotone function ¢ and for every input x € ¢ 1( ) the set of bits S = {e: z(e) = ¢}
is a legal witness of x against ¢~'(e @ 1). Since, by the assumption, g depends on at
most ¢ variables and ¢ < min{a, b}, the length p.(.S) of this witness does not exceed

ke, and hence, x cannot be hard for g.
Now, let g = ¢(h1,..., hy) be an arbitrary gate of C, and let Z be the set of all
inputs which were hard for at least one previous gate. Thus,

Ye= {;v € X :2 g Zand zis a k-limit for B (z) \ Z}.

g

By the monotonicity of the gate g, we can list the inputs Y = {z1,..., 2} in such a
way that E)(z) C ... C E] ().

We are going to apply Lemma 5.2 with A = Y;, a = kefce, b= deg1 - keg1 and
B; = E(x;) \ Z, for i = 1,... 1. The first condition (i) of this lemma is satisfied
by the definition of Y. To verify the second condition (ii), assume for the sake of
contradiction, that some input y € B; is a b-limit for the set A; = {z;,...,24}. Since
ANZ = and El(z;) C ... C Bl(xt), we have that A; C F) (y)\ Z. Since f(y) = e®1
and the (e @ 1)-degree of g is at most d.q1, there must be a subset I C [m] such that
7| < deg1 and A; = Ujer A N B} ( ). Hence, if y would be a b-limit for the whole
set A; then, by Lemma 5. 3 Yy Would also be a E—hml‘r for at least one of the sets
A; ﬂEh (y), 7 € 1. Since d = kea1 = ky(y) and A, ﬂEh (y) C Ehj( )\ Z, this would
mean that y should already be hard for this gate h; (or some previous gate), and
hence, should belong to 7, which is impossible since y € B;, a contradiction. Thus,
we can apply Lemma 5.2 to the set A = Y; with @ = k./c. and b = d.q; - keg1, and
the desired upper bound (5) follows. This completes the proof of Claim 2, and thus
the proof of Theorem 3.1. W
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7 Proof of Theorem 3.2

The argument is the same as in the proof of Theorem 3.1, exploiting essentially
one particular property of AND and OR gates (mentioned already in Example 2 of
Section 2). The reason why we have to be more careful here is that now we have
unbounded fan-in AND/OR gates, one of the two degrees dy or di of which can be
as large as the fan-in. To unify notations, we say that ¢ = ¢(hy, ..., hy,) is 1-gate if
¢ = N and 0-gate ¢ = V. What we need is to prove the following stronger version of

Claim 2 (under the same notations).

Claim 2’: For every gate g of C, random input x and both ¢ = 0,1 we have that
Prob[x € Y| < A(keg1)" - Max, [x, X¢, ] (6)

where r = k./c. and A is the deviation of the norm pg.

Proof of Claim 2’. Let g be a é-gate for some ¢ € {0,1}. Then E(z) = E} (z)U
L UE) (z)if f(z) =6,and E)(z) = E; (z)N...NE; (z)if f(z) =6 1. Hence, if
some input z € f~'(§ & 1) would be a limit for E}(x) then this input would be also
a limit for all the sets F} (z),..., E; (z), meaning that this input should already be
hard for some (previous to g) gate. Thus, Y?®' = () which, in particular, means that
(6) holds for e = § ® 1. But for € = § the (e fan 1)—degree of the gate g equals 1 and the
bound (6) follows from (5) with d.g; = 1. This completes the proof of Claim 2°, and
thus, the proof of Theorem 3.2. ®

8 Two applications

8.1 Detecting cliques

Let N be the family of all n = (T;L) 2-element subsets (edges) of some set V' of m
vertices. This way every input z : N — {0,1} can be identified with the undirected
graph G, = (V, F) where (u,v) € F iff 2(u,v) = 1. The clique function CLIQUE,_ ,
is a monotone Boolean function on n variables, which given an input = computes 1
iff the graph G, contains a k-clique, i.e. a complete subgraph on k vertices.

Using the method of approximations, Razborov in [15] proved the first super-

logn)

polynomial lower bound n‘X for this function. Subsequently, Alon and Boppana
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[1], by strengthening the combinatorial part of Razborov’s proof, were able to extend
this bound until 22¢+**) for any k < (rm/8log m)2/3 . These bounds in [1] were proved
for usual model of fan-in 2 AND/OR gates but Pudlak in [14] has shown that in
fact Razborov’s argument works for circuits with arbitrary monotone fan-in 2 real
functions as gates. Yao [23] considered monotone circuits with arbitrary monotone
Boolean functions of fan-in < n¢ as gates, and proved that any such circuits computing
CLIQUE,, , with k = loglogm, requires super-polynomial size. It appears that in
case of AND and OR gates even unbounded fan-in does not help. Applying theorems
3.1 and 3.2 we extend the lower bounds of [1, 14] to more general circuits and the

result of [23] to unbounded fan-in AND/OR gates.

Corollary 8.1 Let k < m?3(lnm)Y?/d*/3. Let C be a monotone real circuit and
d be the mazimum degree of its gate. If C computes CLIQUE,,  then il has size
exponential in ) (\/%) If C consists of unbounded fan-in AND/OR gales and
has arbitrary monotone Boolean functions of fan-in at most k'/2=°0) at the bottom,
then the same lower bound holds with d = 1.

Proof. TLet f = CLIQUE,, ;. Let x be a random input, which on every bit takes
independently the value 1 with probability 1 — v where v = 4k~ In(m/k). This
input corresponds to a random graph Gy on m vertices, in which every edge appears
independently with probability 1 —~. Let y be a random input, uniformly distributed
in the set of all (inputs corresponding to) k-cliques; thus y is k-clique with probability
(’Z) - We are going to apply Theorem 3.1 with the following pair of norms: o(5) =
|S] and p1(S) = the number of vertices incident to at least one edge from S. The
defect and deviation for these norms are: ¢y =1 and Ay(t) = ¢ for pg, and ¢; = 2 and

A(t) = (;) for p1. We have only to calculate the values of FJQ and F} in (3).

For the first input x we have that p(x, 0) is the probability that the graph G avoids
a single edge, and hence, p(x,0) = v; Max, [x, X°, yo] is at most the probability that
G'x avoids some fixed set of a edges, and hence, is at most v*. Since f(x) = 1 iff G
contains a k-clique, we have, by the choice of v, that Prob[f(x) =0] > 1 — (7:)(1 —
7)(3) > 2/3. Moreover, X° = f~1(0) since pq is the trivial norm. Since A;(2b)-y < 1/3
for any b < (k/241n(m/k))'/?, we have by (2) that the first term F})(X,a, b,d) in (3)

s at least

Prob[x € X — X\ (26) - p(x,0) _ 1/ 1 \"_ 1 k !
(d- X1(2b)) - Max, [x, X°, 1] 25(461527) 2§<8d621n(m/k)> - (@
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For the second input y we have that Probly € X'] = 1 (since cliques respect
the norm p4), and p(y, 1) is the probability that a random k-clique contains a fixed

edge, and hence, is at most (72:22)/(7]:) < (k/m)?* Maxy [y, X', y11] is the probability

that a random k-clique contains some fixed set of b vertices, and hence, is at most

(m_b)/(?) Thus, for any a < (m/k)?*/2, the second term F} (y,b,a,d)in (3) is

k—b

Problx € X'] — Ao(a) - p(y, 1) _ (F) (1 —a(k/m)®) 1/ m
(d- Mo(a))? - Max, [y, X7, ui] = (da)> - (7)) 25(@)

k—b

(8)

Take a = [m/(2dk)] and b = [(k/24d1n(m/k))"/?]. For these values of a and b,
estimate in (7) is 2@ = 2907/dk) " and in (8) is 2% = 29(' k/dlnm), which by (3)

gives the desired lower bound. ®

8.2 Drawing polynomials

Let GF(q) denote the finite field with ¢ elements, where ¢ is a prime power, and
consider the square N = G'F(q) x GF(q). This way bits are points (¢,7) in this
square, and every input « : N — {0,1} corresponds to a 2-coloring of points. Given
such a coloring, we are interested in the possibility to draw the graph of some small-
degree polynomial using only points colored by "17. Namely, define POLY, ,; to be
the Boolean function on n = ¢? variables, whose value on an input z is 1 iff there
exists a polynomial p(z) over GF(q) of degree at most s — 1 such that V(i,j) € N :
x(i,j) = 1iff p(i) = j.

Andreev [2], using the argument similar to the method of approximations, showed
that any fan-in 2 AND/OR circuit computing this function (for appropriate values of
s) requires size at least exp(Q(nl/S_E). Using Razborov’s method of approximations,
Alon and Boppana [1] were able to essentially improve this bound until ¢*{*) for any
s < (q/1nq)"/?/2; for maximal possible s this bound is exponential in Q(n'/4y/Inn),
and this is the largest? known lower bound for ‘natural’ function in NP. This bound
is almost optimal because ¢*T' is the trivial upper bound for POLY, ¢ (this function
is an OR of ¢°* monomials, each of ¢ literals). Using our criterion we extend this lower
bound to circuits with unbounded fan-in AND/OR gates and monotone circuits over

the reals.

ZNumerically, the largest is the lower bound exp(nl/?’_o(l)) proved in [3] for a somewhat contrived

version of POLY, ;. When applied to that function, our criterion also gives the same lower bound.
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Corollary 8.2 Let s < (q/Inq)'/?/2 and let C' be a monotone real circuil compul-
ing POLY,,. Then C has size ¢"*/Y) where d = 1 if C has only unbounded fan-in
AND/OR gatles and arbitrary monotone Boolean functions of fan-in al most s at the

bottom, and d is the maximal degree of a gate in C, otherwise.

Proof. Let f = POLY,,. We will apply Theorem 3.1 with trivial norms: po(S5) =
pa(S) = |S|. Since all the inputs respect such norm, we have that X° = f='(0) and
X' = f7'(1). Let x be a random input, which on each point (i, j) independently takes
the value 0 with probability v and takes the value 1 with probability 1 —~ (where v
is a parameter to be fixed later). Let y be a random input distributed uniformly on

the set of graphs of all polynomials over GF/(q) of degree at most s — 1.

For the first input x we have that p(x,0) = v, Max, [x, X°, o] < v* and Prob[x € X°] =
Prob[f(x) =0] = 1 — Prob[f(x)=1] > 1 — ¢°(1 — ~)? which is at least 1/2 for
v = (slng+In2)/q < (2sInq)/q. For the second input y we have that Prob[y € X'] =
Prob[f(y)=1] = 1, p(y,1) < 1/q and Max, [y, X', 1] is the maximum fraction of
polynomials of degree at most s—1, all of which coincide on some fixed set of b elements

from GF(q); hence, Max, [y, X', 1] < ¢7" for any b < s. Taking a = [(slnq)/d],
b=[s/d], and v = (2sInq)/q we get

1/2—by _ 1 q ’
70 by > 2T S 1) s /)
f(X,CL, ) ) = (db>a7a -6 (des In Q) =1 7

and

. l—a/qg 1(q\
Vv boa.d) > 1 ( ) > ,Q(s/d)
7(y:ba,d) 2 (da)bq=® 2 \da) — 7

and Theorem 3.1 gives the desired lower bound. m

9 Conclusion

Finite limits have already been shown to provide a convenient framework in which
to prove lower bounds for different models of computation: AC-circuits [11], depth-
three threshold circuits [13], multi-party protocols and syntactic read-k-times branch-
ing programs [12]. All these applications are based on an appropriate ‘limit lemma’
about the existence of inputs in f~(0) which are limits for f~*(1). In some cases (like
bounded depth circuits) this leads to new lower bounds, in other (like read-k-times

programs or multiparty games) we get simpler proofs of known bounds.
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In this paper we have argued that finite limits are also appropriate objects to
capture ‘bottlenecks’ in the information flow during a monotone computation. Tt
would be interesting to understand to what extend they can do this without the
monotonicity constrain. One possibility here would be to relax the legality constrain
for witnesses. The legality we used in this paper enables one to treat differently 0's
and 1's in inputs from different parts f~'(0) and f~!(0). This makes the criterion
easy to apply, but cannot handle negation gates, i.e. gates switching the role of 0's

and 1's.
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