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APPROXIMATION FROM LINEAR SPACES
AND APPLICATIONS TO COMPLEXITY

MEERA SITHARAM

Abstract. We develop an analytic framework based on linear approx-
imation and point out how a number of complexity related questions
— on circuit and communication complexity lower bounds, as well as
pseudorandomness, learnability, and general combinatorics of Boolean
functions — fit neatly into this framework. This isolates the analytic
content of these problems from their combinatorial content and clarifies
the close relationship between the analytic structure of questions.

(1) We give several, general results that characterize approximability
from spaces of functions and hence also represent general analytic meth-
ods for showing non approximability.

(2) We point out that crucial portions of a significant number of the
known complexity-related results can be given shorter and cleaner proofs
using these general theorems: this clarifies their common analytic struc-
ture. We however provide only a few of the alternative proofs.

(3) We give several new complexity-related applications, including cir-
cuit complexity lower bounds, and results concerning pseudorandom-
ness, learning, and combinatorics of Boolean functions.

(4) Finally, we suggest natural and promising directions for further in-
vestigation.

Key words. Circuit complexity; Communication complexity; Complex-
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1. Introduction

In the context of complexity lower bounds, the “approximation method” usu-
ally refers to the method originated by Razborov in [57] and [59] for proving
monotone lower bounds. The approach was continued by [58] and [66] and sev-
eral others including [6], [67], [9], [68], [71], [77], [39] for general lower bounds,
and further used in monotone lower bounds such as [2] [78] and [10]. Other
complexity lower bounds that can be generally classified as being “based on
non approximability by low degree or sparse polynomials, or other basis func-
tions” include many of the lower bounds on threshold circuit complexity and
“voting polynomial representations” such as [11], [15], [42], [43] [26], [3], [28],
etc. Some of these results have been collected in survey articles by [8] and [60].
Further results that could be seen to involve Boolean (non) approximability
include results on general Boolean functions in [51], [52], [46], [37], and [47].

While these results are viewed as being based, broadly speaking, on the
analytic notion of approximation of Boolean functions by sets of monomials,
or other suitable basis functions, no closer relationship between the analytic
structure of these problems has been established. In particular, the techniques
that have been used for showing (non)approximability have not been unified,
and are in fact considered to be quite different. For example, the paper [42]
states: “Previous lower bound results on threshold representations are based on
three different techniques, the discriminator method, a geometric method based
on probabilistic communication complexity, and a spectral theoretic method
for orthogonal bases.” Similar statements can be found in several other papers
throughout the literature.

In this paper, we develop an analytic framework based on linear approx-
imation and point out how a number of complexity related questions — not
only those considered in the papers above, but also other questions on circuit
and communication complexity lower bounds and hardness, as well as pseudo-
randomness, learnability, and general combinatorics of Boolean functions — fit
neatly into this framework. This isolates the analytic content of these problems
from their combinatorial content and clarifies the close relationship between the
analytic structure of questions. In addition, the framework facilitates a system-
atic study and application of analytic techniques, and, in particular, shows that
many of the above proof techniques are minor variations of the same general
technique.
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It should be noted that the analytic methods studied here reduce complexity-
related questions to their combinatorial essence, at which point possibly ad hoc
combinatorial methods might be required to complete the solution. In other
words, the analytic framework helps to break up complexity related questions
into their constituent analytic and combinatorial subproblems, which are often
of independent mathematical interest and require new and original techniques
for solution.

The analytic methods used in the paper are various combinations of 2 basic
ingredients

e modifications of the duality principle for linear approximation that hold when
the function to be approximated is Boolean and/or the approximating space
has a Boolean basis, and

e simple norm relationships specific to Boolean functions.

Organization. Section 2 gives basic preliminaries and conventions used in the
paper. Section 3 introduces the duality principle for linear approximation and
explains its relevance to complexity questions; the section presents a general
analytic framework based on duality, by which one can view various complexity-
theoretic questions as versions of the same analytic problem with different
choices of parameters; and describes, with examples, the basic ingredients that
constitute the analytic techniques for showing Boolean (non)approximability.
Sections 4, 5 and 6 of the paper concern three (non)approximability questions
that result from particular choices of parameters in the the analytic framework.
These are: interpolation, one-sided approximation, and uniform approximation.
The final section 7 covers algorithms for finding approximating functions. Sec-
tions 3 to 7 follow a fixed pattern of exposition.

(1) We give several, general results that characterize approximability from
spaces of functions and hence also represent general analytic methods for show-
ing non approximability.

(2) We point out that crucial portions of a significant number of the known
complexity-related results can be given shorter and cleaner proofs using these
general theorems: this clarifies their common analytic structure. We however
provide only a few of the alternative proofs.

(3) We give several new complexity-related applications, including circuit com-
plexity lower bounds, and results concerning pseudorandomness, learning, and
combinatorics of Boolean functions.

(4) Finally, we suggest natural and promising directions for further investiga-
tion.

Scope. We note that our results and techniques are suitable primarily for spaces
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of functions whose range is R. Hence we do not deal with other valid represen-
tations of Boolean functions, for example, as functions whose ranges are finite
fields, as in [66] [6], [9], [71], [77], etc. Furthermore, it should be noted that
most of the general results and methods in this paper are inherently multivari-
ate, and do not use rely on univariate approximation which have limited scope
and on which, for example, the results of [51], [52], and some of [47] and [3] are
based; we point out the key difference in Section 3. In addition, our discussion
is directed towards non approximability results and resulting lower bounds.
Hence even our approximability results are geared towards the eventual goal
of proving non approximability. We pay scant attention to upper bounds that
are obtainable from approximability results including the numerous threshold
circuit complexity upper bounds in the literature (See [48] and [49]). Finally,
our analytic framework is suitable primarily for questions that can be decom-
posed into linear approximation questions. Many of the lower bounds based on
[57] and [59], such as [39] [2] [78] and [10], use distinctly non-linear approxima-
tion methods. While it is an open question whether these, too, can be treated
using purely linear approximation methods, we discuss the current points of
difference in Section 3.

General results. Below, we give an informal description of some of the gen-

eral (non) approximability and interpolability characterizations in the order
in which they appear in the paper. In addition, if easy to state, we mention
known results that are generalized by these characterizations. We consider ap-
proximability of Boolean functions f from vector spaces X of functions from

{=1,1}" to R. We will use the inner product < f,g >:=1/2" % f(x)g(z) and

often refer to simple concepts from linear algebra, such as the orthogonal space
X+ consisting of functions that have 0 inner product with every function in X,
and the projection f|x of a function f onto a space X.

The first result concerns a characterization in [15] which states that PT; func-
tions (i.e, functions whose signs can be represented by linear combinations of
at most polynomially many Parity functions), are defined uniquely by few of
their Fourier coefficients. This gives a bound on the number of distinct PT
functions.
THEOREM 3.4 is stronger, and follows directly from a version of the duality
principle that is specific to Boolean functions. It asserts the equivalence of two
statements: for any Boolean function f, and any subspace X of functions from
{=1,1}" to R, there is a function in X with the same sign as f if and only if
the projections f|x extends to a unique function bounded by 1.

This theorem gives a bound on the number of Boolean functions that are
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approximable from any space X in terms of the dimension of X and some
properties of bases for X.

THEOREM 4.1 converts a statement of approximability to an equivalent state-
ment of interpolability. It states that for any subspace X of functions (from
{—=1,1}" to R), and function f in the orthogonal space X*, the following two
statements are equivalent.

e No ¢ € X has the the same sign as f on a set S on more than m points.

e For every set S of at most 2" — m points, there is a function h € span((X U
{f})*4) that interpolates f on S, and is bounded above by f elsewhere.
Section 4 gives known results that provide context to this theorem.

THEOREM 4.4 converts a statement of non-interpolability to an equivalent
statement of interpolability. let X be a subspace of the usual space of functions
and let f be any function in X*. The following statements are equivalent.
e No function in X of degree < d interpolates f on a set S of > m points
e For every set S of < 2" — m points, there is a function in X'\ f, that
interpolates f on S.

This gives a different handle on an open problem posed by [66] namely to
extend the results - on the non-interpolability of functions from a space of low
degree polynomials over finite fields - to spaces of polynomials over the reals.

THEOREM 5.1 gives a systematic method of obtaining distributions that mimic
the uniform distribution and “fool” any Boolean function f that is approx-
imable from a given space X of functions. In general, the theorem shows that
if every function in a complexity class C' is approximable in the co-norm to
within, say 1/n, from a subspace X, then any (Boolean) function & in the or-
thogonal space X+ is hard for C', and can be expressed as h*+c.One, where One
denotes the constant function; furthermore, h* gives a distribution that fools
every function in C'. Such distributions that are, in addition, easy to generate,
provide a large class of natural pseudorandom generators for all computations
in (', and highlight the close relationship between hardness and pseudorandom-
ness (see, for example, [50]).

THEOREM 5.6 gives an exact characterization of when a large class of distribu-
tion [ fools a function f in terms of a notion of “one-sided” approximability of
f. See Section 5 for known results that put this theorem into context.

THEOREM 6.1 converts non approximability in the oo-norm into equivalent
approximability results. Let f be a Boolean function and B a set of Boolean
functions, and let M C B consist of independent Boolean functions.
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(1) The following are equivalent.
e There does not exist an approximation g € span(M) with sign(f) =
sign(g).
e There exists an approximation [ € span(M)* with [|/||; > 0 and

sign(f(x)) = sign(l(z)), whenever I(z) # 0.

(2) The following are equivalent.
e There does not exist an approximation g = . azh with > |an| <1,
heM heM

and € < |g(x)| < 1 everywhere, and sign(f) = sign(g).

e There exists an approximation [ close to span(M)* with ||l||; = 1 and
sign(f) = sign(l), where ever [ # 0. By “close to span(M)+” we mean
that | >, [(2)h(z)| < e for all h € M.

Almost all the threshold circuit lower bounds known so far concerning non
approximability in the oco-norm (non expressibility of the sign) of a function f
from the span of small number of LT or other functions involve a restriction
on the approximation: the the linear combinations that form the approximant
have polynomially bounded coefficients. These include results in [33], [41],
[44], [26]. In other words, these lower bounds apply only to circuits with an
unweighted threshold gate at the top. These lower bounds all use the ‘correla-
tion/discriminator lemma,’ proved in [33] and [26], which is nothing but 6.1(2),
for which we give give a short and straightforward proof using the duality prin-
ciple. To complete such a lower bound proof, one then needs to show that the
scalar product | < h,[ > | is small for each h € M. The methods for bounding
this scalar product have been phrased in terms of communication complexity
(for example [26]) and “variation rank” (for example [44]), but most of these
also reduce to arguments based on duality and simple norm relationships for
Boolean functions as will be shown in Section 6.

The only non approximability results without the above restriction are the
following: the result of [23] on the non approximability of Parity by few func-
tions computable by AC? circuits, i.e, {A,V,—}- circuits of a fixed polynomial
size and constant depth; related results of [43], for example, on the non ap-
proximability of an AC°[3] function by few And functions and the result of
[42] on the non approximability of an A(C°[3] function by few Mod r functions
(which can be viewed as monomials over the reals, or 7ZZ7 characters; in fact,
the result applies to 7ZZ7 characters, for any r). The main analytic technique in
all of these papers reduces to 6.1 (1) (which is based on duality) although the
respective papers do not state as such.

THEOREM 6.9 shows that when the set M of functions is an orthonormal set,
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Theorem 6.1 implies a generalization of the “spectral method” of [15]: the
number of Parities or monomials (or any other orthonormal set) needed to
approximate a function exceeds the inverse of its maximum Fourier coefficient
(or respectively, the maximum scalar product of the function with an element
of the orthonormal set). I.e, PT; C PL;OI.

THEOREM 6.4 is a direct consequence of 6.1(1). Let f be Boolean and X any
space. If f ¢ X and the maximum absolute value of the projection || f|x||s < 1
then there is no ¢ € X, with the same sign as f. This result is useful when the
projection f|x can be easily found, for example, if a well-behaved orthonormal
basis exists for X, and the scalar product of f with every basis function is
small.

We use 6.4 directly together with the properties of the spectra of read-once
ACP[3] functions to provide an alternative proof of the non approximability

result that AC°[3] € PTy, [42].

THEOREM 6.6 considers a natural situation where a set M does not consist of
orthonormal functions, and yet 6.4 can be used to show non approximability
from span(M). Here, all the functions in M, when viewed as vectors in Ran,
form vector bundles, such that all the vectors in any one bundle are close to each
other (have large scalar product), but any two bundles are nearly orthogonal
to each other. In particular, if all pairs of functions g¢;,¢; in the class M of
Boolean functions satisfy either | < g;,9; > | < dor | < giyg; > | > 1 -6,
for 6 being typically significantly less than 1/2, and furthermore, for a given
Boolean function f, the quantity | < f,g; > | < ¢, for all g; € M, then if
(M| < min{1/8'/3,1/€'/3}, there is no ¢ € span(M) with the same sign as f.

THEOREM 6.12 gives several results of the following form that illustrate the
transitivity of approximability relationships: “f is approximable from the span
of a set of m; functions ¢; in some basis B, and ¢; are all approximable from
the span of a set of my “simple” functions A then f is approximable from the
span of mymy “simple” functions.” These results follow directly from 6.1.

We use results of this nature for building on previous non approximability
results. For example, a result of the above form, together with the non approx-
imability of f from the span of mim, simple functions would imply that one
of the approximability hypotheses is false.

Often, these transitive approximability results are used in conjunction with
approximability results that are obtained from communication complexity up-
per bounds using the following facts.

FACT 6.10 and 6.11 state that lower bounds on deterministic and probabilistic
communication complexity of a Boolean function f can be obtained by prov-
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ing appropriate non approximability of f from the span of the characteristic
functions of cross-product sets.

Results in 6.12 form the backbone of the lower bounds (non approximabil-
ity results) of [33] and [26] concerning unweighted threshold circuits of depth
2 and 3, and their relationship to weighed and unweighed thresholds of Parity
functions, namely the results stating that that LT, z LTy, LT, z PT,, and
PT, € LT,. The paper [26] uses communication complexity upper bounds to
prove approximability of the functions in the relevant basis B by the span of a
few cross-product functions and then, in effect, uses 6.1 (2) to show that f is
not appropriately approximable from the span of few cross-product functions.
The desired non approximability of f from the span of few functions in B then
follows from 6.12. The papers, especially [26], however, employ the commu-
nication complexity paradigm throughout instead of treating the issue as one
of approximability from cross-product functions. We point out that the word
“communication complexity” can be usually removed from all (lower bound)
proofs involving threshold functions, and many other lower bound proofs, with-
out making the proofs any more difficult, or any less intuitive.

For example, the following result of [26], which uses communication com-
plexity is a direct consequence of 6.12: “A circuit with an unweighted linear
threshold gate on top, arbitrary linear threshold gates at the middle level, and
gates from a class C in the lowest level can be simulated by a circuit with
exactly the same gate on top, unweighted linear threshold gates in the middle
level and exactly the same gates from C at the bottom.” Furthermore, al-
though, in theory, a communication complexity upper bound is stronger than
an approximability result from the span of cross-product functions, usually, one
can obtain such an upper bound by proving (possibly transitive) approxima-
bility as well. For example, 6.12 can be directly used to show an upper bound
on the probabilistic communication complexity of LT functions. As noted in
the description of the scope of the paper, these are the only two examples of
complexity upper bounds that we show to be obtainable from approximabil-
ity results. However, it seems natural and promising to study the general use
of approximability results for proving threshold and communication complex-
ity upper bounds, especially since every threshold complexity upper bound is
equivalent to an approximability result in the oo norm.

Similarly, although non approximability results from cross-product func-
tions are stronger than communication complexity lower bounds, in fact, in
practice, many lower bounds on communication complexity, including results
in [33], [26], [32], [38], [56], [25], [29], [4], and [24], do yield stronger non approx-
imability results, which could be proved independently using versions of 6.1(2)
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in conjunction with 6.12. Thus proving non approximability from cross-product
functions is a viable method for proving lower bounds in communication com-
plexity.

OBSERVATION 6.14 contains a series of results, all of which show the non ap-
proximability of functions f in the oo norm (or non-expressibility of the sign)
by decomposing the domain in a systematic way. These results are also useful
in constructing hard f based on previously proven or easier non approximabil-
ity results. Furthermore, these results give a general method for reducing a non
approximability question into a combinatorial problem. This method has been
used in several papers, although not stated as such, for example [44], [42], [26].
It is the crux of the proof in [44], although not stated as such, that the func-
tion DIP4, which computes the inner product of 2 vectors in IFy, is not closely
approximable by the span of few symmetric functions. It is, in effect, also the
crux of the proof of [42] showing that there are AC;[3] circuits that cannot
be simulated by a threshold of quasi-polynomially many parity functions. l.e,

ACB] € QT

THEOREM 6.22 provides several ways of showing that the scalar product be-
tween a Boolean function f and any function in a class of Boolean functions is
small. Results of this nature are used in conjunction with the methods of 6.1
to show non approximability.

Finally, based on the analytic approximation framework, we are able to relate
several approximation algorithms, some of which have appeared as learning
algorithms, [46] [22], [34], [40], [64], and some of which are classical algorithms
in the approximation theory literature.
THEOREM 7.1 states that to find an approximation with the same sign as a
Boolean function f from a space X, there is a set of dim(X )+ 1 sample points
on which it is sufficient to sample f. Furthermore, these points are the support
of a function in X*. (Recall 5.1 showing that such functions also provide
distributions that fool f).

This result has fairly general consequences for obtaining deterministic ap-
proximation algorithms, which are however listed under the complexity-related
applications below, since they also concern learning and pseudorandomness.

Specific applications. Some examples of specific, new complexity related appli-
cations are given below in the order in which they appear in the paper.

It is an elementary fact that no polynomial of degree bounded by n — 1 has the
same sign as Parity.
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THEOREM 3.5 is a simple generalization of this result and has a two-line proof
using an analytic technique developed in this paper. It states that scalar mul-
tiples of Parity are the only functions (Boolean or otherwise), over {1,—1}"
whose sign does not coincide with that of any polynomial of degree bounded
by n — 1.

A conjecture of [47] states that any appropriately polylogwise independent
distribution fools AC° functions.
OBSERVATION 5.5 states that a modified version of this conjecture - where the
distributions are replaced by functions whose 1-norm is bounded by 1, but are
allowed negative values - is false.

The proofs of [42] and [34] for the approzimability result that AC°[2] C PT,
involve a probabilistic existence argument for the approximant in the former
case and an algorithm to find the approximant in the latter case. We give a
transitive approximability result (see 6.12) whose proof is straightforward from
6.1(2)), which moreover gives a more general result a corollary.

In particular, COROLLARY 6.13 states that an unweighted linear threshold
of polynomially many functions in PL;, i.e, whose Fourier transforms have
polynomially bounded 1-norms, can be simulated by an unweighted threshold
of polynomially many Parity functions.

The conjecture that AC°[3] is not contained in LT, i.e, the class of weighted
thresholds of polynomially many threshold gates, has been posed by [42]. Set-
tling this conjecture, would, in particular, settle the embarassing open question
as to whether LT is different from NP. In general, as mentioned earlier, very
few lower bounds are known involving circuits with weighted threshold gates
at the top.

THEOREM 6.19 is a partial result in this direction. A canonical AC°[3] function
does not have an approximation with the same sign, from the span of a set
M C LT, of polynomially bounded size provided M 1is closed under all the
permutations of variables under which the canonical function is invariant.

THEOREM 6.20 gives a result that is weaker in some senses, but stronger in
others than similar results concerning non approximability of an explicit func-
tion from the spans of And and AC® functions in [43] and [23], but using a
different proof technique, where 6.1 (1) plays a crucial role.

THEOREM 6.21 extends the above result to Flat functions that are more general
than And functions.

THEOREM 6.23 concerns correlations with LT functions. Given a Boolean
function f, and a function ¢ € LT if for each subset S C {—1,1}" with |9|
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containing more than an (1+4€)/2 fraction of points, one of the several conditions
holds on the geometric structure of f, then < f,¢g >< e. For example, one of
these conditions is that ConvezHull (f~1(1)NS) and ConvexHull(f~1(—1)NS)
intersect.

We give several general methods throughout Section 6 that use results of
this nature for proving non approximability results.
THEOREM 6.24 states that, in particular, the correlation of a canonical read-
once AC®[3] function with any function in LT, is comparable to the expected
value of a canonical function.

REMARK 7.2 is based on Theorems 7.1 and 5.1 listed under the general results,
and points out a direct connection between sets of pseudorandom elements for
a general class of functions C' and deterministic sample sets for approximating
- in the co and 2 norms - or learning functions in €. When easy to generate,
these distributions can be used to derandomize randomized approximation and
learning algorithms and randomized computations in €. Such a connection
was previously established for the special case of AC in [64].

Using these ideas, we derandomize the learning algorithm of [22] for AC®
functions and portions of the learning algorithm of [34] for PT; functions, and
[40] for decision trees.

2. Background and conventions

Unless otherwise specified, all function domains consist of n-tuples in {—1,1}"
viewed as subsets of both R™ and the finite vector space IFy, with -1 mapping
to 1y, and I mapping to Op,. The number of arguments of a function is often
omitted and is assumed to be n. Similarly, the words “polynomially many”
and “polynomially bounded” usually refers to a polynomial in n. The range
of all functions is R, and for Boolean functions, the range is {1, —1}, viewed
primarily as a subset of R, (and occassionally as a subset of IF,,). Thus, for
example, the functions A, V etc. map from {1, —1}" to {1,—1} in the obvious
way, with -1 mapping to the usual 1 and 1 mapping to 0.

The number of ‘1’ entries in a vector z € IF} is denoted |z|, and the n-tuple
(a,...,a) is denoted (a™). A vector x € IF} is identified with the set of co-
ordinates 1 < ¢ < n where z; = 1. Thus, given vectors = and y, we will refer
to the vectors x Uy, x Ny, x \ y, & or ~z (for the bitwise complement of ),
and expressions such as ¢ € & (meaning x; = 1). The inner product < z,y >
for x,y € IF] is ‘17 if the parity of |z Ny| is odd.
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The Fourier transform of a function f from IFy (or the group 7Z3) to R is
denoted f and is given by

f(ac) =1/2" Z Fu)(=1)<=w>,

u€lFy

thereby f(z) can be written as Y f(u)(—l)“’w. The characters x,(z) are
ue€lF}

defined as (—1)<"">, and are generally called parity functions. For u = 1", the
function y, is called Parity, and for v = 0", the (constant) function is called

One.

The following are basic properties of the Fourier spectra of Boolean func-
tions.

Fact 2.1. For functions [ and ¢ over IFy the following hold.

(i) Parseval’s identity:

1fIE=(1/2") Y ) = 3 fa) =111k

z€lFy z€F}

(ii) The value of the transform at 0" is the expected value of the function:

FO07) = (1/27) 3 f().

Functions f over {—1,1}" are also representable uniquely as multilinear
polynomials from R" to R. I.e, there is a unique multilinear polynomial over
R™ that interpolates f at its domain points.

We will often use the following: when the range of functions is {1,—1}
then for = € {1,—1}", The functions x,(z) are nothing but [] z;. Thus,

€U
flz) = Z]:F f(y) [T x;. In other words, the coefficient of [] z; in the multilinear
yelFy 1€y 1€y
polynomial over R™ that represents f on the domain {1, —1}" is nothing but
the y** Fourier coefficient of f. Notice that given a polynomial f that represents
f on the domain {0,1}" C R", the Fourier coefficients of f can be obtained by
applying the change of variable z; — 1_2“, and z; = (1 —a;) — %, to f; and
finding the coefficients of the resulting polynomial in standard power form.
The finite vector space of functions from any subset S of IF} or of {1,—1}"

embedded in R™ to R is denoted Fyn g, and is equipped with the usual inner
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product: for functions f and ¢, < f, g >s=4e5 1/|5| 3 f(x)g(z). Sometimes the

inner product is defined with respect to a distribution R over S; i.e, R(z) >0
for x € S and ER( )= 1. Then < f,g >sr=4qcs Z’R( )f(z)g(z). When S

consists of all of the 2" domain points, we simply omlt the subscript S. The
set of parity functions x, : u € IFy are mutually orthogonal in F3», but not
neccessarily in Fan g, for arbitrary subsets 5. However, these functions consti-
tute a complete (possibly redundant) basis for Fin g, for any S. The norms

are defined as usual: ||f||1,s =des §S|f($)|, and || flleo,s =def mazzes |f(x)].

However the ||.||, norms for 1 < p < oo are scaled by 1/|S|, for convenience.

For example, ||fll2.s =des V< [, f >s = \/1/|S| > f(z)?. The norms could
z€F3

also be defined with respect to a distribution R over S in the usual way. For

example, ||f||z.sr =daef \/< f,f >sr As usual, the norms ||.||, and ||.||, are
said to be dual if 1/p+1/¢ = 1.

Clearly, Fin g consists exactly of all multilinear polynomials over S C
{1,—=1}" C R™. The subspace of this space formed by polynomials of degree
bounded by d is called IIj g; the subscript S is often omitted. From the earlier

discussion it is clear that this subspace is spanned by the basis parity functions
{xu v € IF}, |u| < d}. For any subspace X of Fan g, the orthogonal space of
functions f € Fon g satisfying < f,g >5= 0, for all ¢ € X, is called Xg. Notice
that this is different from taking X+ and restricting to S. Thus HS’L is nothing
but the space spanned by the basis parity functions {x, : v € IF5, |u| > d}, but
this is not true over proper subsets S of I[Fy. The space XéR can also be defined
for a distribution R over S, by employing the inner product < . >gx in the
definition of orthogonality. Given a subspace X and a function f € X, X & f
denotes the shifted set {g+ f: g € X}, X\ f denotes the space X N span(f)*
and X U f denotes the space X U (X & f) Given a subspace X and a function
f the function f|x is the projection of f on X. Thus f = f|x + f|xz.

The Boolean functions in Fa» with range {—1,1} or {0, 1} form the vertices
of the cubes, {1,—1}?", or {0,1}?" in R?". We will use the symmetries of these
cubes to transfer results about certain Boolean functions to other Boolean
functions. For example, the statement “ Parityis not approximable by functions
in I1,,” is equivalent to saying: “One is not approximable by functions in
M

Complexity (resource) bounds on a function are always expressed in terms
of the number of its variables. In the case of threshold complexity classes, the
complexity of functions is given by the dimension of a good approximating space
spanned by specific kinds of basis functions. Some common functions besides
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Parity, One and the parity functions x, are the following: the functions A,
for disjoint u,v € IFy are called the And functions, and are defined as

Nup() := /\ x; /\ T

€U 1€V

i.e, when viewed as mapping from {1, —1}" to {1, —1}, A, (x) takes the value
—1 exactly when all the z;’s with : € u are —1’s, and all the z;’s with ¢ € v are
I’s. The Or functions V,,, are defined analogously.

Some complexity classes that the paper deals with are the following. The
class PTy (QT,) consists of Boolean functions f that are approximable by a
function ¢ in the span of (quasi)polynomially many basis parity functions xs,
with || f — ¢]eo < 1.

The class LT, consists of Boolean functions f that are approximable by a
function ¢ in the span of basis parity functions y, with |s| < 1 and ||f —g¢||e <
1.

In general, LT, is the class of Boolean functions f that are approximable
by a function ¢ in the span of polynomially many basis functions in LT;_q,
with with ||f — ¢||lec < 1. The class LT, is the class of Boolean functions f
that are approximable by a function ¢ which is in the span of polynomially
many basis functions ¢; in LATd_l, with the additional condition that when
g = Y. a;g;, the coefficients a; are normalized to Y, |a;| < 1, and each q; is a
rational whose denominator is polynomially bounded. It should be noted that
often in the literature, the normalization of Y, |a;| is removed, the condition
I|f — gllo < 1 is simply written as sign(f) = sign(g), and the a;’s are taken
to be polynomially bounded integers. Finally, AC°[d] is the class of functions
computable by (constant) depth d {A,V,—}-circuits of polynomially bounded
size.

3. Analytic framework using linear approximation

In this section, we develop an analytic framework based on linear approxima-
tion and point out how several questions concerning complexity lower bounds,
pseudorandomness and learning algorithms fit naturally into this framework.
This clarifies the relationship between the analytic structure of these questions.
Therefore, the framework facilitates a systematic study of analytic methods
which reduce these questions to their combinatorial essence, if there is any: in
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some cases, the analytic methods alone are sufficient to answer the question at
hand, as will be seen in this discussion.

This section is divided into four subsections. The first introduces the dual-
ity principle for linear approximation and explains its relevance to complexity
questions. The second subsection presents a general analytic framework based
on duality, by which one can view various complexity-theoretic questions as ver-
sions of the same analytic problem. The third describes the basic ingredients
that constitute the analytic techniques for Boolean approximation, and gives
examples that illustrate the pattern of exposition in the remaining sections.

3.1. The duality principle. The duality principle for any finite dimensional
space of functions is the following. This can be found in any book on approxi-
mation theory. See [62] and [13], for a general treatment.

THEOREM 3.1. Let U be a finite dimensional vector space of finite functions,
with inner product < fi, fo >:=u)_, fi(x)f2(x), and 2-norm defined as

I|f|I3 :==< f,f >. Furthermore, let X be a linear subspace of U. For any
function f € U,

mig |f = gl = mag |3 1(z)

IIlII*<1

where ||.||« is the dual norm of ||.|.

REMARK 3.2. The RHS of the above equality can be viewed as the maximum
of |L(f)| over all linear functionals L in the dual space that annihilate all the
functions in X (i.e, L(g) =0, for all ¢ € X ), and have bounded norm. In fact,
the RHS of the general duality principle for arbitrary normed linear spaces is
such a supremum over linear functionals. See [13].

PrOOF. The dual norm ||.||. is defined as:

|2 U(2) f(2)]
s = maz ———r—;

rev ISl
We first show that LHS > RHS. For ¢ € X, and [ € X1,

Y U@)(f —g)(x) =D () f(x)
Thus, for all f e U, g € X, andlEXL,
|Zl z)| < ([f = gll,
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by definition of the dual norm ||.||., and

I = gl < 11F = gll,

since ||{||. < 1.
To show the inequality in the other direction, for each h ¢ X, we will exhibit
a function [, such that

Eﬂh z)| = min ||k gll,

and additionally show that [, satisfies the required conditions. Let A* € X be
such that ||[h — h*|| is minimized. Define

[|h = h*[[u(h — h|x)
|7 = Rlx|l2

Writing h as h — h|x + h|x, and noticing that < (h — h|x),h|x >= 0, we get
that
|2ﬂf )| = [[h = 7.

Furthermore, for a general f € span(X U {h}),

lh =

S (o)) - SLAH 2 1k
17— hlxl

Now, for any f € X, it holds that < f,h — h|x >= 0, since h — h|x €
X1 therefore I;, € X+, thus satisfying the first required condition. Next, we
establish that ||/,||« is bounded by 1 over span(X U {h}); [, can clearly be
modified and extended to the remainder of U without increasing the norm,
(finite dimensional version of the Hahn-Banach theorem).

5 (@) (@)

Z *S an
k] span(xugny) < fespan(XU{hY) 1xal

But
< f,h—h|x > (h— hlx)
[|h —hlx]|]3

Substituting the expression for [, as well, we obtain that

f=

+ flx-

[|h — 71|

[1a]]+ < ,
1A — gl
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where g = h|x + c¢f]|x, for some scalar c¢. But since h* is chosen to be the best
approximation for A from X, it follows that the above quantity is at most 1,
thereby satisfying the second required condition on {,. O

As a consequence the duality principle, the value of the correlation of any

appropriately bounded function I € X+ with a function f gives a lower bound
on the distance from f to its best approximation in X, and viceversa, the
distance || f — ¢|| for any g € X gives an upper bound on the correlation for
any bounded function [ € X*. We now explain the relevance of the duality
principle to various complexity questions, in a series of paragraphs enclosed by
(’s.
(O To show a complexity lower bound, i.e, to show that a function f is not
in a complexity class C, one chooses an appropriate space X and a norm ||.||,
such that there is a good approximation from X to every function in C'; then,
one proceeds to show that there is a function X+ of bounded norm that has a
high correlation with f. Such a function is usually also a good approximation
to f, and hence the lower bound comes down to showing the existence of an
approximation from X+ to f.

A number of lower bound results including many of those in [11], [15], [42],
[43], [26], [33], [41], [44], [42], [23], [32], [38], [56], [23], [29], [4], and [24] can be
phrased in the above form as will become clear during the course of this paper.
See especially the next subsection and Sections 4 and 6. ()

(O Notice that if the functions in C' have good approximations from X, then
every function in X+ has a small correlation with every function in C'. This
has several useful consequences.

The Boolean functions in X1 are clearly natural hard functions for C.
Furthermore, assuming, for ease of exposition, that functions in C' have a zero
expected value, any positive function in X+ could serve as a distribution that
functions in C' cannot distinguish from the uniform distribution, in the nar-
row sense of expected values. Elements drawn from these distributions serve as
pseudorandom elements that “fool” randomized algorithms with complexity C'.
This makes a relationship between hardness and randomness (see [50]) trans-
parent, and shows how to systematically characterize sets of pseudorandom
strings and their generators for complexity classes: see Section 5 ()

(O Next, if the functions ¢ in C have good approximations from X, then it is
intuitively clear that dim(X)+ 1 independent pieces of information about such
a function ¢ should be adequate to find the approximation to ¢ from X. If,
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in addition, these independent pieces of information can be obtained by sim-
ply sampling ¢ on a distribution supported at dim(|X|+ 1) points, this would
provide a small sampling distribution for approximating functions in the class
C', which could potentially be converted to a fast approximation algorithm for
functions in the class C, if the distribution, is, in addition, easy to generate.
If, moreover, the approximation uniquely defines a (class of) function(s) in
C (that coincide on a subdomain of large measure), then the algorithm is a
learning algorithm, with “membership queries,” for C'. This is the idea behind
the approximation-based learning algorithms of [46], [22] [40], [34], and [64]
although not stated as such. Moreover, natural candidates for these sampling
distributions are those that look uniform to functions in C'. “Uniform” could
be replaced by any other distribution as well, depending on the required ap-
proximation as will be seen in the next subsection and Sections 5 and 7, but
for the moment, we restrict ourselves to uniform for the sake of exposition. We
have seen in the previous paragraph that functions in X+ can be modified to
serve as such “close-to-uniform” distributions in the narrow sense of expected
values. Already this was adequate in the case of the class C' being ACY, i.e,
it was shown in [64] that in fact any set of pseudorandom strings that fool
randomized circuits in AC? can also serve as a sampling set for approximating
(and thereby learning) functions in AC®. Since many of these sampling sets
are easy to generate, they permit derandomization of AC° computations, as
well as derandomization of learning algorithms for AC®.

In fact, we will see in Section 7 that also for general classes C', functions
in X+ can be used to provide deterministic sampling sets for derandomizing
computations in C' as well as for approximating or learning functions in C. )

(O Finally, a complexity upper bound of C' can be shown by showing approx-
imability from X. This is a promising direction to investigate, especially in
the case of communication and threshold complexity upper bounds; however,
as mentioned in the Section 1, with few exceptions in Section 6, our interest
in approximability here is geared towards the eventual goal of showing non
approximability. ()

3.2. General analytic framework. In using the linear approximation frame-
work of the last subsection to prove computational complexity lower bounds,
etc., one could choose the approximating space X, and the norm ||.||s appro-
priately to suit the problem at hand. In this section, we present a more general
approximation framework that retains the main structure, but allows the choice
of other parameters besides the approximating space and the norm. Thus, not
only can a broader variety of questions be made to fit into this framework, but
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also a finer differentiation between questions can be imposed.

We deal with the following kind of approximability of a Boolean function
g, from a class B of Boolean basis functions, all of which are in the universal
space U of functions.

M C B,with|M| < m,3(V) distributions D on IFy or {1,—1}"

that induce a measure on subsets S of IF7,
(V) subsets S C IF] with measure greater than o
dh € span(M) with ||g — k||s < 7. A

where 5,0 <o <1 and 0 <~ <1 are some fixed constants, and m is typically
a polynomial bound. (Notice that when v = 0, we are dealing with a strict
version of approximability, namely interpolability).

To show the corresponding non approximability of a hard function f, one
shows:

YM C B,with

M| < m,¥(3) distributions D on IF} or {1,—1}"

that induce a measure on subsets S of II'},
V(3) subsets S C IF} with measure greater than o
Al € spanMy, with |[f]|s <1 and Y f(z)l(z) > 7. A

€S
We enumerate all the parameters (besides m, o and ) and show how they can
be appropriately chosen to fit several complexity-related problems.

e The choice of quantifiers in the definition of approximability: for exam-
ple, the quantifiers on the the distributions D, the subsets S, and the
approximation [ € span(M)* can be chosen appropriately, or completely
removed (i.e, the quantified parameter can be fixed to a constant). For
example, for many complexity lower bound questions, the distribution
D is fixed to be the uniform distribution and the subset S is sometimes
fixed to be the entire domain, i.e, ¢ = 1. Sometimes, S is existentially
quantified, with o bounded away from 1/2, which is often essential when
the issue is interpolability, i.e, when v = 1, as, for example, in the case

of [58] and [66].

When the approximation of interest is in the co-norm, as, for example,
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for threshold circuit complexity lower bounds, the universal quantifier is
implicit for the distribution D: the approximation & in A must have the
same sign as g everywhere. This fact has been extensively used in [26],
[42], [44] and [43] and the usefulness of this universal quantifier is con-
densed in Theorem 6.14.

Notice also that a “PAC” learning algorithm, for functions ¢ in a class C,
is an algorithm for finding an approximation h, in A, where the quanti-
fier on the distribution is a universal quantifier and the quantifier on the
subset S is an existential quantifier.

In some cases, for example, the monotone lower bound of [78], a spe-
cific function [ in A is explicitly constructed to have a a high correlation
with the given hard function f. In that particular case, the set from
which [ is chosen is not exactly a linear space of the form span(M)*,
but this assumption is reasonable, both intuitively, and for ease of ex-
position. Now, to show that f is not in the complexity class (', instead
of showing that every function ¢ in ' has a poor correlation with every
function in span(M)*, or dually speaking, that ¢ has an approximation
from span(M), it is sufficient to show that the correlation of ¢ with the
specifically constructed function [ is small.

The choice of the universal space U of all functions: this can be chosen,
for example, to be functions from {—1,1}" to R, as is usually the case, or
from IF} to IF,, (for example, as in [58], [66], [6], [67], [9], [68], [T1], [77], as
well as some of the results in [42], and [44]). In the latter case, v is chosen
to be 0 and ¢ < 1 in A, i.e, one is interested only in the interpolability
question over large subdomains, since finer notions of approximation do
not make sense. Furthermore, the duality 3.1 and hence A do not apply,
since inner products and orthogonality are not well-defined for such spaces
of functions.

NOTE. In this paper, however, we restrict ourselves to functions from

{=1,1}" to R.

The choice of the basis functions B: for example, these are the mono-
mials from from IF} to IF, in the case of [66], and the set M is taken
to be just the low degree monomials, whereby span(M) is the space of
all low degree polynomials. In some of the results on threshold circuit

complexity in [42], [15], |26], and others in [46]|, [40|, [34]|, |64, the basis
plexity in [42], [15], [26], and others in [46], [40], [34], [64], the basi
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functions in B are, in effect, the Parity functions or 7Z; characters; in
the case of [43], the And functions; in [23], AC° functions; in [44], the
basis functions are the symmetric functions; in the case of [33] and [26],
the LT functions, and, in effect, characteristic functions of cross-product
sets; and in general, in the papers [32], [38], [56], [25], [29], [4], [24], that
deal with communication complexity, the basis functions are character-
istic functions of cross-product sets. Many of these results, however, are
not stated as nonapproximability results. Finally, several of the thresh-
old circuit upper bounds (see [48] and [49]), are in fact approximability
results from the spans of various sets of basis functions, although not
phrased as such.

The choice of norms and inner products: the most common norms are the
2-norm and the oo-norm, and in several situations for Boolean functions,
these are highly related, as we shall see in Section 6.

Sometimes, the distribution D is included in the norm. For example, the
2-norm could be defined based on the inner product <>p.

The linear approximating space span(M) in A is often replaced by a
convex polytope bounded by linear facets in Fjn, for example, when one
restricts the coefficients of the linear combination that forms the approx-
imation h to be polynomially bounded, as in the case of “unweighted”
threshold circuit complexity, or positive, as is the case when ¢ is a func-
tion of low communication complexity and the basis functions are cross-
product functions; or if one requires the function / in A to be a distri-
bution, and hence to be positive, which happens when one is interested
in a distribution that yields pseudorandom strings, as explained in the
previous subsection on duality. These restrictions on the approximation
nevertheless permit usual linear approximation methods: for example,
modified versions of duality apply, as will be seen in Sections 5 and 6.

Sometimes, however, the space span(M ) is replaced by a truly non-linear
and non-convex structure, for example, as in the case of some (mainly
monotone) lower bounds based on the approximation method of [57],
and [59], such as [78], [39], [2], and [10]. However, even when the set
of approximating functions has no linear structure, some of the general
linear approximation methods can nevertheless be adapted. For exam-
ple, to show that a particular function f is not in a class C, [78] chooses
an approximating set M of functions as certain sums and products of
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simple functions, and explicitly constructs a function [ that is almost
in span(M)* (i.e, it is almost orthogonal to every function in M), and
| >, l(x)f(z)] = 1 for the given function f. This establishes, via duality,
that f is not closely approximable from the from the space span(M). In
fact, we will see in Section 6 that the existence of such a function [ is
equivalent - by one of the modified versions of duality mentioned in the
last paragraph - to the statement that the sign of f is not obtainable
by a any small-coefficient linear combination of functions in M. Thus, in
particular, f is not approximable by any single function in M. Therefore,
this part of the proof in [78] is based only on linear approximation ideas.
To complete the proof that f & C', it is shown (as noted in the paragraph
on the “choice of quantifiers”) that the correlation of every function g € C
with the specifically constructed function [ is small. This is, however, done
using a non-linear approximation technique of constructing a sequence of
functions starting from a function in M, which we know to be almost
orthogonal to [, and ending in ¢, in such a way that the functions in the
entire sequence remain almost orthogonal to [. It is an open question
whether the non-linear structure formed by the approximating functions
in M can be replaced by a suitable linear space, by placing appropriate
restrictions on the approximation.

Note that the general methods and results in this paper are meant to be used
after a complexity question has been phrased as a Boolean approximation ques-
tion as in A, i.e, all the choices described above have already been made, which
is a nontrivial process.

The next three sections of the paper are organized based on the type of
approximation chosen in A, which are broadly classified as:
e Interpolation (when the quantity 4 in A is chosen to be 0),
e One-sided approximation (when the functions [ in A are forced to be positive
and can be treated as distributions), and
e General uniform approximation (where the norm in A is usually chosen to
be oo-norm, but sometimes also to be the 2-norm).
The final section concerns
e Algorithms for finding the approximation A in A.

3.3. Basic ingredients of analytic techniques. We describe three basic
ingredients that constitute most analytic methods specific to Boolean (non)
approximability, including those in this paper.

e strong versions and modifications of the duality principle
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e simple norm relationships specific to Boolean functions

e essentially univariate analytic techniques that apply in very specific multivari-
ate settings. In providing some introductory examples of how these ingredients
are used, we follow the pattern of exposition to be used in the remaining sec-
tions. We reiterate that the aim of the methods in this paper is to recognize
and deal with the analytic content of the problem, thereby reducing it down to
its combinatorial essence, at which point possibly adhoc combinatorial methods
specific to the problem might be required.

Modifications of the duality principle
Several modifications of the duality principle are used in this paper, for ex-

ample, Theorem 6.1, Theorem (interp), and Theorem (one-sided); these form
the backbone for several previous complexity bounds as will be seen. Strong
versions of the duality principle such as the one below depend on the Boolean-
ness of the function to be approximated. Others such as 6.1(2) depend on the
Booleanness of the approximating basis functions.

THEOREM 3.3. Let U be a finite dimensional vector space of functions and let
X be a linear subspace of U. For any Boolean function f € U, the following
are equivalent.
o There is no approximation g € X which is non-zero everywhere and has the
same sign as f.
e There is a non-zero approximation [ in X+ with the same sign as f on supp(l).

PROOF. The first statement is equivalent to saying that for all ¢ € X,
l|lf — gllso > 1. Since the dual norm of the oco-norm is the 1-norm, this is
equivalent by 3.1 to saying that there is some [ € X+, with ||l||; = 1 such that
Sol(z)f(xz) > 1. Now, since f is Boolean, this happens exactly when [ has the
same sign as f on supp(l).

Notice that the theorem above converts a statement of non approximability
into a statement of approximability, and depends on the Booleanness of f. In
fact, due to the Booleanness of f, a geometric proof exists for the above result.
This is given below, following the proof of 3.4. The first statement in the above
theorem is also equivalent to a notion of orthogonality with respect to the ||.||s
norm, according to which a function f is orthogonal to a space X, if for every
function g € X, ||f + glleo < ||f]lco (see [62] for an succinct treatment of |||
norm, or uniform approximation).

Next, we give two introductory example applications of the general result of

Theorem 3.3.
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THEOREM 3.4. The statement that for a Boolean function f, there is a func-
tion g in X with the same sign as f is equivalent to the following. For every
f* with || f*||c <1, the projections f*|x and f|x are identical implies f* = f.

PROOF. First notice that the functions f* with the property that f*|x = f|x
are exactly those that belong to X1 @ f, i.e, they are of the form /4 f for some
lin X*. Now the proof follows easily from duality for Boolean functions.

Jge X and ||f—y¢lle <1 <=

(by 3.1)
Vie X+ with [|f|h <1, | l(z)f(z)| < 1.

This is equivalent to saying that every non-zero function / in X' agrees in sign
with f on atleast one point, and disagrees on atleast one point. This is, in
turn, equivalent to saying that

Vie X', I+ fllo>1 or [=0

VIt with |[f ] <L, flx=flx = f=f

since, f* satisfying f*|x = f|lx = f* = f, as observed in the beginning of the
proof, must be of the form: [+ f for some [ in X1. O

The following is a geometric illustration of the the above proof, and in fact
contains a geometric proof of 3.3 as well. The argument depends strongly on
the fact that the function being approximated is Boolean.

View the Boolean functions in Fy» as the vertices of the cube {—1,1}%". This
cube is, in fact, the unit ||.||o ball in R*", thus the points in the interior of this
cube represent vectors (functions) with ||.||. < 1.

Spaces of functions such as X are plane/subspaces through the origin, and
those such as X @ f are shifted plane/subspaces through the vertex f of this
cube. Now,

dge X and ||f —gllo <] =

dge X B f with ||9]]lee <1 <=

The plane/subspace X @ f cuts through the interior of the cube {—1,1}?" «—=
(by the orthogonal geometry of cubes)
The orthogonal plane/subspace X+ @ f touches the cube {—1,1}?" only at f
<~

VIre Xt a f, [fle>1 <=
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Vie Xt I+ flle>1 o ff=0 <
Vi with [|[fle <1, fflx =flx = =1,

by the same argument as used in the above proof.

(O The characterization result in [15] for PT; functions states the forward di-
rection of 3.4 for the special case where X is given as the span of orthonormal
parity functions y,. They use the result to show a bound of 27%X) on the
number of distinct PT; functions, since the number of distinct Fourier coeffi-
cient values of a Boolean function is at most 2". The above result gives a bound
on the number of LT, functions as follows. Let M be any set of m independent
LTy 2functions. Since there are at most 2°("*) LT, functions, there are atmost
(20:: )) such sets. For any Boolean function f, f|spn(ar) can be uniquely writ-

ten as Y. aph. Let b be a bound on the total number of distinct values that the
heM

- n2
coeflicients a;, take. Then there are at most (20; ))bm LT functions with m

/2 exists

LT, gates at the bottom level. A straightforward upper bound of m
on b since LT functions are Boolean, although it is not clear that the bound is
tight. See [1], [72] and [31], for related tight bounds on the inverses of Boolean

matrices. ()

THEOREM 3.5. Scalar multiples of Parity are the only functions (Boolean or
otherwise), over {1, —1}" whose sign does not coincide with that of any poly-
nomial of degree bounded by n — 1.

PrROOF. A Boolean f has no approximation ¢ from II,,_; with the same sign,
if and only if, by Theorem 3.3, there is a function / € II*_, such that / has the
same sign as g wherever [ # 0. But I, = span(Parity), and hence f must
be a scalar multiple of span(Parity). O

(O It is folk-lore that Parity cannot be approximated by any by polynomial of
degree bounded by n — 1. That requires only the first line of the above proof.

O

Simple norm relationships specific to Boolean functions We give a few exam-
ples. Notice that if f is Boolean, then

£l =2 @)= X f =) =2"If]l5

z€F} z€FY
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Thus, for Boolean f, bounds on the 2-norm of f provide bounds on the 1-
norm of f, and furthermore, the 1-norm of f ( f ) provides an upper bound on
the (2" times) the 2-norm of f (f) In addition, the 1-norm of f is a lower
bound on the size of the support of f, and an upper bound on the sparsity of
an approximating polynomial having the same sign as f, ( as will be seen in
Theorem 6.9), which, in turn, yields a lower bound on the L., norm of f (as
will be seen in Theorem 6.3). One more property that is specific to Boolean
functions and is constantly used in Section 6 is the following: when a function
¢ has the same sign of as a Boolean function f, then the 1-norm of ¢ is the
magnitude of (2" times) the scalar product or correlation < f,g >.

Univariate techniques
Any multivariate function f can be “univariatized”

e+ o) =1/mD - f((x(zr) ... 7 (2))),

where the 7 are permutations acting on the set of arguments of f. It is not
hard to see that f* has degree bounded by the degree of f. Furthermore,
univariate analytic techniques can be used to prove properties of f*, which
sometimes transfer partially to f. This is advantageous since much is known
about univariate approximation and far less about multivariate approximation.

REMARK 3.6. It should be noted that most of the general results and methods
in the remaining sections of the paper are inherently multivariate, and do not
rely on univariate techniques. Nevertheless, for completeness, we provide here
a brief discussion of univariate analytic techniques and their applications.

Univariate methods are particularly useful for symmetric functions. For a
symmetric function f, f*(z1+4...42m) = f(21,...,2m). Thus symmetric func-
tions can be treated essentially like univariate functions. The results of [52],
for example, take full advantage of this fact. This univariate nature extends,
in practice, also to functions f satisfying: f(z1,...,2,) = f/(\Tz), where f’
is univariate, A € R", and, over the cube {—1,1}", it is natural to require
that the size of the set {\Tz : z € {—1,1}"} is appropriately, say polynomially
bounded. Such functions are called “ridge functions” in the approximation
theory literature. Notice that LT, functions have this property. It is not sur-
prising, therefore that many complexity bounds involving symmetric functions
transfer to LATl functions as well.

(O The results of [51], [52], and some of [47] and [3], for example, rely almost
entirely on univariate approximation, and deal with local combinatorial prop-
erties of general Boolean functions. However, the related results of [37] do
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use inherently multivariate techniques such as Beckner’s inequalities [7]. Many
of these results can be phrased as general combinatorial questions about the
multidimensional unit cube, see for example, [27], and [47]. O

Two classical univariate approximation techniques that have been used for
proving results about Boolean functions are the Bernstein-Markov, and the
complementary Jackson inequalites for which the reader is referred to any in-
troductory book on approximation theory, for example [61], or [55].

The following non approximability result of [51] is used later in Section 5.
It relies on a Bernstein-Markov inequality. The complementary approxima-
bility results of [52] for the case of symmetric functions rely on the Jackson
inequalities, but are not presented here.

THEOREM 3.7. The degree of a polynomial g that approximates a Boolean
function f with ||f — g||sc < 1/3 (any constant strictly less than 1/2) must be

at least y/sensitivity(f)/6, where the sensitivity of a Boolean function f is the
quantity

maz|{y 2@y =1, and f(z) £ F)}

PrOOF. Consider a point # where f attains its maximum sensitivity, denoted

S(f), and let T be the set of S(f) coordinates

{t:Fy#Festoyj=2; Vj#1, and f(z) # f(y)},

We now restrict our domain to the S(f)-dimensional cube defined by the coor-
dinates in I, with the rest of the coordinate values fixed identical to x. Notice
that on this smaller cube, the value that f takes at the vertex x is different
from its value at all the S(f) neighboring vertices (i.e, points that differ on
exactly one coordinate from z).

Therefore, to complete the proof, it is sufficient to show that when a function
f over the vertices of {1, —1}™ takes the value 41 at one vertex and the value
—1 at all the neighboring vertices, then any ¢ approximating f with ||g— f||e <
1/3 must have degree at least /m/6.

To this end, we take the well-known “univariatization” of f by defining:
fler+ ... 4 zm):=1/m! Z fm(z1. . 2m))).

It is not hard to see that f* has degree bounded by the degree of f and further-
more, for any p such that ||f — p||. < 1/3, the corresponding univariatization
p* also satisfies ||f* — p*||.o < 1/3, and the degree of p* is bounded by the
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degree of p. It therefore suffices to show that any p* that approximates f* with
[|/* = P*|leo < 1/3 must have degree at least Q(y/m).

To achieve this, first shrink the domain of f* and p* from [—m, m] to [—1, 1].
Then, since by assumption f*(—1) = =1, f*(=14+2/m) = +1, p*(—1) < =2/3,
and p*(—1+2/m) > 42/3, it follows by the mean value theorem that there
must exist a z : —1 < z < —1 4 2/m such that the derivative |p*l(z)| >
4n /6. Furthermore, notice that maz [p*(x)| < 4/3 over all the points = in
the set J =45 {—1,-1 +2/m,...,0,1 — 2/m,1}. Now we apply the most
straightforward version of the univariate Bernstein-Markov bound relating the
117" [|o, and ||p*]|se over the interval [—1,1]:

[1p" [ < deg?(p™) [P |cc.
Now, by the mean value theorem, ||p*||., over [—1, 1] can be bounded above by
maz [p"(2)] + ||| /7.

Thus /
Il

A8 (07) 2 MGy T )] + 7Tl )

Now, since ||p*'||o/n > 4/6, and ma |p*(z)| < 4/3, we obtain that deg(p*) >
S
\/n/6, which completes the proof. O

Certain multivariate extensions of Bernstein-Markov, and Jackson theo-
rems exist in the literature, but their usefulness for Boolean approximation
is yet to be investigated, see, for example, [54]. In general, while there is a
well-grounded and classical univariate approximation theory, multivariate ap-
proximation techniques are still very much under development, see for example

[16], and [17].

4. Interpolation

We prove two general results, both of which are modified versions of the dual-
ity principle. The first equates a question of approximability in the co-norm
to a question of interpolability, and the second equates non-interpolability to
interpolability. Applications are given for both results.

THEOREM 4.1. Let X be any subspace of functions (from {—1,1}" to R ), and
let f € X1, The following statements are equivalent.
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e No g € X has the the same sign as f on a set S of more than m points.
e For every set S of at most 2" — m points, there is a function h € X+ \ f

(which is also (X U f)*) that interpolates f on S, and is bounded above by f
elsewhere.

REMARK 4.2. Notice that the last sentence states that h < f; it may not hold
that [[h[|cc < [[f]]oo-

PrROOF. The first statement is equivalent, by duality, to the following. For
any set S of greater than m points, there is a function % in XZ such that
If(z) — h(z)] < 1 for x € S, and h(z) is not identically zero on S. Denoting
the complement of (points outside) S to be S, notice that X = {g € X* :
g =0 on S}. Therefore, the first statement can be restated as follows: for any
set S of < 2" — m points, there is a function h € X* such that . =0 on S, A
is not identically 0 on S and sign(f) = sign(h) whenever h # 0.

Now let A = hy + hy, where by € X1\ f and h, is some scalar multiple of
f. Note that hy and hy are orthogonal. Also, hy cannot be a negative multiple
of f, because then h; would have the same sign as feverywhere that it is non-
zero (at least at one point), which would imply that < Ay, f >%# 0. But Ay
was chosen to be orthogonal to f, which creates a contradiction. Thus ks is a
positive multiple of f, say ¢* f. Now the statement in the previous paragraph is

B 12
equivalent to the following: for any set S of < > (Z) points, there is a function
k=0

—hy/e € X1\ f that is f on S, and is at most f elsewhere, which is exactly
the statement of the theorem. O

(O As a straightforward application of the above result, we give a statement
of non-interpolability that is equivalent to a non approximability result of [3],
which was proven using a standard univariate approximation technique (see
discussion in Subsection 3.3 on univariate techniques).

THEOREM 4.3. The following statements are equivalent.

e For any polynomial g over {1,—1}" of degree at most d, (i.e, g € 1ly),
(ntd41)/2
sign(g) = sign(Parity) on a set S of at most Y. (Z) points.
k=0

B 12
e Given any set S of at most ) (Z) points, there is a function h € 1I;\ {One}
k=0

that is equal to 1 (interpolates the constant function One) on all points in S
and is at most One elsewhere.
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PrROOF.  After a direct application of the above theorem 4.1, with f taken
as Parity, and X = Ily, use the symmetry of the Boolean functions in F3» to
replace Parity by One and 113 by 11,,_4_1. O

O

Next, we prove a general result that transforms a statement of non-interpolability
to a statement of interpolability.

THEOREM 4.4. Let X be a subspace of the usual space of functions and let f
be any function in X1. The following statements are equivalent.

e No function in X of degree < d interpolates f on a set S of more than m
points

e For every set S of < 2" — m points, there is a function in X+ \ f, that
interpolates f on S.

PROOF. Take an orthonormal basis B = By U By U f, where B; is an
orthonormal basis for X, and Bs is an orthonormal basis for X1 \ f. Let H
be the matrix whose rows b correspond to functions in B and whose columns
x correspond to points € {—1,1}". Thus, pairs of rows are orthogonal pairs
in R?", which makes H an orthogonal matrix with HTH = I, a fact that will
be constantly used. The entry H, . is simply b(z). We will denote by B the
set of rows b € By, and by By the set of rows b € By;. We will refer to the
remaining row as f. For any set S of columns and a set M of rows, let Hy; s be
the submatrix of H formed by those rows and columns. Furthermore, denote
by fs the frow vector restricted to the set S of columns. It is not hard to see
that the statement we want to prove is the following.

VS |S| > m, fs & span(rows of Hp, s) <

VS |8 < 2" —m, fsr € span(rows of Hp, s) A

We will show that assuming either the LHS of A is true and the RHS is
false, or that the LHS is false and the RHS is true lead to contradictions.

First, assume the LHS is true and the RHS is false. I.e, there is some
set S of columns such that fs € span(rows of Hp, s), and denoting by S’ the
remaining rows, fs & span(rows of Hp, s/). These imply that

[y J* [os] = [gm]
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has a non-zero solution for g5 and and that

L o) lo] = [gma]

has a non-zero solution for gg. Here, 0" denotes a n x 1 column vector of 0’s.
This, in turn, implies that

s Is NEd 0l 1
et = ) =

has a non-zero solution for gs and that

1
nefgs) = o ]
By,8'9s

has a non-zero solution for gs,. Multiplying both sides of the the two equations
above, we get
1 T gS'
[gs O]« HTH * [O|S|] = 0.
But since H is an orthogonal matrix, H' H = I, and thus we obtain a
contradiction.

Next, we assume that the LHS of A is false and that the RHS is true.
Le, there is some set S of columns such that fs € span(rows of Hp, s), and
denoting by S’ the remaining rows, fsr € span(rows of Hp, /). Let H; be the
i*" row of H; we can say that there are weights a; such that

S|
f +i€z‘; a;H; = [(i|5| ]

and IS
f—}-iez‘; a;H; = [0|S| ]

Here the #’s represent indeterminates. Now, multiplying both sides of the above
two equations, all terms on the left except for f7f = 1 vanish, because of the
orthogonality of H, and the right side is 0, causing a contradiction. O

(O To apply this result, we turn to a well-known theorem of [66]. For the
moment, we view the domain ({1,—1}") as subsets of IF; (or a vector space
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over any finite field IF), with with -1 mapping to 1y, and | mapping to O, , and
similarly the range {1, —1} of Boolean functions is also viewed as {Op,, 1y, }.
Thus the function Parity(z) evaluates to 1y, if |z| is odd, and to O, otherwise.

We denote by II3 the space of polynomials of degree d, over {OF,, l¥, }".
The well-known result of [66] is the following.

THEOREM 4.5. The Parity function is interpolable from Hf/ﬁ on at most 27714

o(2") points.

In the terminology used by [66], this is equivalent to saying that Parity is
“Ug,-complete”. The complementary result in [66] concerns the “nearly-IFs-
easiness” of the functions circuits computed by constant depth, subexponential
size circuits of V, A and — gates; this notion captures the interpolability of
such functions on large domains by low degree polynomials. The two results
together provide a lower bound of 2'** on the size of ACP[d] circuits com-
puting Parity. To obtain finer approximation bounds such as those obtained
by using the switching lemma [30], [66] suggests the open problem of using
R instead of finite fields such as IF3, formulating analogous notions such as
“Uf-completeness,” and “nearly-R-easiness.” and obtaining analogous results
based on these notions.

REMARK 4.6. We now switch back to our prevailing custom of viewing {1, —1}
as a subset of R and of ¥y, the Parity function as taking values in {1, —1},
and polynomials as being over R".

Intuitively, “nearly-R-easiness” would imply a form of approximability over
large domains by low degree polynomials over R™ with respect to a chosen norm.
Similarly, “Uf-completeness” would mean a form of non approximability over
large domains by low degree polynomials.

In this sense, a version of the U} -completeness of Parity has been proven by
the result of [3] in 4.3. However, no complementary result has been established
for the “nearly-R-easiness” of constant depth subexponential size circuits of V,
A and — gates. Therefore a stronger version of Uj-completeness for Parity is
desirable, such as the the following conjecture by [45], since this would make
it sufficient to prove a weaker “nearly-R-easiness” result.

CONJECTURE 4.7. Any polynomial that interpolates Parity on more than 27!
points must have degree Q(\/n).

Now Theorem 4.4 shows that proving the above conjecture is equivalent to
proving one of two statements of interpolability.
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THEOREM 4.8. The above conjecture is equivalent to the following statements.

e For every subdomain of < 2"~ points in {1,—1}", there is a polynomial
in HOL(\/E) \ Parity that interpolates Parily on the subdomain.

e For every subdomain of < 2"~1 points, there is a polynomial in H'/Jz_—o(\/ﬁ\ One
that is constant on the subdomain.

PrROOF.  The former sentence is a corollary of Theorem 4.4 and the latter
sentence is equivalent to the former because of the symmetries of the the cube
of Boolean functions in Fon. O

O

5. One-sided approximation

As the main general result of this section, Theorem 5.6 we prove a version of
the duality principle involving the notion of one-sided approximation [18]. As
one application, we obtain a systematic method of characterizing distributions
that look uniform to (and hence “fool”) any function that is approximable from
a given space of functions.

The first general result follows directly from Theorem 3.1, and leads us to
consider a slightly strengthened version of a conjecture of [47]. The main result,
Theorem 5.6, is motivated by showing that this modified conjecture is false.

THEOREM 5.1. If a Boolean function f has an approximation g in a subspace
X, such that ||f — g||e < €, then for any positivel € (X \ One)t with ||l]|; = 1,

| Z1(2)f(z) = 1/2" £ f(=)] < 2.

PROOF. Notice that I* =1 —||l||;/2" € X*, with ||I*]|; < 2. Then, by 3.1,
| > *(z) f(x)] < 2¢, which completes the proof. O

(O In general, the above theorem shows that if every function in a complexity
class C is approximable in the oo-norm to within, say 1/n, from a subspace X,
then any positive A € (X \ One)* forms a distribution that looks uniform to
(and hence fools) every function in C'. Furthermore, any function A € Xt can
be expressed as h* + c.One, where h* is positive and in (X \ One)*. Clearly
h is hard for C' by 3.1, and h* gives a distribution that fools every function
in . Such distributions that are, in addition, easy to generate, provide a
large class of natural pseudorandom generators for all computations in C', and
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highlights the close relationship between hardness and pseudorandomness (see,
for example, [50]). We will see in Section 7 that these distributions also serve
as sample sets for derandomizing learning algorithms for the class C. O

() Next, we consider the special case where the class C' above is AC°. The
conjecture of [47] states that all polylog-wise independent distributions fool
AC® functions. This conjecture has not been settled, although partial positive
results appear in [64]. It is not hard to see (the reader is referred to [64]) that
an e-wise independent distribution [ is nothing but a positive function [ with
|l|]|; = 1 and [ € (I, \ One)*. Thus, the conjecture can be restated as follows.

CONJECTURE 5.2. [47] For all functions f computed by an AC°[d] circuit of
size s(n), there is an e that depends only on s and d and is polylogarithmic

in n (if s is polynomial in n and d is a constant), such that for every positive
function [ € TIF U {One} with |||, = 1,

> 1) f(z) = 1/2" 3 f(2)] < 1/n. I

To settle this conjecture, using Theorem 5.1, it would be sufficient to show
that all functions f in AC® have an approximation g € II., where e is an
appropriate polylogarithm in n, such that || f — ¢||c < 1/n. Unfortunately, the
latter statement is false, as is shown below.

Vi V/n
FacT 5.3. Let RO[2](z) := V A ;. Then an function g such that ||f —

i=135=1
9llee < 1/3 must have degree at least Q(n1/4).

PrOOF. The proof of Fact 5.3 follows from 3.7 and the fact that the function
RO[2] has sensitivity > y/n, for example, at the minterms and maxterms. O

Since the converse of Theorem 5.1 does not hold, the above non approx-
imability result for AC° functions does not falsify the conjecture 5.2. However,
using a more direct application of 3.1 we observe below that even a slight
strengthening of the conjecture 5.2 is false.

REMARK 5.4. To fully understand the relationship between 5.2 and the ob-
servation below, notice that the function [* defined as [*(x) := I(z) — 1/2" -
where [ is the function in 5.2 - is in I}, since I+ and span(One) are orthogonal

spaces. Thus the quantity in 5.2 (I) becomes | Y. I*(z) f(x)|, with ||I*||: < 2,

and [* € TIL, but I* need not be positive. Note also that some scalar multiple
of each function in T} is obtainable in this way, however, its norm might be
arbitrarily small.
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OBSERVATION 5.5. The following stronger version of 5.2 is false. “For all func-
tions f computed by an AC°[d] circuit of size s(n), there is an e as in 5.2 such

that for every function I* € TIX with ||I*||s <2, | F(2)f(z)] < 1/n.”

PROOF. Let f be a Boolean function. If for every function * € TI} with
N < 1, | X F(2) f(z)] < 1/2n, if and only if by 3.1, there is a function g € T,

xr
such that ||f —¢||ec < 1/2n. But since e is at most polylog(n), Fact 5.3 provides
the required contradiction.

This suggests that in order to settle the [47] conjecture, one should take
advantage of the special properties of the positive bounded functions [ € I+ U
One. In other words, we would like to prove a stronger version of 5.1, with a
weaker approximability hypothesis, but with the same consequence. ()

The above discussion motivates our next general result on one-sided approxi-
mation. This result is also a modification of the duality principle. See [18].

THEOREM 5.6.

sup [ (@) f(x) = 1/2" 3 f(y)l Q1)

lGHé‘UOne
il =104 ve

= b Jsup(f(z) = 1/2" 3 f(y) = g(x))] (Q2)

g€ll.\ One

g€lle\One
g>f—f(0m)

=t 2 Y (o)l ©3)
T

REMARK 5.7. The positive distribution [ above, which can be viewed as a pos-
itive linear functional that annihilates all but the constant function in Il,.. Find-
ing such functionals is called the “moment problem,” and is studied extensively
in [36], yielding methods for efficiently generating distributions [ satisfying the
above conditions, which is useful in obtaining pseudorandom generators for
randomized computations based on f. The paper [18] takes the dual approach
and gives methods based on quadrature formulas for finding the one-sided ap-
proximation ¢.

PrOOF. The first equivalence follows directly from the same argument as in
the proof of the duality result 3.1, and does not use the orthogonality of I+
and One. We will show that ()3 > @1 and Q2 > Q3.
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To show the former, denote by f; the function f —1/2" 3", f(y), and notice
that for all ¢ > fi, if [ is positive, then

Z l(z)g1(z) > Z l(z)fi()

Furthermore, if ||I||; = 1, [ positive, [ € TIX U One, and ¢; € TI., then it is not
hard to see

le I——Il/Z”EOTw |—|1/2”Eg1

It therefore follows that for all ¢, € T, with g; > fi, and all [ € TIX U One with
I|ll||1 = 1, [ positive,

Zz <|1/2“Zg1

thus showing that Q3 > Q1. )
To show that the Q2 > ()3, again denote f — f(0") by f; and assume to the
contrary that there is a ¢* € II. \ One such that for all ¢; € II, with ¢g; > fi,

|1/2”291 ) > |sup(fi(z) = g"(2))].

We derive a contradiction to this assumption as follows: the function ¢, € II.

defined as
92:=g" +sup(fi(z) — g*(2))

satisfies g; > f1 and
1/2"3 galx) = 1/2”29 v) +sup(fi(z) = g7(2));

however, 1/2" 3" g*(x) = 1/2" 3~ One(z)g*(z) equals 0 since g* is orthogonal to

One, thereby resulting in a contradiction. O

O Tt follows from 5.6 that the conjecture in [47] is equivalent to the follow-
ing statement: for every function f computed by AC°[d] circuits of a fixed
polynomial size, and for e being chosen as an appropriate polylogarithm, ei-
ther there is a function g of degree at most e, with ¢ > [ — f(O”) and
§(0™)| < 1/n, or that there is a function g of degree at most e with ¢(0") =0,

and [ sup(f(z) = f(0") = g(e))| < 1/n.
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On the other hand, to show that the conjecture in [47] is false, it is sufficient
to extend 5.5 in the following manner. For the case of the function RO[2]
in 5.3, Fact 3.1 establishes the existence of a function [, with ||/||; < 1 and
I € 1IY,, such that |3 I(z)r(z)| > 1/2n. The only hitch is that this proof is

not constructive. If [ can be constructed, then to disprove the [47] conjecture, it
is sufficient to find a positive function in Him U One with a small 1-norm, which
approximates [ well. In particular, such functions can easily be constructed if [
satisfies the condition that [2" igf I[(x)] is bounded above by o(n): simply take

I* to be [+ inf [(x) and normalize to get the required positive function I*/||I*||;
in IT%,,, U One, for which | 32 1*(x) f(x)/||I*][ —1/2" X f(x)] is larger than 1/n.
O T

6. Uniform approximation

This section contains general results, methods and complexity-theoretic ap-
plications that involve the approximability of Boolean functions in the ||.||s
norm from various spaces. We also consider approximability in the ||.||z norm
in those cases where it is useful in studying ||.||sc norm approximability. We re-
peat that the treatment is restricted to inherently multivariate methods rather
than univariate approximation theoretic techniques such as those employed in
[51] [52], and to some extent, [3], and [47], some of which were discussed in
Subsection 3.3.

This section is divided into 4 subsections. The first shows that non ap-
proximability can be reduced to approximability using duality relationships;
the second discusses methods for establishing approximability; the third deals
with the transitive nature of approximability relationships, which can be used
to establish new (non)approximability results from already established ones;
the fourth discusses how showing non approximability in the oco-norm natu-
rally lends itself to decomposition and divide-and-conquer paradigms which
allows non approximability problems to be reduced, using analytic techiques,
into their combinatrial constituents; and finally, the fifth shows that any of the
non approximability methods in the previous four subsections can be used to
establish small correlation between functions, which, in turn, is an essential
ingredient for showing certain non approximability results.

Each subsection is, similar to the earlier sections, organized as follows.
Following each theorem containing a result of a general nature, complexity-
theoretic applications of the result are given as short remarks enclosed by ()’s.
These include earlier results from the literature that were proved using different
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methods, as well as new observations. Finally, at the end of the discussion in
each subsection, applications requiring longer exposition are presented. These
employ the general results discussed so far, and include new results, as well as
a few alternate proofs of old results.

6.1. Nonapproximability to approximability. The first theorem enumer-
ates a number of systematic and general results showing that a Boolean func-
tion f is not approximable in the ||.||c norm from any space spanned by a
small number of Boolean functions from a class B, when it is known that f
differs from all the functions in B with respect to some natural characteristic.
In addition, some of the results assume various other realistic properties of f
and the functions in B. The theorem applies duality relationships to convert a
statement of non approximability of a Boolean function in the ||.||. from the
span of a small number of basis functions from a given class into a statement
of approximability. The latter two statements below treat non approximability
by functions with additional properties.

NOTE. As noted in Section 2, all approximating functions ¢ from the span of
a set {g;} are assumed to be of the form ¢ = Y, a;g;, where the a; € @ and

THEOREM 6.1. Let f be a Boolean function and B a set of Boolean functions,
and let M C B consist of independent Boolean functions.

(1) The following are equivalent.
e There does not exist an approximation g € span(M) with sign(f) =
sign(g).
e There exists an approximation | € span(M)* with ||l||; > 0 and
sign(f(z)) = sign(l(z)), whenever l(z) # 0.
o There exists a distribution R such that Y f(z)h(z)R(z) = 0 for all

h € span(M).

(2) The following are equivalent.

e There does not exist an approximation g € span(M) with sign(f) =
sign(g), and € < |g(z)| < 1 everywhere. This happens when the coeffi-
cients in the approximation satisfy not only Y, |a;| < 1, but also the a;
are rationals with denominators bounded by 1/¢; therefore the statement
implies that f is realizable as an unweighted threshold of functions in M,
if € is chosen to be, say, 1/|M|. We will call such a function g as a close
approximation to f, or an approximation within 1 — ¢ to f.

e There exists an approximation [ close to span(M)* with ||l||; > 0 and
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[|f—=1||so < 1. By “close to span(M)*” we mean that | 3", l(x)h(z)|/||l||1 <
€, for all h € M.
e There exists a distribution R such that | < h, f > |r < eforallh € M.

(3) There does not exist an approximation g € span(M) with |y f(x)g(x)| >

e (if, in addition, sign(f) = sign(g), then ||g||s > € would be sufficient,
since then |y f(x)g(x)| > |lgll1 > ||g||2; we will call such a function ¢ as
a high energy approximation to f; notice that a close approximation is
a high energy approximation)

if

for every subset S C {—1,1}" with |S| > 2"¢, there exists a distribution
R over S such that | < f,h > |g < eforallhe M,

or if

forallh e M, | < f,h>]|<e.

PrOOF.  The result (1) follows directly from 3.3. The equivalence of the
latter two statements is simply due to the Booleanness of f.

For (2), the equivalence of the latter 2 statements is straightforward. For
the first of the two statements, The ‘<’ direction is shown as follows: if
g 1s a close approximation to f, then for all distributions R, it holds that

| Z R(z)g(z)f(x)] > e. Since the coefficients of the linear combination Y. aph =
heM

< 1, there must exist a Boolean function h € M such that

g satlsfy E lan,

| < foh > |R > €. The ‘=’ direction is shown as follows: the hypothesis is equiv-
alent to the non-existence of a function g in span(M) with ||f — ¢|lec < 1 — €.
This is equivalent, by 3.1, to the existence of [; € span(M)* such that |||, < 1
and | Y li(x)f(z)] > 1 —e. Let S be the subdomain where sign(ly) # sign(f),

and [y # 0. Since f is Boolean, ||li]|1,s < €¢/2. Construct the function [ by
setting /; to 0 on S, and normalizing to get ||/||; = 1. Now, [ is no longer in
span(M)*, i.e, 3" h(z)l(x) is no longer 0 for all A € M, but since the functions

h € M are Boolean, clearly, | > h(z)l(z)| < €/(2(1 —¢/2)) < e, since e < 1, and
since | Y- h(z)li(x)] = 0.

For (3), the last of the 2 hypotheses clearly implies the non-existence of a

high-energy approximation, since the linear combination Y aph = g satisfies
heM

> lan| = 1, and if ¢ is a high-energy approximation, then |Zg( Vf(z)| > e

heM

The first of the 2 hypotheses implies non approximability because every high-

energy approximation ¢g to f |> g(z)f(x)| > € is a close approximation to f
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over at least an e fraction of the domain, hence (2) can be applied over this
domain.

REMARK 6.2. Notice that (1) does not use the Boolean-ness of the basis set
M, although (2) and (3) do. In fact, (1) depends only on the space span(M),
whereas the concepts of close and high energy approximation are specific to a
particular basis M. This generates an open question as to whether a stronger
result can be proven instead of (1), using the Boolean-ness of the basis set M.

The statement (1) is equivalent to a notion of orthogonality with respect to
the ||.||cc norm, according to which a function f is “orthogonal” to a space
span(M), if for every function g € span(M), ||f + ¢|lco < ||f]|co. This reduces
to the usual orthogonality in the case of the ||.||2 norm (see [62] for an succinct
treatment of ||.||cc norm, or uniform approximation). In addition, we will see
in Section 7 that the |M| + 1 points forming the support of the function A
in span(M)*, together with the sign of f at these points form an “extremal
signature” that characterizes f, i.e, they constitute points where |(f — ¢)(z)|
attains its maximum (i.e, ||f — ¢||w), when ¢ is a best approximation to f.

(O Almost all the threshold complexity lower bounds, for example, [33], [41],
[44], [26], known so far concerning non approximability of a function f by from
the span of small number of LT} or other functions involve a restriction on the
approximation: the the linear combinations that form the approximant have
polynomially bounded coefficients. In other words, these lower bounds apply
only to circuits with an unweighted threshold gate at the top. These lower
bounds all use the ‘correlation/discriminator lemma,’ proved in [33] and [26],
which is nothing but 6.1(2). To complete such a lower bound proof, one then
needs to show that the scalar product | < f, h > | is small for each h € M, over
an appropriate distribution R. The methods for bounding this scalar product
have been phrased in terms of communication complexity (for example [26]) and
“variation rank” (for example [44]), but most of these also reduce to arguments
based on duality and simple norm relationships for Boolean functions as we

shall see in Theorems 6.12 and 6.22. ()

(O The only two non approximability results without the above restriction are
the following: the result of [23] on the non approximability of Parity by few
functions computable by {A,V, —}- circuits of a fixed polynomial size and con-
stant depth; and related results of [43], for example, on the non approximability
of an AC°[3] function by few And functions and the result of [42] on the non
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approximability of an AC°[3] function by few mod r functions (which can be
viewed as monomials over the reals, or 7ZZ5 characters; in fact, the result applies
to ZZ characters, for any r). Both papers use straightforward duality from 6.1
(1) as the main technique - although it is not stated as such. The former paper
uses 6.1 (1) in conjunction with the switching lemma of [30]. The later paper
“divides” the problem into “pieces”, as will be discussed in Observation 6.14,
and uses 6.1 (1) to “conquer” the pieces.

A quote from the latter paper [42] states: “Previous lower bound results on
threshold representations are based on the discriminator method, a geometric
method, a method based on probabilistic communication complexity, and a
spectral theoretic method for orthogonal bases.”

In fact, Theorem 6.1, Theorem 6.12, Observation 6.14, and Theorem 6.22
show that the main analytic content of all three methods is straightforward
duality, and simple norm relationships for Boolean functions. ()

Theorem 6.1 (3) seems, on the surface, to be cumbersome to use for proving
non approximability results, since it would involve proving a sweeping universal
statement, and furthermore the applicability seems questionable since the con-
ditions on the approximation seem too strong. However, the following theorem
motivates by giving a natural situation under which the statement of Theorem

6.1 (3) is useful.

THEOREM 6.3. Let f be a Boolean function and B a set of Boolean functions,
and let M C B consist of orthonormal Boolean functions. Any approximation
g € span(M) with sign(f) = sign(g), 9 = X pem arh, and > pepr lan] < 1, is in
fact a high energy approximation satistying ||g||l1 = X f(x)g(x) > 1/|M]|.

PrROOF. We simply show that any function ¢, which is a linear combination
as in the theorem, satisfies ||g||; > 1/|M]|, using the fact that the functions
in M are orthonormal. If, in addition, sign(f) = sign(g), then it follows that
| > f(z)g(x)] > 1/| M|, since f is Boolean.

Since M forms an orthonormal set,

3" ai =" g*x) =2"|gl)3

heM z

Assuming without loss that Y~ |ax| = 1, it follows that
heM

> ap > 1/|M]|,

heM
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and hence 2"||g||3 > 1/|M|. Moreover, the functions % are Boolean, and there-
fore ||g|leo < 1, since Y |ap| = 1; thus
heM

llglls = 2"lgll; = 1/

M].

(O Theorem 6.3, together with Theorem 6.1 (3) directly implies the “spec-
tral method” of [15] that the number of Parities or monomials, or any other
orthonormal set needed to approximate a function exceeds the inverse of its
maximum Fourier coefficient, or respectively, the maximum scalar product of
the function with an element of the orthonormal set. Le, PT; C PL.'. O

The next theorem provides natural conditions which imply non approximability
through Theorem 6.1 (1). Intuitively the theorem states that if f|y+ behaves
like f, then then f is not approximable by the span of functions in M.

THEOREM 6.4. Let f be Boolean and M be a set of Boolean functions. If
f & X and ||f|x]||ec <1 then f is not approximable in the oo norm from X,
i.e, there is no g € X, with the same sign as f.

PrROOF. First split f into two parts as f = f|x+ f|x+. Since f & X, it follows
that f|x. is not identically 0. Furthermore, since f is Boolean, ||f|x||o < 1

if and only if f|x+ has the same sign as f where ever non-zero. The theorem
then follows from 6.1(1). O

Is the converse of Theorem 6.4 true? The answer is no. In other words, it could
be that f is not approximable from X and yet f|x.1 does not behave like f.
However, a version of the converse does hold, thereby giving another equivalent
condition to non approximability, via Theorem 6.1 (1).

FacT 6.5. We use f|sx to denote the projection of fs on Xg. Notice that this
is different from taking the projection f|x and then restricting it to S. In other
words, as mentioned in the background section, the space X% is not the same
as taking X1 and restricting to S. The following are equivalent.

e There is a nonempty subdomain S with || f|sx||ee.s < 1

o There is no g € X, with the same sign as f.

PROOF.  For the forward direction, define [ € X1 to be 0 outside S, and
f|XSl = fs— flsx on S. Since flsx(x) <1 for all z € S, it follows that on its
support, [ has the same sign as f. Now apply 6.1(1).
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For the reverse direction, we use a geometric argument to find the set S*
such that f|X|;* = fs — fls+.x has the same sign as f where ever non-zero.

Let Cy be a cone or orthant in Fyn - viewed as R?" - and given by {g :
sign(g) = sign(f)}. Notice that each facet of this cone is also a cone that
contains exactly those functions that are 0 outside some subdomain S, and
are either 0 or have the same sign as f on S. The entire cone Cy corresponds
to S being empty. So we will denote the facet corresponding to subdomain
S as Cys. Now X1 is a subspace that satisfies at least one of the following
properties.

(a) it completely contains some proper facet (of at least one lower dimension)
Cf,s of Cf,

(b) it cuts through a proper facet Cy s of Cy, or

(c) it is completely contained in the subspace formed by extending some proper
facet Cy g of Cy to all orthants, i.e, the subspace containing exactly all functions
that are 0 outside S.

In case (a), we simply choose S* = S. Clearly, f|sx x = 0 and we are done.
In cases (b) and (c), we continue this process on a smaller cone C g, starting
with the function fs instead of f, and the subspace X% instead of X. For the
base case, when |S| = 2, in cases (b) and (c), it is easy to see that fs — fl|sx
does in fact have the same sign as fs. O

One situation when 6.4 is applicable is if X has a Boolean orthonormal

basis M and | < f,¢g > | < 1/
ity, flx = Y. < f,¢g > ¢, and since the g are Boolean and the quantities
geEM

| < f,g > | are small we obtain that ||f|x|lcc < 1. Unfortunately, under
this situation, 6.4 is not particularly useful in the sense that with these strong

M| for ¢ € M. Because, by orthonormal-

conditions, the non approximability conclusion of the theorem can be directly
obtained using Theorem 6.3 and Theorem 6.1 (3). However, 6.4 is applicable
in some situations where Theorem 6.3 and Theorem 6.1 (3) cannot be used.
The next two theorems consider a natural situation where M does not consist
of orthonormal functions, and yet 6.4 (6.5) can be applied to show non approx-
imability. Here, all the functions in B, when viewed as vectors in Fjn, form
vector bundles, such that all the vectors in any one bundle are close to each
other (have large scalar product), but any two bundles are nearly orthogonal
to each other.

THEOREM 6.6. Ifall pairs of functions g;, g; in the class B of Boolean functions
satisfy either | < ¢;,9;, > | < 6 or | < gi,9; > | > 1 =6, for 6 being typically
significantly less than 1/2, and furthermore, for a given Boolean function f,
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| < f,9: > | < e forallg; € B, thenfor M C B with|M| < min{1/8'/3 1/¢'/?},
there is no g € span(M) with the same sign as f.

PROOF. We first construct a subdomain S and show that f|sp(m(M)é_ =
Is = fls,span(ar) has the same sign as fs. Theorem 6.4 or 6.1(1) then completes
the proof. The subdomain is constructed by first dividing M into bundles
such that for pairs ¢;,g; in each bundle, | < ¢;,9;, > | > 1 — 6 and for g;
and g; in different bundles, | < g¢;,9; > | < 4. For each bundle Mj, we find
a representative function g € M} and remove from the S all points where
gr # gi, for some g; € My. The subdomain S thus constructed is no less than
1 — |M]|é of the entire domain; therefore, the values | < f,¢; >s | are still no
larger than (e + |M|6)/(1 — |M]é), and the values | < g;,¢9; >s | are either
1, i.e, gis = gjs, or is at most (6 + |M|6)/(1 — |M|6), for g;,g9; € M. le,
gi.s and g; s are either identical or almost orthogonal. Furthermore, ||g;||2.s is
still 1, since the g; are Boolean. Intuitively, the function 3° < f,¢; >s ¢gis is
k3

a reasonable approximation to the true projection fls span(ar), since the g; are
almost orthonormal over S. Furthermore,

(¢ + [M]é)
(1= [M[5)

||Z<fagi >sgi,s||oo,s§2|<f,gi >q | < M,
1 1

which is at most 1 provided |M| is sufficiently small as in the statement of the
theorem.

To find the true projection, we find orthonormal basis functions ¢’ for
span(M)|s, from the functions g¢;|s, using, for example, Gram-Schmidt or-
thonormalization. We omit the exact calculations. Basically, since g¢; g already
forms a close-to-orthonormal basis, the orthonormalization does not blow-up
either the co-norm of the functions ¢¥, or the values | < f,¢* >s |, and thus

the projection flssunvy = 2. < f,97 >s g7 still continues to have a small

M| is at most the bound given in the theorem. O

oo-norm provided

REMARK 6.7. In general, by 6.1(3), and 6.4, it follows that if a distribution D
can be found such that every pair of distinct Boolean functions g; and g¢; in a
set M are almost orthonormal with respect to <,>p, and if < f,¢; >p is small
for every g; € M, then there is no approximation from span(M) to f with the
same sign.

(O We now turn to a specific application. In the next theorem, we use 6.4 to
provide an alternative proof of the non approximability result that AC°[3] €
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PTy, [42]. In this case, while M does consist of orthonormal functions, the
scalar product of f with some functions in M is fairly large, and hence Theorem
6.1 (3) does not apply. The proof of Theorem 6.8 also uses spectral methods
for orthogonal bases which were eschewed in [42] as not being applicable for
this purpose. Furthermore, duality is the primary ingredient, since Theorem
6.4 uses only Theorem 6.1 (1).

I3

Lol
THEOREM 6.8. If the AC°[3] function flx): =V A V zijr, where n = [1153
J
1

=1 j=1k=

and l; := ly := I3 := has an approximant g € span(M) where M consists of
parity functions xs, with ||f — g||ee < 1, then |M| > Q(2"™), for any constant
c <1

PrROOF. By 6.4, it is sufficient to show that for all sets M consisting of parity
functions xs, || flspan(ar)||sc < 1, unless | M| > Q(27°), for constant ¢ < 1. Since

1 Flspaneanlloe =11 X2 Fs)xslle < 32 1F ()],

xXsEM xsEM

we will simply bound this last quantity.

Set the quantities ¢; := 1/2", g5 :== (1 — ¢1)" and g3 := (1 — ¢2)". Tt is
not hard to see (see [65]) that |f(z)] is largest for |f(17)] = |1 — 2¢s| and for
x such that z;;, = 1 except for a single value of ¢ and j. In the latter case,

|f(:c)| < 2¢19293/((1 — ¢1)(1 — ¢2)). Since
S 1F(8)] € 2¢5 — 1+ M|+ 2102/ (1 — q1)q3/(1 — q2)- I

XsEM

Now the conditions on |M] corresponding to > |f(s)] < 1 depend on
XSEM

whether
(i) gs > 1/2 or
(ii) g5 < 1/2.

Now, in case (i), 3 |f(s)| is bounded by 1 as long as
XsEM

M < (1/g =1)(1/¢2 = 1)(1/g5 = 1);
and in case (ii), > |f(3)| is bounded by 1 as long as
M

Xs€
(M| < (/g = 1)(1/gq2 = 1);
We choose case (i), and ignore the latter. Now for any ¢ < 1, I3, (3,15 can be
chosen such that both ¢z > 1/2, and (1/q; — 1)(1/g2 — 1)(1/gz — 1) > Q(2™).
which completes the proof. O

O
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6.2. Approximability. Approximability results are useful for showing non
approximability, via 6.1. They also permit us to build on previous non ap-
proximability results by using the transitive nature of approximation, as will
be seen in the next section. They are needed to show complexity lower bounds
using the framework A: in order to conclude from the non approximability of
f from a space of functions, that a function f is not in a class (', one needs
to show that every function in the class C' is approximable from the space.
They are of independent interest in proving complexity upper bounds and are
equivalent to upper bounds for threshold circuit complexity. In fact, as will
be seen in the next subsection, approximability results also result in communi-
cation complexity upper bounds. (However, as mentioned in Section 1, we do
not concentrate on obtaining threshold and communication complexity upper
bounds as approximability results.) Finally, constructive approximation results
provide learning algorithms, as will be seen in Section 7

In this section, we discuss the two main techniques that have been used
so far for showing uniform approximability (||.||e-norm approximability from a
space of functions is straightforward, since the best approximation is simply
the projection of the given function onto the space: this is easy to deal with,
if the space has a nice orthonormal basis, and needs adhoc methods otherwise;
furthermore, a close or high energy uniform approximation is automatically a
good 2-norm approximation).

The first technique follows from an investigation of the conditions under
which a converse version of Theorem 6.3 holds, i.e, where the existence of
an approximation with large norm (from an orthonormal basis) implies the
existence of an approximation from a space spanned by only a few of the basis
functions.

THEOREM 6.9. If f is closely approximable by g € span(B), with |g(x)| > 1/m
for all x, where B is an orthonormal basis, then f is closely approximable by
g € span(M) with |g(z)| > 1/m? everywhere, where M C B, and |M| < m?.

(O The proof of the theorem above is along the same lines of the proof of [15].
They showed a special case of the above result, namely that PL; C PTy. ()

The second method uses the fact that upper bounds on communication com-
plexity provide a method of showing approximability from a specific set of
basis functions, namely the functions over {—1,1}" x {—1,1}" that are char-
acteristic functions of cross-products A x B, A, B C {—1,1}". We call these
cross-product functions. The following facts follow directly from the definition
of deterministic and probabilistic communication complexity.
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Fact 6.10. If the deterministic communication complexity of a Boolean func-
tion f is at most log m, then f is exactly interpolated by Y. r;+(m—1), where
i<m

the r; are cross-product functions not including the constant function.

Fact 6.11. If the 1 — é-error probabilistic communication complexity of a

Boolean function f is at most log m, then there is a very close approximation ¢

with the same sign as f, of the form g = Y. a,;r;, where, as usual, ¥ |a;| <1,
<m

<m <
the the r; are cross-product functions, and |g(x)| > 6 everywhere.

() The above facts seem to indicate that non approximability results are
stronger than lower bounds on communication complexity, and hence the lower
bounds can be obtained from non approximability results, but not viceversa.
However, in practice, several known communication complexity lower bounds
such as [33], [26], [32], [38], [56], [25], [29], [4], [24], do yield the correspond-
ing non approximability results that can be directly proven using the duality-
based methods being discussed in this paper although, theoretically, it might
have been easier to obtain such lower bounds by other means than prove non
approximability.

Similarly, not only do upper bounds on communication complexity give
approximability results, but usually, the converse also holds. See, for exam-
ple, [26]. In the next subsection on transitive approximability, we discuss this
relationship in more detail. ()

6.3. Transitive approximability. Here, we give results of the following
form: “f is approximable from the span of a set of m; functions ¢; in some basis
B, and ¢; are all approximable from the span of a set of my “simple” functions
h, then f is approximable from the span of mym, “simple” functions.” These
results will follow directly from 6.1 and 6.3.

Results of this nature are useful for building on previous non approxima-
bility results. For example, a result of the above form, together with the non
approximability of f from the span of mmy simple functions would imply that
one of the approximability hypotheses is false.

Moreover, statements of this type remain meaningful when the word “not
approximable” is replaced by “small scalar product.” This will be used in
Subsection 6.5.

THEOREM 6.12. Let f be a Boolean function, B a set of Boolean functions,
and () a set of “simple” Boolean functions.
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(1)

(2)

(3)

(4)

If

e [ has a high energy approximation g, with |>_, f(z)g(z)| > 6, from the
span of functions in B

and

e every function in B is the linear combination of Boolean functions in
Q), with the sum of the absolute values of the coefficients bounded by m,
then

| < f,h > | > &/m, for some function h € Q.

If

o f has a high energy approximation g from the span of functions in B
with | 52, g(2)f(2)] > e,

and

o for every g € B there is a close approximation h, with the same sign as
g, and in the span of m Boolean functions in @), satisfying |h(z)| > 6 for
all x

then

(i) there is a set of m of functions h* € @), and a subset S consisting
of at least (1 + €)/2 fraction of the domain, such that for every
distribution R over S, | < f,h* > |gr > 6, for at least one of the m
functions h*; and

(ii) | < f,h* > | > e+ 6 — 1, for some h* € Q.
If

e [ has a close approximation ¢ from the span of a set of my functions
gi, (i.e, g has the same sign as f with |g(z)| > 6 for all z, )

and

e cach ¢; has a close approximation h; from the span of a set of my
functions h;;, with |h;(x)| > € for all , and 1 — € < §/my,

then

there is a close approximation h* to f from the span of the mym, resulting
functions h;; € Q with |h*(x)| > €6 for all x.

If

o [ has a close approximation g from the span of my functions g; € B
with with |g(z)| > 6 for all z,

and

e cach g; can be expressed as a linear combination of functions in a set ()
with the sum of the absolute values of the coefficients bounded by ms,
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then

f has a close approximation h*, with |h*(z)| > 6/my everywhere. It
follows from 6.1(2) that for every distribution R, there is a funciton h €
Q) such that < f,h >r> 6/my. Moreover, if () happens to consist of
orthonormal functions, then, by 6.9, f has a close approximation h* from
the span of at most 4m¥m? functions in Q.

(5) If
o [ has a high energy approximation g, with the same sign as f, from
the span of my functions in B with |>_, g(z)f(z)| > ¢,
and
e each function in B has an approximation with the same sign from the
span of my simple functions h € (@),
then
f is approximable on some subset S consisting of at least (1+¢)/2 fraction
of the domain from the span of mymy functions h € Q).

PrOOF.  For (1) (2) and (5), since f has a high energy approximation g €
span(B), by 6.1 (3), there is a function ¢* € B such that |3, f(z)g*(z)| > 6
(1) now follows immediately.

For (2) and (5), notice that since both f and ¢g* are Boolean, f and ¢* must
coincide in sign on at least a (1 + ¢)/2 fraction of the domain. (5) now follows
immediately.

For (2), since ¢* has a close approximation h from the span of m functions
h* € @, (i) follows by 6.1(2). The consequence (ii) follows from the fact that h
is a high energy approximation to ¢* with | >, ¢*(z)h(x)| > 6. Thus we obtain
the existence of 3 Boolean functions f, ¢* and h* such that

< f,g">>¢ and < g",h" >> 6.

Therefore < f,h* >> e+ 6 — 1.

For (3), we use the fact that the functions g; have a very close approximation
h; from the span of my functions h;;, since 1 — ¢ < §/my. Now, to form the
required close approximation to f from the span of the m;m; functions h;; in
(), modify ¢ as follows: simply replace each of the ¢;’s that form ¢, with the
corresponding approximation h;.

For (4), choose the close approximation h* to f as g/ms. O

(0 6.12 (1) and (2) form the backbone of the lower bounds (non approximability
results) of [33] and [26] that LT5 € LTy, LTy € PT1, and PT1 € LT;. [26]
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uses communication complexity upper bounds to prove approximability of the
functions in the relevant class B by the span of a few cross-product functions
(in @), and then, in effect, uses of 6.1 (2) to show that f is not appropriately
approximable from the span of few cross-product functions. The desired non
approximability of f from the span of few functions in B then follows from 6.12.
The papers, especially [26] employ the communication complexity paradigm
throughout instead of treating the issue as approximability from cross-product
functions.

It should be noted that while it is often easier to show that specific func-
tions are appropriately approximable from the span of cross-product functions
by giving a direct upper bound on the communication complexity, the word
“communication complexity” can otherwise be removed from all (lower bound)
proofs involving threshold functions, or linear (non) approximability results,
without making the proofs any more difficult, or any less intuitive. In fact,
translating “low communication complexity” as “appropriate approximability
by few cross-product functions” allows one to take advantage of transitive ap-
proximability. This, in turn, allows a natural extension of approximability
notions, such as 6.12 that are already being employed and and often makes the
proofs shorter and more transparent. ()

(O An example application of 6.12(3) is the following result proved in [26] using
communication complexity. This can be obtained directly from 6.12(3) using
the fact that every LT, function has a very close approximation from the span
of few LT ; functions.
“A circuit with an unweighted linear threshold gate on top, arbitrary linear
threshold gates at the middle level, and gates from a class C' in the lowest level
can be simulated by a circuit with exactly the same gate on top, unweighted
linear threshold gates in the middle level and exactly the same gates from C
at the bottom.”

Another example application of 6.12(3) is the following: LT functions have
a very close approximation from the span of few LT, functions by a result of
[26]. Moreover, LT, functions have a very close approximation from the span
of few cross-product functions by a simple probabilistic communication com-
plexity upper bound, in fact they are even interpolable from the span of a few
more cross-product functions by the straightforward deterministic communi-
cation complexity upper bound. Therefore, LT functions have a very close
approximation from the span of few cross-product functions, and this approx-
imation does yield a probabilistic communication complexity upperbound for
LT functions, although this is not generally a consequence of 6.11 alone. It is



Approximation of Boolean functions 51

natural and promising to investigate if approximability results are, in general,
a viable method for proving communication complexity upper bounds. ()

(O Non-approximability results from cross-product functions, on the other
hand, are theoretically stronger than lower bounds on communication com-
plexity, but nevertheless provide a viable method of proving such lower bounds,
since in practice, several of the known lower bounds on communication com-
plexity such as the results of [33], [26], [32], [38], [56], [25], [29], [4], [24] actually
yield the stronger non approximability results from cross product functions,
which can be obtained independently using the methods of this Section. For
example, using 6.12(1) and (2), a lower bound of logm on the communication
complexity of a function ¢ can be obtained by showing ¢ is not a linear com-
bination -with small coefficients - of m cross-product functions or by showing
that there is a function f such that | < f,s > | < € for cross-product functions
s, and yet | < f, g > | > me. Similarly, a lower bound of log m can be obtained
on the (1 — §)/2-error probabilistic communication complexity of g as follows:
show the negation of 6.12 (2) (i) that for each set of m cross-product functions,
for some € and each subset S with |S| > (14 €)/2 fraction of the domain, there
is a distribution R over S with < f,s >z <, but < f,g >>¢. ()

(O The hypothesis of 6.12 (2) also holds when the functions ¢ are functions in
LTl, with A = Za x; + ag and, as usual, E la;| < 1 and the a; are rationals

with denomlnators bounded above by 1/6. Here the simple functions in () are
the linear monomials and the constant function. In this case, showing the the
negation of 6.12 (2) (ii) for 1/6 being polynomially bounded Would simply mean

that g ¢ LT1. O

(O A special version of 6.12(4) is used in the proofs of [42] and [34] i.e, the
approzimability result that AC°[2] C PT,. [42] gives a separate probabilistic
argument. [34] gives an algorithm to find the approximating function which we
will discuss in Section 7. Our proof of 6.12(4) above is straightforward from
6.1(2), and 6.9, and clarifies exactly where the orthonormality of the functions
in @) is needed, and moreover gives the general result below as a corollary. ()

COROLLARY 6.13. LATl of PL; C PATl. Le, an unweighted threshold of poly-
nomially many functions in PL, can be simulated by an unweighted threshold
of polynomially many Parity functions.

6.4. Non-approximability via divide and conquer. Next we consider
non approximability results for functions f that involve decomposing the do-
main. These results are useful in constructing hard f based on previously
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proven or easier non approximability results, and, in addition, give methods
for reducing a non approximability question to its combinatorial core.

Before giving a broad description of the general method, we reiterate that
non approximability of f over the whole domain is equivalent to saying that
from each candidate approximating space there is no approximation of f over
some distribution or subdomain (even though no restriction of f may be hard
to approximate over all). This is already implicit in both Theorem 6.1 (1) and
(2) and is false for the case of high energy approximations, which is why 6.1
(3) has no natural converse, but even so, Theorem 6.1 (3) can and will be used
in what follows.

The results below have the following form. The domain of f is decomposed
into the (not neccessarily disjoint) union |J ; of subdomains P; that typically

look identical; for example, their charactelfistic functions could be shifts of the
same function, as in the case of the subdomains covered by any one row or
one column of a communication matrix. The P, are so chosen so that some
structure is visible concerning the behavior of f as well as the behavior of the
approximating space span(M), over the pieces. Now, to show that f is not
approximable from span(M), one uses the above structure to show the exis-
tence of at least one piece P; over which f is not approximable from span(M).
Not surprisingly, this allows more freedom in the proof process, although the
argument used over the individual pieces is still based on 6.1 and the other tech-
niques discussed in the earlier theorems of this section. This general method is
useful when it is known that f and the functions in the approximating space
span(M) differ in some local characteristic, so that global measures such as the
scalar product do not capture the difference, but on the other hand, the exact
subdomain where they differ cannot be determined using any local characteris-
tic of f. This seems to be the situation while trying to find a suitable function
that is not in LT,. We explain some examples of decomposition in more detail
in what follows.

OBSERVATION 6.14. Let U P; C {—1,1}", and for all 1, let P; = Py s;, where

‘D’ stands for addition when {—1,1}" is viewed as IFy, and s; is the shift vector
for P;. In other words, the P;’s are shifts of each other. Given a function f on
{—1,1}", we denote by fp, its restriction to P;; furthermore, we shall view all
of the functions fp, as being over Py, by defining fp,(z) := f(x & s;). Let f be
Boolean, B be a set of Boolean functions, and M be a (typically small) subset
of B.

(i) If the functions fp, form an orthonormal basis for the space of functions
from Py to the reals, and the functions {gp, : ¢ € M,1 € IN} span a
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subspace Xjyr of dimension m, then there is no close approximation h to

f from span(M), with |h(z)| > y/m/|Fo| for all z € P,.

(ii) If for some 1, the set {gp, : ¢ € M} forms an orthonormal set and
< f,9>p< 1/|M|forall g € M then there is no approximation to f from
span(M). This can be extended to the case where the set {gp, : g € M}
forms orthonormal bundles as in Theorem 6.6.

(iii) If for every P;, fp, = fp,(%;), with the map =; being, for example, a
permutation of the variables, and fp, is not approximable from a space
X that is typically closed under the maps =;. Note that P; is simply a shift
of Py, and is not Py(x;). Furthermore, for some 1, M; = {gp, : g € M} is
a subset of X. Then f is not approximable from the span of functions in

M.

For the following, assume that the pieces P; of the domain are not shifts
of each other, but rather, P, = =;(Fy), for some uniform set of maps =;, for
example certain permutations of the variables. In this case, for any function,

we define fp, over the domain Fy to be fp (7;), i.e, fp,(z) = f(mi(z)).

(iv) Let the set of functions M be such that if ¢ € M, then either g(v;) € M for
all the maps v;, or the expectation E;gp,(x) < §/m for all x. Furthermore,
let f be invariant under the maps v;, so the fp,’s are all identical to fp,.
Finally, assume that fp, is not approximable over Py from the span of
any set M of at most m functions from B, which is closed under the maps
vi. Then f is not closely approximable by g € span(M) with |g(z)| > 6
for all x.

REMARK 6.15. All of these results can be seen to employ just 6.1 together with
the earlier theorems of this section on the pieces. In addition, analogous results
can be shown when the subdomains P; are replaced by arbitrary distributions,
much in the same way that remark 6.7 is analogous to 6.6.

PROOF. For (i), we show that there is a P; such that for the distribution R

that is 1 on P; and 0 elsewhere, < f,g >r < \/m/|F|, for all ¢ € M. Then
the proof follows by 6.1(2). We in fact show something stronger. Since the
functions fp, : ¢ € IN form an orthonormal basis for a space of dimension | FPy|,
and the set {gp, : ¢ € M,i € IN} only spans a subspace Xy of dimension m, it
can be shown using simple linear algebra and geometry, that there must be at

least one P; such that the projection fp,|x,, has a 2-norm at most \/m/|P|. In
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other words, it is easy to show that if for all the P; the projections fp,
2-norms exceeding ¢, then the space spanned by the projections f|p,
therefore the space Xj; would have dimension at least |Py|6%. Thus for some
P, < fp,h* >p.< \/m/| Py, for all h* € Xj;, with 2-norm bounded by 1; and
taking A* to be any of the functions in {gp : ¢ € M,7 € IN}, we have what
we require. Notice that the above proof depends only on the dimension of the
space Xy and goes through independent of the exact basis M.

For (ii), since the gp, form an orthonormal set for some P;, by 6.3, any
approximation ¢g from their span to f is a high energy approximation with
< f,g >p,> 1/|M|. The result follows.

The proof of (iii) is straightforward.

For (iv), notice that f is closely approximable by ¢* = 3 a,g, with
geM
lg*(x)| > 6 for all z, if and only if f is similarly closely approximable by

Eig*(vi) = Y a,Eig(vs).

geEM

Xumr had

X, and

Now construct a new set M; of only those functions g in M for which g(v;) is also
in M. Since f is invariant under the maps v;, if f is closely approximable from
the span of functions in M, then it is closely approximable from M (v;) for all :.

In particular, it is closely approximable by > a,E;¢(v;) as well. Furthermore,
gEM
since for every function g € M that is not in My, E;gp,(z) < §/m for all z, it
follows that f is also approximable by Y a,E;¢(v;), and thus by Y a,g¢. But
geM, gEM;
M| < m, this contradicts the fact that f is not approximable by any set

of fewer than m functions that is, in addition, closed under the permutations

since
v;.

(O This general method has been used in several papers, although not stated
as such, for example [44], [42], [26]: in particular, (i) above is the crux of the
proof in [44] that DIP, is not closely approximable by the span of few symmetric
functions. The proof of [42] to show that AC,[3] € QT,, is a combination of
of (iii) and the main idea in the proof of (iv) for a special case of maps =;, and
v;. O

The following is straightforward from 6.1(1) and reduces non approximability
into a purely geometric problem that is amenable to decomposition.

OBSERVATION 6.16. Any set M of Boolean provides a map Ty from {—1,1}"
to {—1, 1}M| by mapping x — (hi(z), ..., hiary(x)). Thus any Boolean function
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f over {—1,1}" is transformed into a function fy; over the image of Ty;. Le,
far(@) =aes far(Tar(2)). Now, the convex hulls of f3;' (1) and f3;' (—1) intersect
if and only if f does not have an approximation with the same sign from
span(M). Two convex sets intersect if any of their subsets intersect, and thus
this observation allows a non approximability question to be decomposed.

(O Next, we turn to a few specific non approximability results, that apply
some of the general results discussed so far. First we show that a universal
function RO[3] in AC°[3] is not approximable from the span of a set M of
polynomially many LT functions which is, in addition, closed under a class of
permutations II, of variables. The permutations are chosen so that the universal
function is invariant under them. It seems to be intuitively the case that if f
is approximable from the span of any set of polynomially many LT functions
then it would also be approximable from the span of a set that is closed under
these permutations. A proof of this, together with the theorem below would
imply that AC°[3] € LT,.

First, we define the universal function RO[3] and the class of permutations
under which it is invariant.

m1 Mo M3

FacT 6.17. The read-once function RO[3](z) = A VA ik is invariant un-
i=135=1 k=1
der the class 11 consisting of

(i) one permutation for each fixed i, j and each ki, ky that maps x;;x, to x;jk,
(and fixes the other variables),

(ii) one permutation for each i and each ji, jo that maps x;; 1 to x,x for all

k

b

(iii) one permutation for each 1,15 that maps x;, jx to x,,; for all j, k.

Next, we notice a property of small sets of LT functions that are closed
under the above permutations.

FacT 6.18. Any set M of LT, functions g that satisfy |{g(7) : = € II}| < n’
must satisfy the following. Let g(x) = sign }_(airxijx + ao). Then

ijk

(i) there is a set s3 of values for the subscript k with |s3| > m — 3t such that
aijk, = Gk, for ki, ks € ss, and for all g € M.
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(ii) there is a set sy of values for the subscript j with |ss| > mq — 3t and with
Qijky = ijok, Tor all 31,92 € sg, for all ky, ky € sy, and for all g € M.

(iii) there is a set sy of values for the subscript i with a; i, = Giyipk,, With
|s1| > mq — 3t, for 11,1y € sy, for all jy, jo, k1, ke, and for all g € M.

The theorem below uses Theorem 6.1 (1) and Theorem 6.14 (iii) and (iv).

THEOREM 6.19. The function RO[3] does not have an approximation with
the same sign, from the span of a set M C LT, where M is closed under the
M| is polynomially

permutations in 11, i.e, {g(x) : ¢ € M and = € 11}, and
bounded.

PROOF. We will show that there exists a function [ € span(M)*, such that
sign(l) = sign(RO[3]). The function [ will be chosen such that [ is 0 except
on 2 sets of points, one being {7(a) : # € 1I}, where RO[3](a) = 1, and the
other of the form {x(b) : # € I}, where RO[3](b) = —1. For z in the first set,
denoted LT, I(x) will equal 1/2|L*|, and for x in the second set L™, I(x) will
equal —1/2|L~]|.

It is sufficient to show that for any M satisfying the conditions of the the-
orem, there is a solution /, as described above, to the system of equations £ :
S l(xz)h(x) =0, h € M. Since [ is invariant under II, M is closed under II, and
the functions in M satisty the conditions of Fact 6.18, this system F becomes
analyzable.

First, we rewrite the system F as follows. Let M* C M be the set of
representative functions in M, i.e, if g1,92 € M*, then ¢1 # g¢2(x), for any
7w € II. In other words, M* is the set of equivalence classes, each of which
contains functions in M that are equivalent up to the permutations (in IT) of
variables.

For each g € M*, let N,, denote the number [{x € I : g(x(a)) = 1}].
The system E then reduces to a system FE’ of |M*| equations of the form
Nyo— N, =0,9 € M*. Notice that these equations depend on the parameters

my, mo and ms. To massage the system FE’ further, we place the following
additional restrictions on the vectors a and b that generate the support of I:
the vectors a and b satisfy the following.

Vi, mo =aer [{(J, k) aijr = 1} = {(J, k) : bije = 1}], I

and

Vi, i, 18 =aer [k age = 13 and ], = [{k : bije = 1}].
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Moreover, the matrix with the ¢{; as entries is denoted 7', the matrix with
the t?j as entries is denoted T, each entry in these matrices is equal to ms,
ms/2, or 0. 11

We also define the variables

tpgr =des i 2 {7 15 = ma}| = p, [{J + t]; = ma/2}[ = q,

and
{s 15 =03 =r}l,
and tgqr is similarly defined.
Clearly, due to the conditions I and 1, %, and t2, are 0if p+q+r # ma,

» “pgr par
and if p + 2¢ # mg. Furthermore, 3, tzqr = > 17, = my. The only difference
between the equations constraining the variables tzqr and those for ¢7 are the
following, which is a consequence of the fact that RO[3](a) = 1, and RO[3](b) =
—1:
o = 0, and th 0,

Ogqr

for the only relevant values of ¢ and r, namely ¢ = t/2,r = my — /2. 111

For any matrix T with entries ¢{; being ms, ms/2 or 0, denote by N, the
number of distinct permuted matrices T formed by permuting the rows and
columns of T, such that 7°¢ is a top left minor of 7*. and similarly define
N.p. In addition, the quantities N., and V,; can be expressed in terms of the
entries ¢;; of the matrix 7, and the variables ¢7 tzqr respectively. Clearly, the
expressions for N., and N.; are identical for all matrices T'° that are identical
up to row and column permutations. In fact, for determining the expressions
for N., and N.j all the required information in the matrix 7 can be captured
by a set of values ¢; ., analogous to t? = or t;’)qr.

To see that the system E' is satisfiable, notice that for some choice of the pa-
rameters my, my, mg € IN as functions of ms, the following system F,.; 1y my.ms
is satisfiable over IN, and

a

a

of diophantine equations in the variables 7

therefore E' is satisfiable.

b
ort).,

(i) For each class of matrices T° that are identical up to row and column
permutations, and the corresponding set of constants ¢ ., there is one

equation of the form N,, — N.p = 0, in the variable sets g and t;qr.
Clearly, these equations depend on the values of my,...,ms, since the
quantities N., and N, and even the number of variables 2 = and tb

par par
depend on them.

(ii) There are equations that enforce the conditions 777. These clearly depend
on the values of mg,...,ms, as well.
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O

(O Below, we give an alternative result (obviously weaker in one sense, but
stronger in another) than [23], but using a different proof technique.

THEOREM 6.20. For any given k and m with k < m < n, and for any set M
of And functions A, , where Myiy =4ef {Nuw € M @ |Ju| + |v] > n —m}, with

2k
k—1 ’

2_];[Ol—l—m/(n—z')

Myi,| <

there does not exist a function g € span(M) i.e, with the same sign as Parity.

PrOOF. By 6.1 (1), for any set M as in the statement of the theorem, it is
sufficient to construct a function ! € span(M)* such that [ is not identically 0,
and having the same sign as Parity wherever non-zero. Our [ will be constructed
as follows.

e the support of [ is of size 2°7%, and [ will equal Parity on its support;

e the support of [ is a subcube of {—1,1}" where an And function Ay ,» equals
-1, with |u*| + |v*| = k;

e all the functions in My;, will be constant on the support of [, so that [ is in
span(My;,)*t already by construction.

The functions in M \ My, are of the form A,, with |u| + |v| < n — m. Since
k < m, and |u* + v*| = k, denoting by n* the set of n — k “free” coordinates
of Ayx px, i.e, the coordinates outside u* U v*, we notice that the set n* \ v Uwv
(the set of free coordinates of A, ,, among the n*) must be non-empty, and
therefore, the set

{z: Nyow(x) = =1} N support(l) = {x: Ays e () = =1}

splits into two equal halves, one where Parity = 1, and the other where Parity
= -1. Now since [ is defined to be Parity on its support, it follows that [ €
span(M \ My, )+ as well, and therefore, [ € span(M)*.

It remains to describe the support of [, i,e, to describe u* and v*; and to
ensure that the functions in My;, are constant on the support of [. Clearly, by
Myg|(n —
m)/2n of the and functions in My, “coincide”, i.e, for all of these functions g,
g(x) = =1 only if ; = —1, or for all of these functions ¢, g(x) = —1 only if
x; = 1. In the former case, put ¢ into v*, and in the latter case into u*. We
can continue this process on the remaining | My, |(n 4+ m)/2n functions in My;,,

the pigeon hole principle, there is some coordinate position ¢ where
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increasing the size of v*, and w* until all the functions in M;;, are exhausted.
When the process terminates, the size [v* U u*| < k provided

k1 (n—t)+m
| My, | H T <1

/=0 (n—i) =

i.e, when
2k

| My;g| < o=

0 1+ m/((n—i))

O
O

(O As a corollary to the above theorem, we obtain that AC°[4] € LT} — Ands,
since AC[4] functions embed the Parity function of log® n bits. O

(O The main idea of the proof of the above theorem extends to the case of
spaces spanned by other functions that behave similar to And functions, for
example the Flat functions ¢, , defined for sets u and v of pairs of variables in
{1,...,n} x {1,...,n} as follows:

¢)u,v($) —def /\ _'(wiﬁﬁxj) /\ $Z@$]

(3,7)€Eu (3,7)€v

In other words, ¢, ,(z) = —1 if and only if the bit-pairs of & are equal when the
corresponding coordinate pairs are in u, and are unequal when the correspond-
ing coordinate pairs are in v. Notice that u and v might contain redundant
pairs of bits that can be removed without affecting the definition of the func-
tion. Hence we assume that |u| and |v| are minimal. The set of points where
Gun = —1 defines a “flat” of dimension n — |u|+ |v[, i.e, these points form both
a subspace of that dimension in IFy, as well as the intersection of a subspace of
that dimension in R™ with {—1,1}". Flats are a generalization of the subcubes
where the functions A, , = —1.

Repeating an analogous construction as in the proof of 6.20, we obtain the
following.

THEOREM 6.21. The function @(z;@x;) does not have an approximation with

27]
the same sign from the span of subexponentially many Flat functions.

O
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6.5. Small correlation and non approximability. The next two theorems
provide general methods for showing that the scalar product < f,¢g > is small,
for some fixed f, and for all functions ¢ in some class B that is modelled after
LT:. As mentioned earlier, this step is needed for employing Theorem 6.1 (2)
and (3) to prove a non approximability result for f. However, many of the
methods given below themselves use duality.

It is generally assumed that every ¢ € B is either in the span of simple
functions or is approximable (to some degree of closeness) in the ||.||o norm
from the span of simple functions.

Showing that the scalar product < f,¢ > is small is a combination of two
tasks. First, a transitive approximability relationship is shown roughly of the
form: if < f,g > is large, and ¢ is closely approximable from the span of
simple functions, then f must be also be closely approximable in some sense
from the span of few simple functions. Second, a strong non approximability
result is proven that f cannot be thus approximated. The second part is
stronger than what is required, which is only that f not be approximable by
linear combinations of those simple functions that are used to approximate
the functions ¢ € B. But such sets of simple functions are hard to isolate,
so one is forced to consider all sets. The second part could be based on any
of the methods of the previous four subsections. The next theorem presents

natural combinations of these two parts. The proofs are straightforward and
use Theorem 6.12 and Theorem 6.1.

THEOREM 6.22. Let f be a Boolean function, B a set of Boolean functions,
and () as set of “simple” Boolean functions.

(1) If every g € B is the linear combination of functions h in () with the
coefficients summing, in absolute value, to at most m, and < f,h >< ¢

for each h € Q. Then < f,g >< me. (Application of 6.12(1)).

(2) If for every g € B there is a function h, with the same sign as g, and
in the span of m functions h € @, satisfying |h(z)| > 6 for all x; and
furthermore, if f is a function such that < f,h >< ¢, for every h € (@),
then < f,g >< e+ 1 — 6. (Application of 6.12(2)).

(3) If g is in the span of m functions h € @, and if for every subset S of
the domain that contains more than an (1 + €)/2 fraction of the points
and any set M of m functions in Q, f is not approximable from span(M)
on S, then < f,g >< e. Any appropriate method of this section could
be used to show that f is not approximable on S from span(M). For
example,
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(i) if there is some function | € span(M)* that is 0 outside S and has
the same sign as f on S (application of 6.1 (1));

(ii) if there is some distribution R on S, over which the functions h € M
are orthonormal, and < f,h >r<1/|M]|, for all h € M, (application
of 6.14 (ii) and 6.1 (3)).

(O The combination of 6.22(iii) and 6.14 yield the following for the special case
where the functions in B are LT; functions, and () is the set of the linear
monomials.

THEOREM 6.23. Given a Boolean function f, and a function g € LT. if for
each subset S C {—1,1}" with |S| containing more than an (1 + €)/2 fraction
of points, one of the following holds, then < f,g ><e.

(i) ConvexHull(f~1(1) N S) N ConvexHull(f~1(—1) N S) is non-empty.

(ii) The linear monomials and the constant function One continue to remain

almost orthonormal with respect to S, with | < z;,z; >s | < 6, and | <
z;,0ne >s5 | < 6, but | < fiz; >s | < (1 —68)*/(n+ 1), for all ¢ and | <
f,0ne>s | < (1—=46)?*(n+1).

(iii) There is a set Il of permutations of the variables such that f is invariant
under the permutations in 11, and for all linear functions g, Y. g(x)(x) has
mell

the form a }_ x; + ao, for some a and ag. Finally, f is not approximable by any
function of the form a}_ x; + ao, over (] S(x).
7 Tell
(iv) There is a set 11 of permutations of the variables such that f is invariant
under the permutations in Il, and for some point a in f~1(1) NS and b in

f~1-nHns, > #w(a);=0,and Y.  =w(b), =0, for all 5.
rell,r(a)ES mell,m(b)eS

As a direct application of 6.23(i), we obtain the following.

FACT 6.24. < RO[3],¢ >< 2RO[3](0"), for all g € LT}.

Proor. We illustrate the convex-hull intersection argument (neccessary

for employing 6.23(i)) by proving the straightforward result that RO°[2] ¢

LTq. The proof of the fact is carried out along the same lines, by showing

RO°[3]|s € LT s for any large subdomain S. We will consider the canonical
kook

ACP[2] function RO[2](z) :== V A zi;. If an LT, function ¢ equals RO[2],

71=1:=1
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then, in particular, g(x) = —1 when z;; = —1, for 1 <¢ < k and z,;; = 1, for
all ¢ and all j # 1;

and g(y) = —1 when y;5 = —1, for | < ¢ < k and y;; = 1, for all ¢ and all
j#2.

Moreover, for every z,w such that z +y = z + w (where the 4+ stands for

addition in R"™), either g(z) = —1 or g(w) = —1, since g, being in LTy, is the
characteristic function of a halfspace of R". However, for our chosen function
RO[2], we can find z and w with z + w = = + y, with both f(z) = f(w) = 1.
For example, choose z with z;; = —1 and z;p = —1 for 1 <i < k/2and z;; =1,
for all 7 and all j # 1,2, and choose w such that x+y = z+w. This contradicts
the assumption that ¢ = f. O

O

7. Algorithms for approximation

In this section, we are interested in efficient constructive solutions to the general
approximation problem A in Section 3, when the Boolean functions ¢ in the
class C' are known to be appropriately approximable. The universal space U is
the space of real functions over {—1,1}", so we are do not deal with approxima-
tion/interpolation algorithms over different domains (such as, for example, [5])
or ranges (such as, for example, [12]). Notice that since we are interested only
in Boolean ¢, and are dealing with real-valued functions, the construction of
an interpolant, i.e, with € = 0 is algorithmically equivalent to the construction
of an oo-norm approximant with ¢ < 1. In addition, to oco-norm approxima-
tions with error € < 1, we also consider 2-norm approximations, since they are
often easier to find, and moreover provide co-norm approximations over large
domains S in A. Finally, we also consider close oo-norm approximations (i.e,
small €), and high-energy approximations, as in 6.1 (2) and (3), since both are
highly related to 2-norm approximations (see Section 6).

We assume that the approximation algorithms are able to evaluate the func-
tion ¢ pointwise at any set of sample points, which we shall refer to as o (each
evaluation costs one unit of time). We also consider randomized algorithms,
that may choose to (but are not required to) sample randomly on the pertinent
distribution D in the framework A. These randomized algorithms produce the
required approximation with suitably high probability depending on the run-
ning time. There are two independent issues to be considered in designing such
algorithms.

e First, how many sample points (pieces of information about g¢) are required
to determine the set of valid approximations h € X =45 span(M).
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e Secondly, how to find such a set ¥ of sample points, and using the values of
g over X, how to construct an approximation h efficiently.

The main general result of this section, Theorem 7.1, shows that a function
[ € X* of support dim(X) + 1 provides a set ¥ = supp(l) of sample points, so
that the values of ¢ over ¥ are sufficient to determine an oo-norm approximation
to g from X. This result depends mainly on the duality principle. In an ensuing
observation, Remark 7.2, connections are drawn between sample sets ¥ and sets
of pseudorandom elements given by Theorem 5.1.

This is followed by a list of relevant approximation algorithms in the ap-
proximation theory and computational learning theory literature. We classify
these algorithms based on their choices of parameters in the general approxi-
mation framework A; describe their connection to Theorem 7.1, and Remark
7.2; derandomize some of these algorithms, and point out promising natural
extensions that that have not been investigated. The main application of such
approximation algorithms is for learning classes of Boolean functions. As usual,
we sandwich all discussions concerning this application by ()’s.

(O If the approximation algorithm for the problem A produces an approxima-
tion h that uniquely defines a Boolean function ¢ in (', when restricted to the
relevant o-fraction of the domain, i.e, a class of functions in (' that coincide on
the subdomain S of approximation, then the algorithm is a learning algorithm
for C' with accuracy o. This is the case if the norm of approximation is the
oo-norm, the error of approximation ¢ < 1 and the functions in €' are Boolean.
On the other hand, if the approximation A only uniquely defines a class of
functions in C' that coincide on a large o' fraction of S, then the algorithm is
a learning algorithm for C' with accuracy oo’. This is the case if the norm of
approximation is the 2-norm, the error of approximation ¢ is 1 — ¢’, and the
functions in C' are Boolean.

These learning algorithms are said to use membership oracles, if the sam-
ple set ¥ is arbitrary, and are said to use example oracles, if the sample set
Y is drawn at random from the relevant distribution D in the framework A.
Thus our approximation algorithms use both kinds of oracles.

Moreover, when the quantifier on the distribution D is universal, and on
the subdomain S is existential, in the framework A, such an approximation
algorithm is a PAC learning algorithm provided it works for all ¢ < 1, with an
appropriate increase in running time, and furthermore, if it works for ¢ = 1,
then it is called an exact learning algorithm. ()

We now give the main general result concerning sample sets 3. This can
be found in [62] and provides a restriction on the size of the support of the
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function 1 € X*.

THEOREM 7.1. Let X be a space of functions and let g be any function. Let
Y be the support of a function I* € X+ that maximizes |3 l(z)g(z)| over all

[ € X+ with ||l||; < 1. Then a best uniform approximation to g from X, i.e, a
function ¢g* such that ||g — ¢*||. is minimum, is determined by the values of g
on Y. In fact, a best approximation to ¢ remains a best approximation to gs.
Furthermore, there is is a set Y. satisfying the above conditions, of size at most

dim(X)+ 1.

PROOF. It is clear that a best approximation to ¢ remains a best ap-
proximation to ¢ on the support ¥ of the I*, since I* € Xg&, and maximizes
| > l(z)g(z)]. Let g* be a best approximation to g, and let ||¢g — ¢*|| = .
€L

Let ¥ be the support of a function [* as in the statement of the theorem. By
3.3, | ZE I*(z)g(z)| = e. However, ZE *(z)g(x) = ZE I*(z)(g — ¢*)(x). Thus,
(g — gf)(;v)| = ¢, for each z € ¥, anc% in fact, the sigrf of (¢ — ¢*)(x) is equal to
the sign of [*. It only remains to show that there is such a function [*, whose
support ¥ satisfies |X| < dim(X)+ 1. We construct this function I* as h(g — g*)
(normalized), where h is a positive function that has at most dim(X )+ 1 points
of support.

First, notice that ¢ — ¢* is “orthogonal” to X in the sense of the oco-norm.
Recall that by this notion of orthogonality, f L X, if ||f||c < ||f + p||so for all

p € X. We use a property of functions that are orthogonal in this sense.

Claim. A function f is orthogonal to a space X in the sense of the oo-norm if
and only if there is a positive function h with at most dim(X) + 1 points of
support contained in the extremal set of f, i.e, E(f) =aes {z : f(z) = ||f||>}s
such that fh is in X* (the orthogonal space in the usual inner product sense).

Now, let the function A be as in the claim. The function I* =45 h(g—g*)/||h(g—
g%)||1 clearly has only dim(X)+ 1 points of support; and is in X+ by the claim.
It only remains to show that [* is extremal, i.e, |3 I*(2)g(z)| is maximum

over all [ € X+ with ||/||; < 1. For this, by 3.1, it is sufficient to show that
|2 ()g(@)] = [lg = 9" []c- Since I* € X+,

|2 A(2)(g = 97)(2)(g = 97) ()]
1h(g — g*)|]1

12_ 1 (@)g(@)l = [ (=)(g — g7)(2)] =
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By the claim, h is positive and its support is restricted to lie within E(g — ¢*),
therefore, it holds that ||h(g — ¢*)||1 = | X, h(2)] ||g — ¢7||c and

| X (@) = g7)()(g = g7) ()| ~ lg = 7[5 2 h(=)]
1h(g — g*)Ilx g =99)lh

=1lg— 9" |-
O

Proof of claim. For one direction, suppose fh € X', and h is positive, with

||k]|1 = 1, and its support is contained in the extremal set of f as stated in the
claim (the size of the support is not neccessary here). Then for every e € X

1112 = 2 k(@) f(2) f(2) = 3 h(x) f(2)(f(2) — (@)
< fllee Do h(z) maz [ f(z) = (@) < [[flleollf = €lloo,

€supp(h)

thereby showing that f is orthogonal to X in the sense of the co-norm.

For the reverse direction, suppose f is orthogonal to X in the sense of the
oo-norm. Let dim(X) = m, and let by ..., b, be a basis for X and consider the
set of points S in R™ given by

§ = {(f(@)(2),- -, F()bo(x) : 2 € B(P)).
Notice that the origin must be contained in the convex hull of S. Otherwise,
there is a hyperplane separating the points in S from the origin, i.e, there are
constants aq,...,a, € R such that

> aif(x)bi(z) > 0,

K3

for all 2 € E(f). This would mean that f(z)3 a;bi(x) > 0, for all z € E(f),

implying that there is a function e =}, a;b; EZX with the same sign as f on
E(f). This would imply that for some ¢ € X, |[|f + €|lsoc = ||f]|c0, thereby
contradicting the assumption that f is orthogonal to X in the sense of the
0o-norm.

Thus the origin must be contained in the convex hull of S. It follows that
there is a set m + 1 points in S such that the origin is a convex combination
of these points, which means that there is a positive function A with support
consisting of m = dim(X) + 1 points in E(f) such that

Z h(z)f(x)b(x) =0, Vb,

and hence, hf € X*. This proves the claim. m
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REMARK 7.2. The fact that a function in X+ provides a good sample set ¥
for approximation of a function g from X is not surprising. Intuitively, a good
sample set ¥ is one over which the behavior of the function ¢ is similar to
its behavior over the relevant distribution D in the approximation framework
A. Theorem 5.1 and the following remark show how such sample sets - which
behave as though uniformly distributed in the sense of expected values - are
obtained naturally from functions in X*. This can be extended to give sample
sets that behave like other distributions as well. These sets were used in Section
5 to serve as distributions of pseudorandom elements that fool the functions
that are approximable from X. In fact, we will show that similar distributions
serve as sample sets for approximating functions in the ||.||s norm. Moreover,
the above theorem shows that the supports of certain functions in X+ also serve
as small sample sets o for approximating g from X in the oo norm. When easy
to generate, such sampling distributions, as noted in Section 5, therefore help
not only to derandomize computations based on approximable functions like g,
but are used in some of the algorithms listed below, especially in the context of
finding deterministic sample sets ¥ and therefore derandomizing randomized
approximation or learning algorithms.

Based on the following parameters in the framework A, we list and classify
known approximation algorithms and derandomize some of them. The param-
eters are the following.

e The norm, which could be ||.||c, or ||.||2; we also consider high-energy ap-
proximations as in 6.1(3).

e The space X = span(M) which could be fixed or allowed to vary, with the
only constratint being on dim(X) = |M].

e The basis functions in the set B which could chosen orthonormal or not.

e The distribution D, which is arbitrary, i.e, universally quantified, or fixed to
be relatively close to the uniform distribution.

o The size of the domain of approximation S, quantified by o, which could be
the entire domain, i.e, ¢ = 1, or a subdomain of suitably large measure, with
respect to the distribution D.

We are also concerned with:
e The sample set ¥, which could be deterministically chosen, or randomly
chosen, and its connection to supports of functions in X+ i.e, possible uses of

Theorem 7.1, Remark 7.2 and Theorem 5.1.

CASE 1 We first consider the case of oo norm approximations over the whole
domain, i.e, 0 = 1, and the space X = span(M) is fixed. Here we can assume
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that the distribution D is universally quantified, by the nature of oc-norm
approximation.

In this case, adaptations of the univariate primal-dual method of Remez
(see [55]) can be used, which work also for general, non-Boolean functions.
These algorithms use an iterative procedure to find a function [* € Xt of
bounded norm that maximizes | Y I(x)g(xz)|. Once the function [* is found, by

the proof of Theorem 7.1, the best approximation i can be found, by solving
an interpolation problem on supp(l*), i.e, by inverting a VanderMonde of size
|supp(l*)] = dim(X) + 1.

At the ** iteration of the procedure, the function I*** € X* is constructed
from [; € X', again by solving an interpolation problem on supp(l;) to con-
struct a pseudo-approximation h;. The new function [;1; is constructed by
removing a point from /; and including a point outside supp(l;) where g — h; is
maximal, (if all such points lie inside supp(l;), the algorithm takes [* to be [;
and halts, justifiably by the proof of Theorem 7.1).

The rate of convergence of this iterative procedure to the optimum function
[* depends on the function ¢ and the space X, and could take exponentially
long. However, the algorithm is deterministic and its sample set X = [J supp([;)

for the successive [; € X+.

Improvements of the algorithm, and complexity analyses for the special case
of Boolean approximation are open. In the Boolean case, it is not neccessary to
find the best approximation: it is sufficient to find an approximation for which
~v < 1 in the framework A.

In this context, it should be noted that for bases B and spaces X satisfying
certain properties, there is a multidimensional analog of a linear approximation
operator called the Korovkin summation operator for arbitrary ||.||, norms. See
[35]. This operator provides a general constructive method of approximation
which sometimes reduces to well-known methods for specific cases.

(O The algorithm described above is an exact, deterministic learning algorithm
for the class of Boolean functions ¢ for which there is an approximation with
the same sign from the space X. ()

CASE 2 Next, we consider the case of ||.||cc norm approximations over the
whole domain, i.e, for ¢ = 1, but with the space X = span(M) varying over
all sets M of independent basis fuctions in B, with dim(X) =
some fixed value m.

M| is at most

Such problems have been considered by approximation theorists for gen-
eral, non-Boolean functions, originating from the question of approximation
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by splines with “free knots,” or by functions with “few harmonics” (i.e, few
Fourier coefficients). For the origins of this subject, see [19] and [53]. In the
recent literature, such algorithms are studied in the context of approximation
by wavelets.

The significance of these results to Boolean function approximation is yet
to be investigated.

CASE 3 Next, we consider 2-norm approximation of Boolean functions, over
the whole domain, i.e, o = 1, for arbitrary distributions D, when the space
X = span(M) is fixed. We could assume, if we choose, that the norm is
defined based on the inner product <>p. In this case, for all distributions D,
the 2-norm approximant for a Boolean function, with error vy < 1/2 is also a
meaningful co-norm approximant with error 4’ < 1, over a subdomain S with
measure ¢’ > 1 — v wit respect to D.

The best 2-norm approximation of g from X is easily described as the
projection g|lxp = Y. < ¢g,hs >p hs, where h, form an orthonormal basis

for X under <>p. Finding this projection is usually achieved by finding an
orthonormal basis for X with respect to <>p.

We assume that the distribution D is fixed to be the uniform distribution,
and that the given basis M for X is itself orthonormal with respect to the
usual <>. Also without loss, we assume the entire basis B is the Fourier basis,
and hence the quantities < ¢,h >, are nothing but the Fourier coefficients
g(a) =< ¢,xXa >. The uniform distribution and the Fourier basis can be
replaced by any “close-to-uniform” distribution D for which a well-behaved
orthonormal basis exists with respect to <>p, where, by “well-behaved,” we
mean that the basis functions are easily computable, and have well-bounded
norms.

In the case of Boolean g, for estimating the coefficients g(«) for x, € M
with suitable accuracy, small random sample sets ¥, consisting of poly(|M| =
dim(X)) points can be shown to be sufficient, using Chernoff bounds, see [46].

However, the supports of certain functions / € X+ can be used to give small
deterministicsample sets as follows: express the function /in X+, and ||{||; < 2
as [* — 1/2" for a positive function [* € (X \ One)*. By Theorem 5.1, since g
is approximable from X, it follows that supp(*) looks uniformly distributed to
g in the sense of expected values, i.e, the quantity

|3t = | 20" = 1/2) @)g(@)xoe ()] is small.

Therefore, §(0™) can be estimated with reasonable accuracy by sampling ¢ on
supp(*) and computing 3 I*(x)g(x)xon(z). This idea was discussed in Section



Approximation of Boolean functions 69

5 to systematically obtain sets of pseudorandom elements for functions ¢ that
are approximable from X.
If I* additionally satisfies the conditions that

|E —1/2")(x)g(x)xa(x)| is small Yy, € M,

then supp(l*) can be used as a deterministic sample set for approximating g.
For distributions D that are close-to-uniform, the constant function 1/2"(z)
(representing the uniform distribution) can be replaced by D(z), and the func-
tions X, by the orthonormal basis functions under <>p. In fact, different [*’s
can be found that satisfy the above conditions for each y, € M, whereby the

set ¥ = U [% is a deterministic sample set for approximating g.
XOLEM

The aim, then, is to find such functions [* with small support, and which,
in addition, are easy to generate. This question is, in general, open for the
current case of ||.||s norm approximation. In contrast, in the case of uniform
approximation, such small sampling distributions always exist by Theorem 7.1,
whose support and values can be generated using the Remez iterative process
discussed in Case 1. However, when M is a geometrically “nice” set of Fourier
basis functions, i.e, if for each ya,xg in M, the Hamming distance |a — f|
is small, then the m conditions on [* imply a minimum (Hamming) distance
condition on supp(l*). See [64]. This is the idea behind Shannon-Whitaker type
sampling theorems [63]. In fact, in the case where |a] < e/2 for all x, € M, this
minimum distance condition is equivalent to saying that supp(z*) is a familiar
e-wise independent distributions which were already discussed in Section 5 in
the context of pseudorandom sets.

() The paper [46] showed that AC® functions ¢ are approximable in the 2-
norm from the space X of low (polylog) degree polynomials, i.e, the space
spanned by the set M of Fourier basis functions y, for small Hamming weight
la]. For the special case of AC®, The random sampling method discussed
above was used to estimate the the coefficients §(a) for small |a, by sampling
at poly(|M]) = O(nP°"°9(n)) points, thereby giving a learning algorithm for
AC® with respect to the uniform distribution, which was extended to “close-
to-uniform” distributions in the paper [22]. The former algorithm was de-

randomized in [64] by finding deterministic sample sets of the same size using
the ideas explained above, thereby illustrating the connection between pseudo-
random sets, sample sets for learning, and polylog-wise independent distribu-
tions. The latter algorithms derandomize using the same ideas. ()
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CASE 4 Next, we consider an algorithm by [40] which works under the same
conditions as in Case 3, except that the space X is not fixed, but spanned
by a set M of independent basis functions in B with dim(X) = |M| bounded
by m. Again, we assume the distribution D to be uniform and the basis B
orthonormal, and as before, we can assume any distribution D for which an
orthonormal basis exists with respect to <>p, which is well-behaved, i.e, the
basis functions are easily computable and have a bounded norm.

This kind of approximation is useful for Boolean functions ¢ for which ||g|]1
is small, for example, g € PL;. Whenever X is the span of x,’s for which |§(«)]
is at least v/[|g||1, the number of such a’s is at most ||]|7 /7, and ||g—g|x]|2 < 7,
Therefore such functions ¢ can be well approximated in the 2-norm from the
span of only a few Fourier basis functions. (The analogous result for co-norm
approximation, i.e, that PL; C PATl, is harder to prove and was shown by [15].
A more general result is given in Theorem 6.9).

The algorithm in [40] uses a clever search technique to isolate m functions x4
that form the basis M for a space X such that the 2-norm approximation or
the projection g¢|x is suitably close to g, or in other words, has a large 2-norm

)
Xa €M

Once the set M of y,’s is found, then either the random samples or the
deterministic sample sets ¥ of Case 3 can be used to estimate the §(«)’s, and
thus ¢|x.

The set M of basis functions y, is found by a divide and conquer process,

estimating the quantity Y ¢*(x) for successively smaller sets @) of Fourier
Xa€Q
basis functions, starting with () being the entire set B. The estimation of this

quantity is carried out by a quasirandom, uniform sampling of g over specific
subdomains, (See [40]) for details).

It is an open question whether there are natural deterministic sample sets as
in Case 3, that can replace the random samples for this part of the algorithm.

(O As mentioned earlier, the algorithm [40] is fast for finding 2-norm approxi-
mations of functions in PL; for example, linear decision trees, since in this case,
the dimension of the approximating space X is small. In addition, as mentioned
in Case 3, a 2-norm approximation with error v < 1/2 over the entire domain
gives a meaningful oo-norm approximation with error 4/ < 1, over a fraction,
o' =1 —~, of the domain. (This holds as well for other distributions D, with
“fraction” replaced by “measure”). This gives a fast, randomized, learning al-
gorithm for PL; functions with respect to the uniform distribution, where the
running time grows linearly with .
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The extension of this algorithm to close-to-uniform distributions D (for
which a well-behaved orthonormal basis exists w.r.t. <>p) is given in [34]. O

CASE 5 Next, we turn to the case when a close co-norm approximation A

exists for a Boolean function ¢, with ||g — A||so < 7, i.e, h has the same sign as

g and ||k||; > 1 —~, where with h = Y ,cprasb, and Y- |ay| < 1. Furthermore,
b

for the first part of this discussion, no restrictions such as orthonormality are
placed on the basis functions b € M, and the distribution D is considered to be
arbitrary, as is customary for oo-norm approximation over the entire domain.
Note that here, v might be specified to be greater than 1/2, even as large as
1 — poly(n), and therefore finding a 2-norm approximation may not provide
a meaningful co-norm approximation. Such close approximations exist, for
example, when ¢ € PATl, which includes PL; and a LT, of PL; functions as
well, by Corollary 6.13.

We are interested in algorithms that find an oo-norm approximation to a
Boolean function g with respect to a large class of distributions, over a subdo-
main of large measure.

By 6.1(2), we know that for every distribution D, there is a basis function
b € M such that | < ¢,b >p | > 1 — 4. Such a function is called a weak
hypothesis in learning theory terms. Assuming an oracle provides such a
basis function b € M for any distribution D, then [34] describes a randomized
“boosting” algorithm, due originally to [21], that, with a high probability, finds
a (close) oo-norm approximation &', called a strong hypothesis, from X =
span(M): for any distribution D, the approximation A’ approximates over a
subdomain that has large measure o with respect to D, and the running time
of the algorithm increases linearly with o.

To simulate the oracle above, however, restrictions on the distribution D are
required. Using the algorithms described and partially derandomized in Case
4, the oracle above can be simulated efficiently in the case where the basis
functions in M are almost orthonormal, and the distributions D are close to
the uniform distribution. Thus, for these special sets M, and distributions D,
a basis function b € M such that | < g,b >p | > 1 — 7 can be found efficiently
by a quasi-random sampling of ¢g. This, however, represents only a partial
simulation of the oracle required by the boosting algorithm of [21], described
in the previous paragraph.

To surmount this difficulty, [34] gives an adaptation of the boosting algo-
rithm of [21]. The modified boosting algorithm makes do with information
about ¢ on close-to-uniform distributions, and provides a uniform approxima-
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tion over a set of large measure o, only with respect to such distributions.
The algorithm uses the basis functions b in the almost orthonormal basis M,
for which | < ¢,b >p | > 1 — v, which are given by the simulated oracle for
close-to-uniform distributions D. The running time of the algorithm increases
linearly with o.

In fact, notice that the algorithm described above works as long as there is
a function b in an almost orthonormal basis M such that | < ¢, >p | > 1—7,
for close-to-uniform distributions D. This does not require ¢ to be closely
approximable from X = span(M). It is sufficient that ¢ have a high energy
approximation h from X, i.e, with < g,h >> 1 — .

(O The partially derandomized procedure described above provides a learn-
ing algorithm with respect to almost uniform distributions for any function in
PATl, or for any function that has a high-energy approximation from the space
spanned by a few Fourier basis functions which clearly consist of functions
that are closely approximable from the space spanned by a few Fourier basis
functions.

It is a natural open question whether the observation above concerning
high-energy approximations has an application in learning theory. ()
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