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Abstract

In 1978, Schaefer [12] considered a subclass of languages in NP and proved a “dichotomy
theorem” for this class. The subclass considered were problems expressible as “constraint
satisfaction problems”, and the “dichotomy theorem” showed that every language in this class
is either in P, or is NP-hard. This result is in sharp contrast to a result of Ladner [9], which
shows that such a dichotomy does not hold for NP, unless NP=P.

We consider optimization version of the dichotomy question and show an analog of Schae-
fer’s result for this case. More specifically, we consider optimization version of “constraint
satisfaction problems” and show that every optimization problem in this class is either solvable
exactly in P, or is MAX SNP-hard, and hence not approximable to within some constant factor
in polynomial time, unless NP=P. This result does not follow directly from Schaefer’s result.
In particular, the set of problems that turn out to be hard in this case, is quite different from
the set of languages which are shown hard by Schaefer’s result. A similar result has been
independently shown by Creignou [4] using quite different techniques.
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1 Introduction

The deepening connection between the existence of probabilistically checkable proofs and optimization
problems along with efforts to unify the syntactic and computational views of approximation, has resulted
in a significant improvement in our understanding of the approximability of optimization problems and
in identifying the structure of canonical hard problems. The recent chain of work has both resolved the
approximability of a large number of important combinatorial problems and has helped identify natural
complete problems for the approximation classes. At this juncture it seems reasonable to ask if we can
characterize which optimization problems are easy and which ones hard; and to ask if there are any
characteristic features of hard problems that can be isolated.

Of course, no complete characterization is possible: Rice’s theorem allows one to disguise an opti-
mization problem so cleverly that it would be undecidable to determine if a given problem is NP-hard or
polynomial time solvable. Even if the problem is presented in its simplest form — it may be the case that
the answer need not be “easy" or “NP-hard” — this is established by a theorem of Ladner [9].

In the presence of such barriers one is forced to weaken one’s goals and focus one’s attention onto
a restricted subclass of NPO (optimization problems within NP) in the hope that some features of hard
problems can be isolated from this subclass. Our choice of the appropriate restriction comes from the work
of Schaefer [12] who carried out an analogous investigation in the case of decision problems. Schaefer
considered a restriction of NP that he called “satisfiability problems” and successfully characterized every
problem in this (infinite) class as being easy (polynomial time decidable) or hard (NP-hard). He refers to
this as a “dichotomy theorem”, since it partitions the class of problems studied into two polynomial time
equivalent classes. A further study along these lines — looking for other dichotomic classes within NP —
was carried out more recently by Feder and Vardi [5]. They suggest several promising classes which may
show such a dichotomy.

The works of Schaefer and Feder and Vardi motivates our class of optimization problems which we
refer to as “constraint satisfaction problems”

�
. These are problems obtained from Schaefer’s class of

decision problems in a natural fashion and are a subset of the problems in the class MAX SNP. Recall that
MAX SNP is the class of optimization problems defined by Papadimitriou and Yannakakis [10] based on
syntactic prescriptions. All problems in this class are known to be approximable to within some constant
factor, and the complete problems in the class are known to be non-approximable in polynomial time to
within some constant factor, unless NP=P [3].

In what follows we describe this class formally and present our main result.

1.1 Definitions and Main Result

We start with the definition of a constraint.

Definition 1 [Constraint] A constraint is a function � : � 0 � 1 ����� � 0 � 1 � . We say � is satisfied by an
assignment �
	�� 0 � 1 � � if �
������� 1. We refer to � as the arity of the constraint � . A constraint with no
satisfying assignments is called unsatisfiable.

Often we apply a constraint � of arity � to a subset of � variables from a larger set. In such cases we
think of � as a constraint on the larger set of variables.

Definition 2 [Constraint Application] Given � boolean variables � 1 ������������� and a constraint � of arity � ,
and indices � 1 ����������� � 	�� 1 ������������� , the pair ��� �!�"� 1 �������#��� � �#� is referred to as an application of the constraint
� to � 1 �������#����� . An assignment �%$&�'�($ for �)	�� 1 ���������*�+� and �,$�	-� 0 � 1 � satisfies the application if
�.�"� $ 1 ���������*� $0/ �1� 1.

�
In the terminology of Feder and Vardi, these should really be referred to as constraint satisfaction problems over a boolean

domain. We drop the suffix in the interest of readability.
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Definition 3 [Constraint Set] A constraint set � � � � 1 ���������*��� � is a finite collection of constraints.

Definition 4 [Constraint Satisfaction Problem (CSP ����� )] Given a constraint set � , the constraint satisfac-
tion problem CSP ��� � is defined as follows :

INPUT : A collection of � constraint applications of the form � �"��� � �"� 1 ��� �(�����(� �*� �
	�� ��
 ��� ������ 1, on boolean
variables � 1 �#� 2 ���0�0� ����� where ��� 	�� and ��� is the arity of ��� .

OBJECTIVE : Find a boolean assignment to � $ ’s so as to maximize the number of applications of the
constraints � 1 ���������*� � that are satisfied by the assignment.

Notice that the above definition gives a new optimization problem for every family � . Schaefer’s class
of decision problems SAT( � ) can be described in terms of the above as: The members of SAT( � ) are all
the instances of CSP ��� � whose optimum equals the number of applied constraints (i.e., all constraints are
satisfiable). Schaefer’s dichotomy theorem essentially shows that the only families � for which SAT( � ) is
in P, is if all constraints in � are either satisfied by the all zeroes assignment, the all ones assignment or all
constraints are linear constraints over GF(2) or all constraints are Horn clauses.

Our main result asserts that a dichotomy holds for CSP ��� � as well. However the characterization of
the easy functions and the hard ones is quite different. (In particular, many more constraint sets � are hard
now.) In order to describe our result fully we need some more definitions.

Definition 5 Given a constraint set � , the constraint set ��� is the set of constraints � in � which are
satisfiable.

It is easy to see that for any constraint set � , an instance of CSP ����� can be mapped to an instance
of CSP ��� � � , such that the objective function value is preserved on each input assignment. Hence our
characterizations will essentially be characterizations of CSP ��� � � .

Definition 6 [ � -valid function] For �.	 � 0 � 1 � , a function � of arity � is called � -valid if it is satisfied by the
assignment � � .

Definition 7 [Minterm] Given a function � on variable � 1 ����������� � , a collection of literals � $ 1 ����������� $�� � ��� 1 ��������� �����
is called a minterm of � if it satisfies the following properties:

1. Any assignment ��� � 1 �������#��� � , which satisfies ��$ 1 � �����!� �,$�� � 1 and �!� 1 �"�#����� ����� � 0 satisfies
� .

2. The collection is minimal with respect to property (1).

Definition 8 [Positive and Negative Minterms] A minterm of � which consists only of unnegated variables
is called a positive minterm. A minterm which consists only of negated variables is called a negative
minterm.

Definition 9 [2-Monotone Function] A function � is called 2-monotone if it has at most two minterms such
that at most one of them is positive and at most one is negative.

The main result of this paper is as stated below.

Theorem 1 The problem CSP �$� � is always either in P or is MAX SNP-hard. Furthermore, it is in P if and
only if one of the following conditions is true:

1. Every � 	%� � is 0-valid.
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2. Every � 	%� � is 1-valid.

3. Every � 	%� � is 2-monotone.

This theorem follows from Lemmas 1,2,3 and 15. A second result that follows easily as a consequence
of Schaefer’s result and our notion of approximation preserving reductions is the following:

Theorem 2 For every constraint set � either SAT( � ) is easy to decide, or there exists � � ����� 0 such
that it is NP-hard to distinguish satisfiable instances of SAT ����� , from instances where 1 � � fraction of the
constraints are not satisfiable.

Schaefer’s result characterizes which function families are easy to decide and which ones are hard; the
result is described in the Appendix A for sake of completeness.

Discussion The main feature of Theorem 1 is that the family of constraint sets which lead to hard problems
is significantly larger than in Schaefer’s case. This is not surprising given that problems such as 2SAT and
Linear systems over GF(2) are easy problems for the decision version and the maximization versions are
known to be hard, even to approximate [10, 2]. Nevertheless, the set of problems that are shown to be easy is
extremely small. CSP ��� � for � which is 0-valid or 1-valid is really a trivial problem; leaving only the class
of 2-monotone functions as somewhat interesting. But the class of functions with such properties seems to
be really small and maximum flow or � - � min cut appear to be the only natural optimization problems with
this property. Thus, we feel, that the correct way to interpret Theorem 1 is to think of it as saying that every
constraint satisfaction problem is either solvable by a maximum flow computation or it is MAX SNP-hard.

Another interesting feature of the above result is that the dichotomy holds for two different properties —
the complexity and the approximability — simultaneously. Easy problems are easy to compute exactly and
the hard ones are hard to even approximate. The middle regime — problems that are easy to approximate
but hard to compute exactly — are ruled out. This may be somewhat surprising initially, but becomes
inevitable once the form of approximation preserving reductions we use here becomes clear. Essentially all
reductions we use are exactly those that might be used for exact optimization problems. In fact the ease
with which these reductions apply is the reason why Theorem 2 falls out easily from this paper.

The technical aspects of the proof of the dichotomy theorem may be of some independent interest. In
order to prove such a theorem, one needs to find succinct characterizations of what makes a function, say
2-monotone, as well as a succinct proof when a function is not 2-monotone. We find such a characterization,
in Lemma 9, which turns out to be useful in establishing Theorem 1.

One technical nit-picky point that we face in this study is the role of constants and repetitions in CSP.
In particular, if � 	 � , should �	� 
 1 � 0 given by ��� 
 1 � 0 � � 2 ������� ��� � � � �.� 0 ��� 2 ����������� � � also be considered
a member of the constraint set? Similarly should � � � � 1 ��� 2 � �'�.� � 1 ����������� 1 ��� 2 �������#��� 2 � be considered a
member of the constraint set. Allowing for these repetitions and constants makes the analysis much easier;
however they may change the complexion of the problems significantly. For instance given a set of linear
equalities of the form � $ � $ � 0, it is trivial to find an assignment which satisfies all the equations — namely
the all 0’s assignment. However once one is allowed to fix some variables to the constant 1, the problem
no longer remains easy. In this paper initially we assume we can use constants and repetitions to make our
analysis simpler. Later we remove the assumptions — and Theorem 1 and Theorem 2 is shown without the
use of any constants or repetition. In fact, in the process we remove a minor irritant from Schaefer’s proof
which actually needed to use repetitions.

Related Work Theorem 1 was independently discovered by Creignou [4]. Here we clarify the main
points of difference between this paper and that of [4]. In [4], the “easy" problems are characterized by a
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graph-theoretic representation (this is possible since the functions involved in the easy side can be expressed
as CNF formulas such that each clause is implicative, that is of the form � � � � � ��� ��� ��� � � ) and the
proof uses graph-theoretic ideas. Our result are stated and established via techniques in the more general
context of constraint satisfaction. The proof might be adapted to problems over other domains (larger than
the boolean one), whereas it seems unlikely that one could extend the proof of [4] in such a way.

Additionally, technical aspects of the proof given here may be of some independent interest. Particularly,
the notion of � -implementation defined here gives a clear way to translate all the hardness results shown
here into hardness of approximation results. Also, the fact that we do not need to use repetition of variables
in functions, to obtain hardness results is another technical improvement on previous results, including that
of [12].

Rest of this paper Sections 2 and 3 are devoted to proving Theorem 1. In Section 4 we show how to prove
Theorem 2. Finally, in Section 5, we show how to eliminate the replication assumption from Schaefer’s
proof.

2 Polynomial Time Solvability

From this section onwards we omit the notation � � and assume we have a constraint � such that � � � � .

Lemma 1 The problem CSP ��� � is in P if each � $.	%� is 0-valid.

Proof: Set each variable to zero; this satisfies all the constraints.

Lemma 2 The problem CSP ��� � is in P if each � $.	%� is 1-valid.

Proof: Set each variable to one; this satisfies all the constraints.

Lemma 3 The problem CSP ��� � is in P if each � $ is a 2-monotone function.

Proof: We reduce the problem of finding the maximum number of satisfiable constraints to the problem
of finding the minimum number of unsatisfied constraints. This problem, in turn, reduces to the problem
of finding � - � min-cut in directed graphs. 2-monotone constraints have the following possible forms : (a)
� $ 1 � $ 2 �0�0� � $
	 , (b) ��� 1 ��� 2 �0� � ����� , and (c) � $ 1 � $ 2 �0�0� � $
	�� ��� 1 ��� 2 �0� � ����� where �+����� 1.

Construct a directed graph � with two special nodes � and � and a vertex � $ corresponding to each
variable in the input instance. Let � denote an integer larger than the total number of constraints. Now we
proceed as follows for each of the above classes of constraints :

� For a constraint � of the form (a), create a new node ��� and add an edge from each � $ to ��� of cost
� and a unit cost edge from ��� to � .

� For a constraint � of the form (b), create a new node ��� and add an edge of cost � from ��� to each
� $ and an edge from � to � � of unit cost.

� Finally, for a constraint � of the form (c), we create two nodes ��� and � � and connect ��� to � $ 1 ��� $ 2 �������
and connect � � to � � 1 ��� � 2 ������� as described above and replace the unit cost edges from � and to � by
a unit cost edge from ��� to � � .
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Using the correspondence between cuts and assignments which places vertices corresponding to true
variables on the � side of the cut, we find that the cost of a minimum cut separating � from � , equals the
minimum number of constraints that can be left unsatisfied.

The next lemma shows that � - � min-cut problem with polynomially bounded integral weights is in
CSP ����� for some 2-monotone constraint set � . Since the previous lemma shows how to solve CSP ��� � for
any 2-monotone constraint set � by reduction to � - � min-cut problem, it seems that � - � min-cut problem is
the hardest (and perhaps the only) interesting problem in CSP �$� � .

Lemma 4 The � - � min-cut problem with polynomially bounded integral weights is in CSP ��� � for some
2-monotone constraint set � .

Proof: Let � be a family of three functions � � 1 �*� 2 ��� 3 � such that � 1 � � �.� ¯� ��� 2 � � ��� �.� � � ¯� and
� 3 ��� �.��� .

Now given an instance � � ���&��� � to � - � min-cut problem, we construct an instance of CSP ��� � on
variables � 1 �#� 2 ���0�0� ����� where ��$ corresponds to the vertex � $
	�� :

� For each edge � � �"����� � with weight 	�
 , we have 	�
 copies of the constraint � 1 � � � .
� For each edge � � � �+��� � with weight 	 
 , we have 	 
 copies of the constraint � 3 � � � .
� For each edge ��� � ��� � � with weight 	 
 and such that �+� ��
	 � � � ��� , we have 	 
 copies of the

constraint � 2 � � ��� � .

Given a solution to this instance of CSP ��� � , we construct an � - � cut by placing the vertices corresponding
to the false variables on the � -side of the cut and the remaining on the � -side of the cut. It is easy to verify that
an edge � contributes to the cut iff its corresponding constraint is unsatisfied. Hence the optimal CSP �����
solution and the optimal � - � min-cut solution coincides.

3 Proof of MAX SNP-Hardness

In this section we prove that a constraint set which is not entirely 0-valid or entirely 1-valid or entirely
2-monotone gives a MAX SNP-hard problem. The main MAX SNP-hard problem which we reduce to any
of these new ones is the MAX CUT problem shown to be MAX SNP hard by Papadimitriou and Yannakakis
[10]. Initially we consider the case where we are essentially allowed to repeat variables and set some
variables to true or false. This provides a relatively painless proof that if a function is not 2-monotone, then
it provides a MAX SNP hard problem. We then use the availability of functions that are not 0-valid or
1-valid to implement constraints which force variables to be 1 and 0 respectively, as well as to force variables
to be equal. This eventually allows us to use the hardness lemma. We first start with some notation.

3.1 Notation

Given an assignment � to an underlying set of variables, � �"��� denotes the set of positions corresponding
to variables set to zero and �
�"��� denotes the set of positions corresponding to variables set to one. More
formally, given an assignment � � � 1 � 2 � �0� �(� to � 1 ��� 2 ��� �0�0���%� , where �,$ 	 � 0 � 1 � , we have � ����� �
� � �)�,$
� 0 � and � �"���1� � � � �,$ � 1 � . The notation ��� 0 ����� denotes the set of all assignments � � such
that � �"������� ��� �0� and similarly, ��� 1 ����� denotes the set of all assignments �#� such that � �"������� �"���0� .

Definition 10 [Unary Functions] The functions � � � � � � and ��� � � � ¯� are called unary functions.
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Definition 11 [XOR and REP Functions] The function �.� � ��� �.� ��� � is called the XOR function and
its complement function, namely � ��� , is called the REP function.

Definition 12 [ � -closed Function] A function � is called � -closed (or complementation-closed) if for all
assignments � , �.�"���.� �.� ¯��� .

Definition 13 [ � -Consistent Set] A set � of positions is � -consistent for a constraint � iff every assignment
with all variables occupying the positions in � set to value � is a satisfying assignment for � .

3.2 � -Implementations and MAX SNP-Hard Functions

We next describe the primary form of a reduction which we use to give the hardness results. As pointed
out by Papadimitriou and Yannakakis, in order to get hardness of approximation results, the reductions used
need to satisfy certain approximation preserving features. Here we show how to implement a given function
� using a family of other functions � , so as to be useful in approximation preserving reductions.

Definition 14 [ � -Implementation] An instance of CSP ����� over a set of variables
�
� �'��� 1 ��� 2 ���0�0�0�#���(�

and
�
� � � � 1 � � 2 ���0� �0� ����� is called an � -implementation of a boolean function �.�

�
� � , where � is a positive

integer, iff the following conditions are satisfied:

(a) no assignment of values to
�
� and

�
� can satisfy more than � constraints,

(b) for any assignment of values to
�
� such that �.�

�
� � is true, there exists an assignment of values to

�
�

such that precisely � constraints are satisfied,

(c) for any assignment of values to
�
� such that �
�

�
��� is false, no assignment of values to

�
� can satisfy

more than � � � 1 � constraints, and finally

(d) for any assignment to
�
� which does not satisfy � , there always exists an assignment to

�
� such that

precisely ��� � 1 � constraints are satisfied.

We refer to the set
�
� as the function variables and the set

�
� as the auxiliary variables.

Thus a function � 1-implements itself. We will say that CSP ����� implements function � if it �
	 -
implements � for some constant ��	 . The following lemma shows that the � -implementations of functions
compose together. The criteria for “implementation” given above are somewhat more stringent than used
normally. While properties (1)-(3) are perhaps seen elsewhere, property (4) is somewhat more strict, but
turns out to be critical in composing implementations together.

Lemma 5 [Composition Lemma] If CSP ����	!� can �
	 -implement a function � , and CSP �$���,� can ��� -
implement a function � 	%��	 , then CSP � ����	��
��� �!��� ����� can � -implement the function � for some constant
� .

Proof: Let � be the number of occurrences of a constraint involving the function � in the CSP ����	!�
instance � 1-implementing � , then clearly, by replacing each occurrence of � by its � 2-implementation, we
obtain a CSP � ����	������ � ������	!� instance which � -implements � for ��� � 1 ��� � � 2 � 1 � .

The MAX SNP-hardness of MAX CUT implies that CSP � � XOR �!� is MAX SNP-hard and hence the
below :

Lemma 6 If CSP ����� can implement the XOR function, then CSP ��� � is MAX SNP-hard.
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Lemma 7 CSP � � � � ����� � � can implement the XOR function if � is either the function � � � or � ¯� or
¯� � ¯� .

Proof: If � � � � � , then the instance �!�
� � ��� �(���.� ��� �)�(����� � �,����� �)�*� is a 3-implementation of
� � � ; if �
� � ¯� , then the instance �!�
� � ��� �(���.� �&��� �#� is a 1-implementation of � � � ; and finally, if
�
� ¯� � ¯� , then � �.� ��� � �,���.� ��� �)�(� � � � �,� � � �)�*� is a 3-implementation of ��� � .

Lemma 8 CSP � � � � ����� � � can implement the REP function if � is the function ¯� ��� .

Proof: The instance �!�
� � ��� �(���.� ��� �)�(����� � �,� � � ���*� is a 3-implementation of the function REP.

3.3 Characterizing 2-Monotone Functions

In order to prove the hardness of a constraint which is not 2-monotone, we require to identify some
characteristics of such constraints. The following gives a characterization, which turns out to be useful.

Lemma 9 [Characterization Lemma] A function � is a 2-monotone function if and only if all the following
conditions are satisfied:

(a) for every satisfying assignment � of � , either ��� 1 ����� or ��� 0 ����� is a set of satisfying assignments,
(b) if � 1 is 1-consistent and � 2 is 1-consistent for � , then � 1

� � 2 is 1-consistent, and
(c) if � 1 is 0-consistent and � 2 is 0-consistent for � , then � 1

� � 2 is 0-consistent.

Proof: We use the fact that a function can be expressed in DNF form as the sum of its minterms. For a
2-monotone function this implies that we can express it as a sum of two terms. Every satisfying assignment
must satisfy one of the two terms and this gives Property (a). Properties (b) and (c) are obtained from the
fact that the function has at most one positive and one negative minterm.

Conversely, if a function is not 2-monotone, then it either has a minterm which is not monotone positive
or negative or it has more than one positive (or negative) minterm. In the former case, the function will
violate Property (a), and in the latter one of Properties (b) or (c).

Observe that a 2-monotone function is always either 0-valid or 1-valid or both.

3.4 MAX SNP-hardness of Non 2-Monotone Functions

We now use the characterization from the previous subsection to show that if one is allowed to “force”
constants or “repetition” of variables, then the presence of non-2-monotone constraint gives hard problems.
Rather than using the ability to force constants and repetitions as a binding requirement, we use them as
additional constraints to be counted as part of the objective function. This is helpful later, when we try to
remove the use of these constraints.

Lemma 10 [Hardness Lemma] For any function � which is not 2-monotone, CSP � � � � �����&� REP � � can
implement the function XOR.

Proof: We prove this by using the Characterization Lemma for 2-monotone functions. Let � denote the
arity of � . If � is not 2-monotone, it must violate one of the three conditions ��� �(� ���(� and ���(� stated in the
Characterization Lemma.

Suppose � violates the property (a) above. Then for some satisfying assignment � , there exist two
assignments � 0 and � 1 such that � ������� � �"� 0 � and �
�"���	� � ��� 1 � , but �
��� 0 � � �
��� 1 � � 0. Without loss
of generality, we assume that � � 0 � 1 � , � 0 � 0��

� 1 ����� and � 1 � 0����� 1 ��

� . Thus we have the following
situation :

7



�.�"�

�
������ ��� �

00 �0�0� 0
�� ��� �

00 �0� � 0
�� ��� �

11 � �0� 1
� ���� ��� �

11 �0�0� 1 1
� 0 00 �0�0� 0 00 �0�0� 0 00 �0�0� 0 11 �0�0� 1 0
� 1 00 �0�0� 0 11 �0�0� 1 11 �0�0� 1 11 �0�0� 1 0
� 2 00 �0�0� 0 11 �0�0� 1 00 �0�0� 0 11 �0�0� 1

Observe that both � and � are non-zero. We consider the CSP � �!� � � ���&� REP � � instance with the
following set of constraints on variables � 1 ��� 2 ���0�0�0�#� � :

� constraints ��� �%$ � for 1
� � � � � � � � ,

� constraints REP � � ����� 
 1 ����� � � 
 $ � for 2
� � � � ,

� constraints REP � � ��
 1 �#����
 $ � for 2
� � � � ,

� constraints � � �%$ � for � � � � � � � 1 � � � � � , and

� the constraint �.� � 1 ��� 2 ��� �0�0��� � � .

It is now easy to verify that for � � �"� � 1 � , this instance � -implements the function � ����� 
 1 � ��� 
 1

if �.�"� 2 �.� 1 and � ����� 
 1 ����
 1, otherwise. The claim now follows immediately from Lemma 7.
Next suppose � violates the property (b) above. Then there exists an unsatisfying assignment � such

that � sets all variables in � 1
� � 2 to 1, and at least one variable in each of � 1 �)� � 1

� � 2 � and � 2 ��� � 1
� � 2 �

to be false. Consider one such unsatisfying assignment � . Without loss of generality, we have the following
situation :

�
1� ��� �

�
�

1 �
	 ��� 
� ��� �
00 �0�0� 0� ��� ��

11 � �0� 1� ��� ��

�
2� ��� ��

1 
 � 2� ��� �
11 �0�0� 1� ��� ��

11 �0�0� 1� ��� �
�

�
2 �
	 ��� 
� ��� �

00 �0�0� 0� ��� ��
00 � �0� 0� ��� ��

11 �0�0� 1� ��� ��

We consider the CSP � � � � � � �&� REP � � instance with the following set of constraints on variables
� 1 �#� 2 ���0�0�0�#� � :

� constraints REP � � 1 �#��$ � for 2
� � � � ,

� constraints � � �%$ � for � � � 1 � � � � � � � � ��� � ��� ,
� constraints REP � � ��
���
 � 
 � 
 1 �#� ��
���
 � 
 � 
 $ � for 2

� � � � ,
� constraints ��� �%$ � for � � � � ��� �-� � � � 1 � � � � � � � � ��� ��� � � ��� � ,
� constraints � � �%$ � for � � � � ��� ��� � � ��� � � � � � � � � ��� � � � � ����� � � , and finally

� the constraint �.� � 1 ��� 2 ��� �0�0��� � � where �%� � � � � ��� � � � � ��� � � � .

It is now easy to verify that for ��� �"� � 1 � , this instance � -implements the function � 1 � ����
���
 � 
 � 
 1 .
Again, the claim now follows immediately from Lemma 7.

Finally, the case in which � violates the property ���(� above, can be handled in an analogous manner.
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3.5 Implementing the REP Function

We now start on the goal of removing the use of the unary and replication constraints above. In order to do
so we use the fact that we have available to us functions which are not 0-valid and not 1-valid. It turns out
that the case in which the same function is not 0-valid and not 1-valid and further has the property that its
behavior is closed under complementation (i.e., �.�"��� � �.� ¯��� ) is somewhat special. We start by analyzing
this case first.

Lemma 11 [Replication Lemma] Let � be a non-trivial function which is � -closed and is neither 0-valid
nor 1-valid. Then an instance of CSP � � ��� � can implement the REP function.

Proof: Let � denote the arity of � and let � 0 and � 1 respectively denote the maximum number of
0’s and 1’s in any satisfying assignment for � ; clearly � 0 � � 1. Now let ��� � ��� 1 ��� 2 ���0� �0��� 2 � � and
��� � � � 1 ��� 2 ���0�0�0��� 2 � � be two disjoint sets of 2 � variables each. We begin by creating an instance � of
CSP � �!�+�!� as follows. For each satisfying assignment � , there are � 2 �$�� � 2 �� � $	� constraints in � such that every
� -variable subset of � � appears in place of 0’s in � � and every ��� � � � variable subset of �
� appears in
place of 1’s in the assignment � , where � denotes the number of 0’s in � .

Clearly, any solution which assigns identical values to all variables in � � and the complementary value
to all variables in ��� , satisfies all the constraints in � . Let � and � respectively denote the set of variables
set to zero and one respectively. We claim that any solution which satisfies all the constraints must satisfy
either � ��� � or � ����� .

To see this, assume without loss of generality that �
� � � � � �'� . This implies that ���
� � � � �'�
or else there exists a constraint in � with all its input variables set to zero and is hence unsatisfied. This
in turn implies that no variable in � � can take value one; otherwise, there exists a constraint with � 1 � 1
of its inputs set to one, and is unsatisfied therefore. Finally, we can now conclude that no variable in ���
takes value zero; otherwise, there exists a constraint with � 0 � 1 of its inputs set to zero and is unsatisfied
therefore. Thus, � ����� . Analogously, we could have started with the assumption that ����� � � � �-� and
established � ����� . Hence an assignment satisfies all the constraints in � iff it satisfies either the condition
� ��� � or the condition � ����� .

We now augment the instance � of CSP � � ��� � as follows. Consider a least hamming weight satisfying
assignment � for � . Without loss of generality, we assume that ��� 10 � 1 � . Clearly then, ��� � 0��
 11 � is not
a satisfying assignment. Since � is � -closed, we have the following situation :

�.�"�

� � 0

�� ��� �
00 �0�0� 0

�� ��� �
11 �0�0� 1 0

� 1 00 �0�0� 0 11 �0�0� 1 1
¯� 0 11 �0�0� 1 00 �0�0� 0 1
¯� � 1 11 �0�0� 1 00 �0�0� 0 0

Consider the constraints �.� ����� 1 ��� 2 ��� �0�0��� �,��� 1 ��� 2 ���0� �0� ��� � and �
��� �#� 1 ��� 2 ���0�0� �����(� � 1 � � 2 ��� �0�0� ����� . If
� � 1, then to satisfy the constraint �.� � �#� 1 ��� 2 ���0�0� ������� � 1 � � 2 ��� �0�0� ����� , we must have � ��� � . Otherwise,
we have � � 0 and then to satisfy the constraint �.� � �#� 1 �#� 2 ��� �0�0��� ��� � 1 ��� 2 ���0�0�0������� we must have � ����� .
In either case, the only way we can also satisfy the constraint � � � �&��� 1 �#� 2 ���0�0�0�#����� � 1 � � 2 ���0�0� � ����� is by
assigning � an identical value. Thus these set of constraints � -implements the function � � � where � is
simply the total number of constraints; all constraints can be satisfied iff � ��� and otherwise, there exists
an assignment to variables in �
� and � � such that precisely � � 1 constraints are satisfied.
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3.6 Implementing the Unary Functions

If the function(s) which is (are) not 0-valid and 1-valid is (are) not closed under complementation, then they
can be used to get rid of the unary constraints. This is shown in the next lemma.

Lemma 12 [Unary Lemma] Let � 0 and � 1 be two non-trivial functions, possibly identical, which are not
0-valid and 1-valid respectively. Then if neither � 0 nor � 1 is � -closed, an instance of CSP � � � 0 ��� 1 � � can
implement both the unary functions � � � � and ����� � .

Proof: We will only sketch the implementation of function � ��� � ; the analysis for the function ����� � is
identical. Now suppose neither � � is � -closed, � 	 � 0 � 1 � . We begin by considering an instance each of
CSP � �!� 0 � � and CSP � � � 1 � � , say � 0 and � 1 respectively. Both of these instances are constructed in a manner
identical to the instance ��� above. Now we argue that any solution which satisfies all the constraints in � 0

and � 1, must set all variables in � � to 0 and all variables in ��� to 1.
So we have two functions � 0 and � 1 such that neither is � -closed. Suppose ��� � � � � � � , then we

must have ����� � � � � � . To see this, consider a satisfying assignment � such that � 0 � ¯��� � 0; there must
exist such an assignment since � 0 is not � -closed. Now if �
��� � � � ��� , then clearly at least one constraint
corresponding to � is unsatisfied - the one in which the positions in �
�"��� are occupied by the variables
in � ��� � � � and the positions in � �"��� are occupied by the variables in � � � � � � . Thus we must have
����� � � � � � . But if we have both ��� � � � � � � and ����� � � � � � , then there is at least one unsatisfied
constraint in the instance � 1 since � 1 is not 1-valid. Thus this case cannot arise.

So we now consider the case ��� � � � � � � . Then for constraints in � 0 to be satisfied, we must once
again have ����� � � � � � ; else there is a constraint with all its inputs set to zero and is hence unsatisfied.
This can now be used to conclude that � � � � � �

as follows. Consider a satisfying assignment with
smallest number of ones - this number is positive since � 0 is not 0-valid. If we consider all the constraints
corresponding to this assignment with inputs from � � and � � � � only, it is easy to see that there will be at
least one unsatisfied constraint if �
� � � 
� �

. Hence each variable in ��� is set to one in this case. Finally,
using the constraints on the function � 1 which is not 1-valid, it is easy to conclude that in fact � ��� � .

Now let �
� 10 � 1 � be a least hamming weight satisfying assignment for � 0; �+��� may be zero but �
contains at least a single one as � 0 is not 0-valid. Then the constraint � 0 � ����� 1 �#� 2 ���0� �0��������� 1 ��� 2 ���0�0� � ��� �
can be satisfied iff � � 1. Thus all the constraints in � 0 and � 1 are satisfied along with above constraint
iff � � 1 and otherwise, we can still satisfy all the constraints in � 0 and � 1. Hence this is indeed an
implementation of the function � ��� � . The function ��� � � can be implemented in an analogous manner.

3.7 REP Helps Implement MAX SNP-Hard Functions

Lemma 13 Suppose � is a non-trivial function which is neither 0-valid nor 1-valid. Then CSP � � � � REP �!�
implements the XOR function.

Proof: Without loss of generality, assume �)� 0 � 1 � is a satisfying assignment for � . We consider two
disjoint set of variables � � �'��� 1 ��� 2 ���0�0� �����(� and ��� �'� � 1 ��� 2 �0� �0�0� ���#� . Consider the CSP � � � � REP � �
instance which consists of constraints REP � � 1 ��� $ � for ��	�� 2 � � � � , constraints REP ��� 1 � � � � for � 	�� 2 �0�
���
and the constraint �.� � 1 ��� 2 ���0�0� ������� � 1 � � 2 ��� �0�0� ����� . It is now easy to verify that this yields a � � � � � 1 � -
implementation of the function � 1 � � 1 if ¯� � 1 � 0 � is a satisfying assignment, and of the function ¯� 1 � 1

otherwise. Now an application of the Composition Lemma yields the lemma.

Corollary 1 Suppose � is a non-trivial function which is neither 0-valid nor 1-valid. Then CSP � � � � REP � �
is MAX SNP-hard.

Proof: Immediately follows from Lemma 6 and Lemma 13 above.
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3.8 Unary Functions Help Implement either REP or MAX SNP-Hard Functions

Lemma 14 Let � be a function which is not 2-monotone. Then CSP � � � � ����� � � can implement either the
XOR or the REP function.

Proof: Since � is not 2-monotone and non-trivial, it must be sensitive to at least two variables. Consider
the boolean � -cube with each vertex � labeled by the function value �.�"��� ; where � is the arity of function
� . Let � $ denote the set of vertices labeled � , �)	 � 0 � 1 � . If � � $ � � � � 1 � $ � , we claim that it must be the
case that there exists a vertex in � $ which has at least two neighbors in � 1 � $ . This is readily seen using the
expansion properties of the � -cube; any set � of at most 2 � � 1 vertices must have expansion factor at least
one. Furthermore, the expansion factor is precisely one only when the set � induces a boolean �"� � 1 � -cube.
But the later case can’t arise since it would imply that � is a single variable function. Hence there must exist
a vertex � 	 � $ which has two neighbors in � 1 � $ .

Let �,$ and �!� be these two neighbors of � , differing in the � th
and the � th

bit position respectively.
Without loss of generality, we may assume that � � 1 and � � 2. Consider now the input instance which has
a constraint of the form �.� � 1 ��� 2 � � 1 � � 2 ���0�0� � � � � 2 � and constraints of the form � � � $ � for each � $ appearing
in � �"��� � �
�"� 1 � � �
�"� 2 � and of the form ��� � $ � for each � $ appearing in � �"��� � � �"� 1 � � � �"� 2 � . It is now
easy to verify that this set of constraints implements one of the functions � 1 ��� 2, � 1 ��� 2, ¯� 1 � ¯� 2,
¯� 1 � � 2 or � 1 � � 2. The former three implement � 1 � � 2 while the later two implement the constraint
� 1 � � 2.

The following is a straightforward corollary.

Corollary 2 Let � be a function which is not 2-monotone. Then CSP � �!� � � ��� �!� is MAX SNP-hard.

Proof: If CSP � � � � � � � � � can implement the REP function, then the corollary follows using the
Composition Lemma, the Hardness Lemma and the Lemmas 6 and 8. Otherwise, it follows from Lemma 7.

Lemma 15 If � is a constraint set such that there exist (1) � 0 	 � which is not 0-valid, (2) � 1 	%� which
is not 1-valid and (3) � 2 	�� which is not 2-monotone. The CSP ��� � is MAX SNP-hard.

Proof: If either � 0 or � 1 is � -closed then using the Replication Lemma, we can implement the REP
function and using the Composition Lemma along with Lemma 13 allows to conclude that CSP � �!� 0 ��� 1 �*� 2 � �
implements XOR function.

If neither � 0 nor � 1 is � -closed, then using the Unary Lemma, CSP � � � 0 ��� 1 �*� 2 � � can implement the
unary functions � ��� � and ����� � , and then using the Composition Lemma along with Lemma 14, we conclude
that CSP � � � 0 �*� 1 ��� 2 � � implements either the XOR function or the REP function. In the latter case, we can
use Lemma 13 to conclude that CSP � �!� 0 �*� 1 ��� 2 � � can implement the XOR function.

In either of the two situations above, we may conclude using Lemma 6 that CSP � �!� 0 ��� 1 �*� 2 � � is
MAX SNP-hard.

4 Hardness at Gap Location 1

It is possible to use a notion closely related to � -implementation to conclude from Schaefer’s dichotomy
theorem and show that in the cases where SAT ��� � in NP-hard to decide, it is actually hard to distinguish
satisfiable instances from instances which are not satisfiable in a constant fraction of the constraints. This
is termed hardness at gap location 1 by Petrank [11] who highlights the usefulness of such hardness results
in other reductions.
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An important characteristic of � implementation of a function � is that if we are given an assignment
to the function variables which does not satisfy � , it can always be extended to the auxiliary variables
such that precisely ��� � 1 � constraints are satisfied. This is a useful feature in establishing the hardness
results for problems such as MAX 2-SAT which do not have hardness gaps located at 1. However, when
dealing with problems with hardness gaps located at 1, such as MAX 3-SAT, it suffices to use a somewhat
different notion of � -implementations, called weak � -implementations

�

. A weak � -implementation satisfies
the condition ��� � - ���(� of the � -implementations and the condition ��� � is replaced by the constraint that the
CSP ����� instance implementing it has precisely � constraints. Clearly, weak � -implementations can be
composed together and they preserve hardness gaps located at 1.

It is not difficult to verify that Schaefer’s proof is in fact based on weak � -implementations of functions,
and hence one may directly conclude from his proof that his class of NP-hard satisfiability problems are all
in fact MAX SNP-hard. This yields Theorem 2.

5 Strengthening Schaefer’s Dichotomy Theorem

Schaefer’s proof of NP-hardness in his dichotomy theorem relies on the ability to replicate variables within
a constraint application. We observe that to do so, it suffices to create a weak implementation of the function
REP. Since given a weak implementation, we can replace any � replicated copies of a variable � by � new
variables � 1 �#� 2 ��� �0�0��� � and add constraints of the form REP � � 1 �#� 2 �(� REP � � 1 �#� 3 �(���0� �0� REP � � 1 �#���,� .
We now show how to create a weak implementation of the REP function; we need a definition :

Definition 15 [Weakly Positive and Weakly Negative Functions] A function is called weakly positive
(weakly negative) if it may be expressed as a CNF formula such that each clause has at most one negated
(unnegated) variable.

Now Lemmas 11 and 12 show that CSP � � � 0 �*� 1 ��� 2 � � , where � 0 is not 0-valid and � 1 is not 1-valid, can
be used to create either a weak implementation of the function REP or a weak implementation of both unary
functions � and � . In the latter case, we can show the following lemma.

Lemma 16 If � is not weakly negative then CSP � � � � � � � � � can weak implement either the function ��� � ,
or the function � � � . Similarly, if � is not weakly positive then CSP � � � � ����� � � can weak implement either
the function � � � , or the function ¯� � ¯� .

Proof: We only prove the first part - the second part follows by symmetry. We know that � has a
maxterm � with at least two positive literals. We consider the function � � which is � existentially quantified
over the variables not in � . Let � 1 and � 2 be the two positive literals in � . Set all other variables in � to the
value which does not make � true. Then the assignment � 1 � � 2 � 0 is a non-satisfying assignment. The
assignments � 1 � 0 
� � 2 and � 1


� 0 �"� 2 must be satisfying assignments ny the definition of maxterm.
While the assignment � 1 � � 2 � 1 may go either way. Depending on this we get either the function ��� �
or ��� � .

Corollary 3 If � 2 is not weakly positive and � 3 is not weakly negative, then CSP � �!� 2 �*� 3 � ����� � � weak
implements (at gap 1) the XOR function.

Since the SAT ����� problems that we need to establish as NP-hard in Schaefer’s theorem satisfy the
condition that there exists � 0 ��� 1 �*� 2 ��� 3 	%� such that � 0 is not 0-valid and � 1 is not 1-valid, � 2 is not weakly
positive and � 3 is not weakly negative, we conclude that we can weak implement the XOR function. This,
in turn, can be used to create a weak implementation of the function REP � �+� � � by using the constraints
��� ��� � � ��� � for some auxiliary variable � . Thus replication can be eliminated from Schaefer’s proof.

�
The name weak � -implementation is slightly misleading because this notion is simultaneously both weaker and stricter than

the notion of � -implementations.
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6 Conclusions

We initiated a study of the structure of a subclass of NPO and established an approximation dichotomy
theorem for this class — in the process, giving a simple characterization to distinguish "easy" problems
from the "hard" problems. Our dichotomy theorem strongly used the syntactic structure of problems in this
class to identify a sharp division between the "easy" versus "hard" problems. We feel that it further stresses
the role of syntactic prescriptions in the study of approximability. This was the fundamental insight on
which the class MAX SNP was defined by Papadimitriou and Yannakakis [10]. Recent work of Khanna,
Motwani, Sudan and Vazirani [7] also stresses this relationship, where they used syntactically defined
classes to identify a structured core of hard problems for approximation classes such as APX, log-APX and
poly-APX.

A natural question arising from this work is that of identifying larger classes which exhibit such
dichotomies with respect to approximability. The syntactic optimization class MAX SNP contains our class
of constraint satisfaction problems as a subclass. An interesting feature of this class is that every problem
in this class is approximable to within a constant factor and there exist problems in this class which are
MAX SNP-hard. Is it then the case that every problem in this class is either in P or MAX SNP-hard ?
Feder and Vardi [5] recently initiated a systematic investigation to find the largest subclass of NP which
exhibits a dichotomy for the decision version of the problems. Their efforts identify a subclass of SNP
(the decision class underlying MAX SNP), called MMSNP - monotone, monadic SNP with no inequalities.
This subclass contains constraint satisfaction problems over arbitrary domains and hence strictly contains
Schaefer’s class. They provide strong evidence that this class may in fact exhibit a P versus NP-hard
dichotomy. We suspect that it is probably the case that the optimization analog of the class MMSNP exhibits
a P versus MAX SNP-hard dichotomy.

In a recent related work, Khanna, Sudan and Williamson [8] have studied the optimization complexity
of finding an assignment with maximum number of ones such that it satisfies every constraint in a given
SAT ����� problem. This class contains many natural optimization problems such as MAX CUT and MAX
CLIQUE as its members. Surprisingly, this class exhibits an approximation hierarchy with essentially five
levels. It contains problems which are in P or MAX SNP-hard or ��� -hard and and yet does not have any
intermediate approximation classes sandwiched in between.
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Appendix

A Schaefer’s Theorem

We state Schaefer’s dichotomy theorem in this section.

Definition 16 [Affine] A function is said to be affine if it may be expressed as a system of linear equations
of the form � �$ � 1 � $
� 0 and � �$ � 1 � $
� 1 (i.e. it evaluates to one iff the input variables satisfy the given
equation system); the addition operation being modulo 2.

Schaefer’s dichotomy theorem may be stated as follows. Let � be a finite set of boolean functions.
Then SAT ��� � is always either in P or NP-hard. Furthermore, it is in P if and only if one of the following
conditions is true:

1. Every ��	%� is 0-valid.

2. Every ��	%� is 1-valid.

3. Every ��	%� is weakly positive.

4. Every ��	%� is weakly negative.

5. Every ��	%� is affine.

6. Every ��	%� is bijunctive (i.e. expressible as a CNF formula with at most 2 literals per clause).
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