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Abstract

A subset H C {0,1}" is a Hitting Set for a class R of boolean functions with n inputs if, for any
function f € R such that Pr(f =1) > ¢ (where § € (0, 1) is some fixed value), there exists an element
h € H such that f(ﬁ) =1.

The efficient construction of Hitting Sets for non trivial classes of boolean functions is a fundamental
problem in the theory of derandomization. Qur paper presents a new method to efficiently construct
Hitting Sets for the class of systems of boolean linear functions.

Systems of boolean linear functions can be also considered as the algebraic generalization of boolean
combinatorial rectangular functions studied by Linial et al in [11]. In the restricted case of boolean
rectangular functions, our method (even though completely different) achieves equivalent results to
those obtained in [11].

Our method gives also an interesting upper bound on the circuit complexity of the solutions of any
system of linear equations defined over a finite field.

Furthermore, as preliminary result, we show a new upper bound on the circuit complexity of integer
monotone functions that generalizes the upper bound previously obtained by Lupanov in [12].
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1 Introduction

This work is motivated by a recent result established by [5] in the theory of derandomization. Informally
speaking, this result states that quick Hitting Set Generators can replace quick Pseudorandom Generators
[15] in derandomizing BPP-algorithms. More precisely, in [5] it is proved that an efficient construction of
a Hitting Set for the class of boolean functions having linear circuit-size complexity is sufficient to prove
P = BPP. Consequently, a major, challenging goal in this area is now the development of algorithmic
techniques to efficiently construct Hitting Sets for more and more general classes of boolean functions
which can eventually culminate in the final efficient construction of Hitting Sets for boolean functions
having linear circuit-size complexity. There is also a more practical goal in doing this research. Indeed,
in the last decade, efficient constructions of Hitting Sets for particular families of finite functions have
played an important role to reduce randomness in some probabilistic algorithms [3, 8, 9, 11, 16].

Our paper presents a new method to efficiently construct Hitting Sets for an important natural class
of boolean functions which is the algebraic generalization of the class of combinatorial rectangle boolean
functions studied in [11]. Our results give a new positive step in achieving the above mentioned goal of
this area.

We study the class (denoted as L(n, k)) of boolean functions that can be expressed as systems (i.e.
logical conjunctions) of boolean linear functions, i.e.

k - . . - .
flzy, ., 2) = /\ (a{xlﬂaaéxg@...@aflwn@bj) al,b’ € {0,1}, k<n. (1)
7=1

The complexity and the properties of boolean linear functions have been the subject of several studies
over the past few years [1, 6, 7, 10]. Informally speaking, the main interest in linear functions is motivated
by the fact that they have “small” (i.e. polynomial) circuit-size complexity [13] but they have a rather rich
behavior recently used in [6] to approximate general boolean functions within a good trade-off between
circuit-size complexity and the corresponding degree of approximation. More precisely, in [6], it is proved
that any general boolean function f : {0,1}" — {0,1} always admits a suitable combination of linear
boolean functions S : {0,1}" — {0, 1} with equivalent (i.e. polynomially related) circuit-size complexity,
and which agrees with f on a large fraction of inputs. Even though the problem to efficiently transform
a Hitting Set for a function class into a Hitting Set for another class approximated by the former is still
an open difficult question, the positive result in the approximation of general boolean functions using
linear functions [5] should give the idea of the small complexity “gap” between linear and general boolean
functions. This small gap provides a significant motivation in finding Hitting Sets for the class of systems
of linear functions.

- Previous Results on Hitting Sets. In which follows, we consider the standard definition of circuit-
size complexity of finite functions; moreover, given any boolean sequence # € {0,1}", we will use the
term complezity of ¥ to refer to the circuit-size complexity of the corresponding boolean function z :
{0, 1}”0g(n+1ﬂ — {0, 1} where 2(7) is the i-th bit of . The circuit-size complexity of a finite function f
(a finite sequence ¥) will be denoted as L(f) (L(%)).

A subset H C {0,1}" is a Hitting Set for a class R of boolean functions with n inputs if, for any
function f € R such that Pr(f=1) > § (where § € (0,1) is some fixed value), there exists an element
h € #H such that f(h) = 1. A natural, well studied question concerning Hitting Sets is the witness
finding problem: given a positive integer n > 0, and a positive number § with 0 < § < 1, find a subset
H C {0,1}" such that, for any witness set W C {0,1}" with |W|/2" > §, we have [W N H| > 0. It is



immediate to verify that the witness finding problem consists of finding a Hitting Set for the class of all
n-input boolean functions f such that Pr(f=1) > 4.

Karp, Pippenger, and Sipser [9], and Sipser [16] introduced a randomized method to solve the witness
finding problem that uses O(n) random bits. Chor and Goldreich [8] derived a simpler algorithm that
uses n random bits. This algorithm can be considered the best result in solving the witness finding
problem for general witness sets. More recently, research has turned the attention also on non trivial
restrictions of the problem where some combinatorial properties on the witness sets are imposed. An
interesting positive result in this direction is that introduced by Linial, Luby, Saks, and Zuckermann [11].
They gave a deterministic method to construct an efficient solution for the witness finding problem when
the witness sets are combinatorial rectangles (this result is described later).

QOur results for systems of linear functions. In this paper, we study the witness finding problem for the
class L(n, k) (k < n) of boolean functions that can be represented in the form defined in Eq. 1. We also
denote as L(n, k, ¢) (¢ < n) the class of boolean functions in £(n, k) having at most ¢ non-zero columns in
the matrix A = [a]] defined in Eq. (1) (¢ is commonly called the number of essential variables). Observe
that since for any non null function f € £(n, k) we have Pr (f = 1) > 27, then the role of parameter § in
the definition of the witness finding problem is now replaced by the term 2=%. The main results of this
paper can be stated in the following way.

Theorem 1 Let ¢ be any positive constant such that 0 < ¢ < 1/3.

o If k > n?3tc then it is possible to construct a Hitting Set H C {0,1}" for L(n,k) such that
|#H| < 200k),

o Ifloglogn <k < n?® and k > ¢*/>%¢, then it is possible to construct a Hitting Set H C {0,1}" for
L(n,k,q) such that |H| < 20(*).

o If k < loglogn and q > ¢*/3t, then it is possible to construct a Hitting Set # C {0,1}" for
L(n,k,q) such that |H| < 20() log? n.

o Ifk < min{n?/3 ¢*/3}, then it is possible to construct a Hitting Set H C {0,1}" for L(n, k,q) such
that |H| < 20(k)logn

In all cases, the time required by the construction is polynomially bounded in the size of the output
sequence.

Observe also that, for the first three cases, the size of the Hitting Sets is almost optimal since a simple
lower bound for the size of Hitting Sets for £(n, k) is 2¥. Furthermore, a Hitting Set for the class £(n, k)
corresponds to a subset containing at least one solution for any feasible linear system of the form Az = b
where A is a k x n boolean matrix, & € {0,1}" and be {0, 1}k (we will consider only feasible systems and
thus, in the following, we will omit the term feasible). It follows that our results provides also interesting
upper bounds for the size of the minimal space which contains at least one solution for any of such
linear systems. Under this point of view, since our method is based only on algebraic properties of linear
algebra in finite fields, we can derive equivalent upper bounds for systems of linear equations on finite
(non boolean) fields. In order to obtain the upper bounds for the case in which the k£ x n linear system
is defined over the field GF(Q) of cardinality @, it is sufficient to replace the basis 2 with value @ in the
formulas listed in the above theorem. However, we will not mention this possible generalization further
in this extended abstract.



- Connection between combinatorial rectangles and systems of linear equations

As mentioned above, Linial et al [11] studied the witness finding problem in the case of combinatorial
rectangles. A combinatorial rectangle is any subset of the form R = Ry X Ry... X R, where R; C
{0,..,m — 1}. The goal here is to generate a subset # C {0,..,m — 1}"™ that has non empty intersection
with every combinatorial rectangle R whose size (also denoted as volume) is at least m”. Linial et al’s
algorithm generates a hitting set H whose size is polynomial in mlogn(1/4), and the running time is
polynomial in mn(1/94).

Observe that when m = 2 (i.e. the boolean case), then the characteristic function of a generic
combinatorial rectangle R C {0,1}" can be expressed as a system of boolean linear functions:

Forymn) = No_ (e @8 2)

Indeed suppose, for instance, that n = 3 and the rectangle is R = {0, 1} x{0} x{1}; the corresponding
characteristic function can be written as

fR(.Tl,wQ,LE;g):(0'$1€B1)/\(1'$2@1) A (1$3®O)Z($2®1)A($3) .

Observe also that, given any boolean rectangular function f™ represented by Eq. 2, the size of the
corresponding rectangle R C {0, 1}" easily verify the following equation |R| = 27% .27, Thus, the role
of the parameter § in the definition of combinatorial rectangles is now replaced by the term 27%. More
formally, the class of boolean rectangular functions having volume parameter § = 2% is strictly contained
in the class £(n, k, k) which always satisfies one of the first three cases of Theorem 1.

Boolean rectangle functions represent thus the intersection between Linial et al’s work and our work:
while Linial et al provide an efficient construction of Hitting Set for general (i.e. non boolean) rectangular
functions, our work gives an efficient solution of the same problem but for the class of boolean functions
in which the “rectangular” condition is relaxed into the much more general condition expressed by Eq.
1. In the case of boolean rectangular functions, we thus give an another (completely different) method
to construct Hitting Sets which has equivalent performances to those obtained by Linial et al.

Adopted techniques and further results. It is easy to see that the witness finding problem for the class
L(n, k) corresponds to find a subset H C {0,1}" which contains at least one solution of any system of
k < n linear equations in n variables, i.e.:

Ax& = b, where Ae{0,1}**" #e{0,1}", and be {0,1}". (3)

We first consider “large” linear systems (i.e. when k > %), In this case, we show a suitable matrix
decomposition method which permits us to prove the following interesting characterization of the space
of solutions of a linear system.

Lemma 1 Let € be constant, 0 < € < 1/3. If k > n?/3%¢ then any linear system of type (3) has at least

one solution (i.e. an n-bit sequence) with complexity at most O (@)

From this Lemma, we then derive the Hitting Set construction stated in the first item of Theorem 1.
Then, we show how it is possible to reduce the other cases (i.e. when k < n?/3) to the case of Lemma 1
by using some new properties of boolean linear operators which are stated in Lemmas 9 and 10.

The method adopted for proving Lemma 1 requires the use of integer monotone functions. An integer
monotone function is any function f:{1,2,...,n} — {1,2,...,s}, such that f(i) < f(j) for any i < j.



The circuit-size complexity of these functions has been studied by Lupanov [12] in the restricted case
n = s. However, our construction requires an upper bound which holds also for the case s < m, and
Lupanov’s method cannot be applied in this case. Another contribution of our paper is the generalization
of Lupanov’s result.

n
log< )
Theorem 2 [f f:{1,...,n} = {1,...,s} with s <mn, then L(f) < (1 +0(1))% + (log n)°().

2 Hitting Sets for “large” linear systems

2.1 Complexity of monotone functions

The construction of the Hitting Set for the class £(n, k) requires the use of integer monotone functions,
e, f:{1,2,...,n} = {1,2,...,s}, such that f(:) < f(j) for any i < j. The complexity of these
functions has been studied by Lupanov [12] in the restricted case n = s. However, in our construction
we need an upper bound for the general case s < n.

Consider the following special coding of monotone sequences. Let U = wuq,...,u; where 1 < uy <
... < uy < n, define the function NUM,, +(U) as follows

NUM,,(U) = ;( o ) .
By DENUM,, +(m) we denote the “inverse” operator, i.e.:
if NUM, ((u1,...,u)) =m then DENUM, ;(m) = (uq,...,u).
Lemma 2 For anyn > 0 and t < n, we have
L(NUM, ;) < O((tlogn)*) , L(DENUM,,;) < O((tlogn)?*) .
Let 1 <wup <...< us <n and consider the operator
Fy(i) = (ut(i—1)+17ut(i—1)+Za "'a“t(i—1)+t) .
By using Lemma 2, we can prove the following result.

Lemma 3 Ifs < n then
n
log ( b )
L(ly) < ————~— tl M.
(F) < —prs? +Ol(thogn))
We can now prove the generalization of Lupanov’s result [12].

Theorem 3 If f:{1,...,n} = {1,...,s} with s <n, then

o(1)
o s + (logm)~t.

L(f) < (1+0(1))



Sketch of the proof. Let m < st and let vy,..., vy be a monotone sequence such that f(i) = j if v,y <
J < wv;. If wedefine u; = v;i+i—1, we have 1 < uy < ... < ug. Consider the sequence U = (uq, ug, ..., tst)
and the corresponding operator F. It is not hard to prove that L(f) < L(Fy)+ (tlogn)?. We can choose
s and t such that

logst = (14 0(1))logm , logt = o(logs) , t > (logn)?* ,

The theorem then follows by applying Lemma 3. a

2.2 The complexity of solutions of “large” linear systems

Any non null function f € L(n, k) represented by Eq. 1 verifies the following equation: Pr(f=1) =
27"(A) > 27k Furthermore, a subset # C {0,1}" is a Hitting Set for £(n, k) iff # contains at least one
solution for any feasible system of type (3). This equivalence result will be strongly used in deriving our
Hitting Sets.

Given a boolean (k,n)-matrix A, consider the following column partition. Let n =ny + ...+ ng and
let A; be a boolean (k,n;)-matrix, such that

A = (A1,142,...,A5) . (4)
Define rg = r(As) where r(A) denotes the rank of A, and
r, = I'((A4Z',A4z'+1,...,l4n)) —r((A2~+1,AZ-_|_2,...,An)) s 1= 1,...,8—1 .

Then consider the linear system

AT = b, (5)

where 7 € {0,1}" and b e {0, l}k. Note that, without loss of generality, we can always assume that
A has maximum rank, i.e., r(A) = k. Using the above matrix representation, it is possible to show an
interesting relation between the solutions of System (5) and the Hitting Sets for the classes £(n;,r;)’s.

Lemma 4 For any i = 1,...,s, let H; be a Hitting Set for L(n;,r;). Then, for any b e {0, 1}k, there
exists a solution of System (5) which belongs to the set

Hi X Hog X ... X Hs.
The following lemma states that the above matrix representation actually exists.

Lemma 5 Let r,m < n and r < m. Then, given any (k,n)-matriz A, it is possible to construct
Representation () of A which satisfies the following conditions.

i <ryong < m, 1=1,2,..,s, (6)
and
k' n
s<—+ —. (7)
r m
Let [d’]j be the prefix of length j of sequence @ and, for any set S of boolean sequences, define
[S] = {[@’ : @ e S}. Hitting Sets for systems of linear functions satisfy the following monotone
property.



Lemma 6 [f H is a Hitting Set for L(n,k) then, for any n' < n and k' < k, the set [7{]”' is a Hitting
Set for L(n' k).

The above Lemmas imply the following result.

Lemma 7 Let r < m and H be a Hitting Set for L(m,r). Assume that Condition (6) is verified. Then
there exists a solution of System (5) which belongs to the set

[H]™ x [H]™ x ... x [H]™

Given any class R of boolean functions, the function A(R) denotes the minimum size of a Hitting Set
for R. Using the probabilistic method [2], it is possible to prove the following result.

Lemma 8 For anyn > 0 and k < n, we have
AML(n, k) < 28(n+ 1)k,
We can now prove the main result of this section.

Theorem 4 Let ¢ be a positive constant such that 0 < e < 1/3. If k > n2/3+¢ then any system of type

(5) has at least one solution with complexity at most O (lo];k)'

Sketch of the proof. From Lemma 5, we can construct the matrix representation in Eq. (4) which satisfies
Conditions (6) and (7) (the choice of parameters r and m are given later). Then, Lemma 7 implies that
there exists a solution of System (5) belonging to the set

(™ X [H]™ o [H]™

where A is a Hitting Set for £(m,r). We now show how to compute a sequence @ = @ ...d; where
a; € [H]". We assume that H = {ﬁl, .. -E|H|}- Forany i = 1,...,s, Q(i) denotes the index for which
a; = [EQ(Z-)]”". Define NUM (u) as the function which gives, for any u = 1,...,n, the index of the
submatrix of A which contains column w. In other terms, NUM (u) is uniquely determined by the
following condition

NUM (u)—1 NUM (u)
n; < u < Z n; .

Define also LEN (i) = Z;;} ng, and SF(v) = h,. Finally, let SEL(t,0q,...;00,) =a; if 1 <0< m,
and 0 otherwise. We can derive the u-th bit of @ using the following sequence of computations

i=NUM/ u) ; I=LEN(i); j=u—1; p=Q(7) ;

a=SF(p); d(u) = SEL(j,a) .

The ranges of the parameters used in the above computations are the following

wle 1,20}, je{1,2,.,m}, ie{1,2,...s}, pe{1,2,..,|H]}, @e {0,1).



It is then easy to prove the following bound for the complexity of a:
L(@) < L(NUM)+ L(LEN)+ O(logn)+ L(Q) + L(SF) + L(SEL) . (8)

In which follows we give upper bounds for every element of the above sum. From Theorem 3 we have

S log " o<1)>
LINUM)< O <10 Slog S+ (logn) . 9)

Since LEN :{1,2,..,s} = {1,2,..,n} then its output consists of log n bits; hence, by using Lupanov’s
result [12], we obtain

L(LEN) < (14 0(1)) logn . (10)

s
log s
An equivalent argument holds for functions @ : {1, .., s} — {1, .., |H|}, and SF : {1, ..,|S|} — {0,1}™:

|#]
y < .
. log|H| and L(SF) < (1+ 0(1))10g|7_[|m (11)

The function SEL can be easily constructed within the following circuit complexity

HQ) < (1+0(1)

L(SEL) < O(m) . (12)
By replacing Eq.s (9-12) in Eq. 8, we get

. s |H]|
< —_ .
L@ < O <10g8(10g ] + log ) + 1Og|7'[|m> (13)
By Lemma 5, we have that s < é-l— - . If we choose r = elogn and m = [ logn], then we have

s< (14 o(l))é.

From Lemma 8, we have that || = 2"(m + 1)r and, consequently,

k
5 k
og.9(10g|sl +logn) <O ( Ogé(logm%— r—I—logn)) <0 (logk) . (14)
Furthermore,
7 < ALY o (L)
m| < — 7 <
10g|7~[| <0 r+ logm <0 logn2 )=
O ! 2" —logn (log n)32 <E>2 < O((log n)®nfn2/3=%) <
- logn k - -
< O((logn)*n®?=%) < O( i > . (15)
- - log k
From Eq.s (13), (14), and (15) we get L(@) < O(k/logk). o



2.3 Construction of Hitting Sets for “large” linear systems

Let F(n,l) be the set of all sequences @ € {0,1}" such that L(@) < [. The following corollary is a
consequence of Theorem 4 and of the Lupanov’s bound [12] on the size of F(n,I).

Corollary 1 Let ¢ be a positive constant such that 0 < e < 1/3. Ifk > n2/3+¢ then there exists a constant
¢ (which can be efficiently derived from the proof of Theorem 4) such that F(n, c&) is a Hitting Set for

L(n, k). Furthermore, the size of this Hitting Set is such that |F(n, c@” < 20(k),

We can now use a standard procedure to generate all boolean sequences in F(n,[), where [ is a fixed,
known upper bound. In particular, we can construct a Hitting Set Generator (in short HSG, see [5])
H : {0,1}*™ - {0,1}" where h(n) = O(llog(logn +1)). The HSG H is an algorithm which considers
any sequence of h(n) bits as the description of a boolean circuit having complexity [: if the description
is correct then it generates the corresponding table of the circuit outputs, otherwise it returns the string
0. Tt is not hard to verify that the subset of strings generated by applying H to any possible inputs (i.e.

the set H({0,1}*")) contains F(n,). We thus have the following result.

Corollary 2 Let € be a positive constant such that 0 < ¢ < 1/3. If k > n2/3+¢ then it is possible to
k

generate the Hitting Set F(n, cm) for the class L(n, k) in polynomial time in 20%),

Note. It is easy to see that 2* is a lower bound on the size of Hitting Sets for L(n, k). It follows
that the logarithm of the size of our Hitting Set is optimal. In terms of rectangular boolean functions,
since the volume parameter § is equal to 27%, we thus generate a Hitting Set , for the class of boolean
rectangular functions with » inputs and volume parameter §, which has size polynomially bounded in
1/6. Furthermore, the time to construct 7 is polynomially bounded in (1/4)n.

3 Hitting Sets for “small” linear systems

In this section, we describe a reduction technique whose goal is to extend the previous construction to the
case of small (i.e. k& < n%?) linear systems. This method works for the class £(n, k) with no restrictions
on k but when a particular condition on the number of non-zero columns in the system matrix A is
assumed. Let us now introduce the class of systems of linear functions determined by this new condition
and its relation with boolean rectangular functions.

A function f(zq,..,2,) € L(n, k) belongs to the subclass L(n, k,q) if it can be represented by Eq. (1)
where matrix A = [a]] has at most ¢ non-zero vertical columns. In which follows, we will consider the case
in which k and ¢ satisfy the following inequality: k > ¢2/3+¢ (intuitively, the number of linear functions in
the system must be relative large with respect to the number ¢ of essential variables). Since rectangular
boolean functions are linear systems in which there is exactly one variable in every linear function (see
Eq. 2) then it is easy to verify that the class of rectangular boolean functions with n variables and with
volume 27527 is contained in the class £(n,k, k = ¢) which always satisfies the condition & > g2/3+e,

3.1 Some properties of linear operators

In this section, we show some useful properties of linear operators which will be used in the above
mentioned reduction. The set of all linear functions [’s with m variables, such that [(0,..,0) = 0, is
denoted as Lin,,. Moreover, a vectorial function [ = (L1, ..,15) € Liny, (s > 1) is called linear operator.
We will use the following result obtained by Nechiporuk [13].



Theorem 5 [13] For any linear operator [= (l1,...,1s) € Lin}, (s> 1), we have

L =0 < s ) +0(m).

logm

For any @,d € {0,1}™, consider now the “agreement” function & 7+ Ling, — {0,1} defined as
&, d~(l_j = 15, (1;(@) & li(d) & 1), where [ = (l4,..,1,). Then, we define

EA,J(f) = Z fa,d*(l_j-

A itd

If we consider frandomly selected from the space Lin), with uniform probability, then we have the
following upper bound on the expected value of =, »

Lemma 9

E (2,7 < A2

The above lemma can be used to derive the existence of an integer function which has the following
particular “injectivity” property. This function will be one of the key ingredients in the reduction shown
in the next section.

Lemma 10 Let A C B C {1,2,...,n}. For any s > 1, there exists a function f : {1,..,n} — {1,..,q},
with ¢ = | A| 4 2%, such that for any a € A and b € B (a #b) we have f(a) # f(b), and

L(f) < O(|A]|B|27°(s+ logn) + slogn) .

3.2 Hitting Sets for case k > max{log®n, ¢*/°+}

The proof of the following theorem gives the main reduction which allows us to extend the results for
large linear systems to the case of small linear systems.

Theorem 6 Let ¢ be a constant such that 0 < ¢ < 1/3. If k > max{log® n, q2/3+5} then any system of

type (5) has at least one solution with complexity at most O lo];k .

Sketch of the proof. Consider a system AZ = b where A is a boolean k X n-matrix with r(A) = k,
7€ {0,1}" and b € {0,1}*. Assume also that A satisfies the conditions of the theorem. Let A C {1,..,n}
be the subset of indexes which describes a subset of A-columns of size and rank k. If B denotes the
set of all indexes corresponding to non-zero columns of A, then we easily have that A C B. Let s =
[((2/34¢)/(2/34 ¢/2))logq]. From Lemma 10, there exists a function f:{1,..,n} — {1,..,n'} where
n' = 2° 4+ k such that for any @ € A and b € B, with a # b, we have f(a) # f(b). Furthermore,

L(f) <O(|A]|B]27°(s + logn) + slogn).

Since
2/3+4e 1

_ZfoTe 1 1
n’ S q2/3+e/2 +k S k273+e/2 +k S 2 x k2/3+€/2 ,

then it is not hard to prove that, for a.e. n, k > (n')2/3+¢/3,



We now define a linear transformation for system A% = b which leads us to the case of large systems
described in the Section 2.3. The linear transformation is defined by the following equations

T = Yre) 1=1,...,n.

The properties of function f in Lemma 10 implies that the new obtained system has still rank k. If

-

a = (a1,az,...,ay) is a solution of the new system, then & = (af()..az,)) is a solution for system
AZ# = b. Furthermore, we have L(&) < L(f) 4+ L(@). We can now apply Theorem 4 thus proving that
there exists a solution @ of the new obtained system such that L(@) < O (ﬁ) From Lemma 10 and

from the fact that k = Q(log? n), there exists a positive constant ¢ for which

L(f) < O(k*xq*27°(s+logn)+slogn) <

O(k » 27 (log k + log n) + log klogn) = O (1021@) ’

Consequently, we have L(&) = O (kfék)-

O

The above theorem implies that the set F(n, c(k/logk), for some constant ¢ > 0, is a Hitting Set for

the class £(n, k,q) when k& > max{log? n, ¢/3t¢}. We can thus repeat the same Hitting Set construction
sketched in Section 2.3 and obtain equivalent results to those in Corollaries 1 and 2.

3.3 Hitting Sets for case k < (logn)?, k > ¢*/3+

Given a linear system AZ = b, where A is a boolean k X n-matrix with r(A) = k, ¥ € {0,1}" and
b€ {0, 1}k, let B be the set of all indexes corresponding to non-zero columns of A. We consider some
finite field GF(Q) and the function f, : {1,..,n} = GF(Q) with v € GF(Q) defined as follows. Let m =
[log(n 4+ 1)] and let @ = (a1, ag, ..., @) be the standard binary representation of an integer 7 € {1,..,n}.
Then

m .
ful@) = Zai*u’_l .
=1

where + and # are the operations defined in GF(Q). Let @, b€ B such that @ # b (here B is considered
as a set of boolean sequences of length m = [log(n + 1)]). Then the Equation

-

ful@) = fu(b) . (16)

is equivalent to the following
m

Z(ai — bZ) wutl

i=1
The above equation can be true for at most m — 1 different u’s. It follows that if @ > m % ¢* then
there exists at least one element v € GF(Q) for which Eq. (16) is false for any pair @, b € B such that
a+# b. Thus, We have the same property of Lemma 10 and, hence, we can apply the same method of the
previous case (i.e. & = Q(log?n)) in order to construct a solution for system AZ# = b. If 1 is a Hitting
Set for the class £(Q, k, ¢), then the set of sequences

(afu(l), af,(2)1 (qu(n)) , UE GF(Q) , @ €H, (17)
will be a Hitting Set for L(n, k, q). Its size is at most Q|H|.
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Theorem 7 Let ¢ be a constant such that 0 < ¢ < 1/3. If k > max{(loglogn)®, ¢*/3*}, then we can
construct a Hitting Set for L(n,k,q) whose size is bounded by 20() | The time to construct the Hitting
Set is 20K)p,

Sketch of the proof. We can choose @ such that Q@ = O(¢*logn). In this case we have k > (log@Q)? and,
from Theorem 6, we have that the obtained Hitting Set is such that |#H| < 20(*). Tt follows that the size
of the Hitting Set defined in Eq (17) is bounded by

O(qQIOgnQO(k)) = O(QO(k)).

O

Theorem 8 Let € be a constant, 0 < € < 1/3. If k > ¢*/3t¢ then we can construct a Hitting Set for
L(n, k, q) whose size is bounded by 2°") (log n)%. The time to construct the Hitting Set is 2°") (log n)*n.

Sketch of the proof. If k > loglogn then we choose @ = O(¢*logn. Since k > (loglog@)? we can apply
Theorem 7 and obtain a Hitting Set for the class £(Q, k, ¢). By considering the construction defined in
Eq. 17, we derive a Hitting Set for the class £(n, k, ¢) whose size is bounded by

O(q*logn2°®)) = 0(2°®) jogn) .

If k <loglogn then we can apply the construction of case k = [loglogn] and, consequently, the size of
the obtained Hitting Set is bounded by

O(¢*logn 2°0)) = 0(2°M logn) 4+ O(log?n).

3.4 Hitting Sets for case k < min{n?/?, ¢*°}

Let {0,1}} be the set of all sequences in {0,1}" with at most & units. Unfortunately, when k < ¢*/® we
are not able to construct Hitting Sets having the same (almost optimal) size of the previous cases.

Lemma 11 The set {0,1}; is a Hitting Set for L(n, k).
Lupanov [12] proved that the complexity of any sequence in {0, 1} is at most

klog
log k

(1+0(1)) + O(logn) .

The above lemma permits us to repeat the same construction of the Set F(n,[) shown in Section 2.3,
thus proving the following result.

Theorem 9 If k < n?/3 (and no restriction for q), then the set H = F(n, O(kll:ggk% +logn)) is a Hitting

Set for the class L(n,k,q). Furthermore, we have that |H| = O(2F1°8™) and the time to construct H is
polynomial in its size.
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