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Abstract

We investigate the computational complexity of the Boolean Isomorphism problem (BI):
on input of two Boolean formulas F' and GG decide whether there exists a permutation of the
variables of G such that F' and G become equivalent.

Our main result is a one-round interactive proof for BI, where the Verifier has access to an
NP oracle. To obtain this, we use a recent result from learning theory by Bshouty et.al. that
Boolean formulas can be learned probabilistically with equivalence queries and access to an
NP oracle. As a consequence, BI cannot be ¥} complete unless the Polynomial Hierarchy
collapses. This solves an open problem posed in [BRS95].

Further properties of BI are shown: BI has And- and Or-functions, the counting version,
#BI, can be computed in polynomial time relative to BI, and BI is self-reducible.

1 Introduction

An interesting computational issue is to decide the equivalence of two given programs with re-
spect to some computational model. While the problem is undecidable for computational models
such as Turing machines, LOOP-programs, or context-free languages (see [HU79]), it is coNP
complete for LOOP(1)-programs (no nested loops), circuits, branching programs, and Boolean
formulas. Moreover, it can be efficiently solved for one-time-only branching programs by a ran-
domized algorithm [BCWS80]. For regular languages it can be efficiently solved deterministically
(see [HUT79]).

In this paper, we consider the complexity of a generalized version of the equivalence pro-
blem: decide whether two given programs become equivalent via some bijective transformation
of the input. One of the simplest such transformation is an isomorphism, i.e., a permutation
of the input bits. For Boolean formulas, the Boolean Isomorphism problem, BI, is in fact a
very old problem that has already been investigated in the last century. The paper by Bor-
chert et.al. [BRS95] gives extensive background and provides a list of early references on this
problem. In recent years, the problem has been reconsidered with respect to its computational
complexity [BR93, BRS95, CK91].

The Boolean Isomorphism problem is coNP hard but not known to be in coNP. Therefore it
is at least as difficult as the Boolean equivalence problem. As an upper bound on its complexity,
BI is in the second level of the Polynomial Hierarchy, ¥%. It is posed as an open problem by
Borchert et.al. [BRS95] whether BI is complete for 35. They conjectured that it is not. In this
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paper we will solve this question in the affirmative by showing that BI is not complete for X3
unless the Polynomial Hierarchy collapses. We also give a lower bound for BI: we show that the
problem of deciding if a graph has a unique optimal clique—which is not known to be in the
Boolean Hierarchy—many-one reduces to it.

The Boolean Isomorphism problem shares many similarities with the Graph Isomorphism
problem, GI (see [Hof82] and [KST93] for a comprehensive study on Graph Isomorphism). Many
of the results for GI carry over to BI with similar proofs, although with some crucial differences.

We also consider some more general transformations of the input. An important such genera-
lization is that of Boolean congruence, where the permutation of the variables is composed with
a negation mapping which maps each variable either to itself or to its complement. Although
this is a broader notion than isomorphism, the Boolean Congruence problem, BC, is many-one
equivalent to BI [BRS95]. To motivate the name, the Boolean congruence relation can be seen
as a geometrical congruence. There are 2" assignments for n variables, forming the nodes of a
n-dimensional cube in R™. The assignments where a Boolean formula F evaluates to one form
a subgraph of the cube, the n-dimensional geometrical cube representing F. Two formulas F
and G are congruent if and only if the n-dimensional geometrical cubes representing F and G
are geometrically congruent, that is, there is a distance-preserving bijection from one subgraph
to the other.

We can rewrite any permutation of n variables x = (1, ..., ) as a product of a permutation
matrix P with x over GF(2). That is, an isomorphism can be written as xP, and a congruence
can be written as xP + ¢, for a vector ¢ € {0,1}". A natural generalization of the above notions
is therefore to consider linear and affine transformations xA and xA + ¢, respectively, where
A has to be a bijection on {0,1}". We call two formulas linear equivalent or affine equivalent
if they become equivalent after a linear or an affine transformation of the variables of one of
the formulas, respectively. As in the case of isomorphism and congruence, the Boolean Linear
FEquivalence problem, BLE, and the Boolean Affine Fquivalence problem, BAE, are many-one
equivalent [BRS95]. Also, BI many-one reduces to BAE [BRS95].

Looking at circuits instead of Boolean formulas, we get the corresponding problems CI, CC,
CLE, and CAE. CAE is the most complex problem we considered so far: all the other problems
are many-one reducible to it. The above mentioned result for BI holds in fact more general for
CAE. That is, CAE is not complete for X5 unless the Polynomial Hierarchy collapses.

The paper is organized as follows. In Section 3 we show that the complement of BI has
an one-round interactive proof, where the Verifier has access to an NP oracle. The interactive
proof can be extended to the complement of CAE. ;From this we conclude the above mentioned
non-completeness results. In Section 4 we show that BI has And- and Or-functions. This will
provide us with a lower bound for BI: the Unique Optimal CLIQUE problem can be many-one
reduced to it. In Section 5 we show that the counting version of BI can be solved in polynomial
time relative to BI. This is an result that holds analogously for the Graph Isomorphism problem.
Finally, in Section 6 we show that BI is self-reducible.

2 Preliminaries

An n-ary Boolean function f = f(#1,...,2,)is a mapping from {0, 1}" to {0, 1}. An assignment
for (the variables of) f is a mapping a : {@1,...,2,} — {0,1}"

Every Boolean function f can be expressed as a Boolean formula F over variables
{z1,...,2,} using the 2-ary conjunction (A) and disjunction (V) and the l-ary negation ()
as basis. We will additionally use implication (—) and equivalence(«). The semantic of a



formula is defined as usual. By convention, we use small letters for functions and capital letters
for formulas. Note that there can be several formulas representing the same function.

Two formulas F and G are equivalent if f = g. That is, the associated functions are identical.
Since F and G are equivalent if and only if the formula F' — G is a tautology, the problem of
deciding whether two formulas are equivalent is coNP complete.

Two formulas F and G are isomorphic, denoted by F 2 G, if there exists a permutation ¢
on {x1,...,&,}, such that f = g o . In this case, we call ¢ an isomorphism between F and
G. The Boolean Isomorphism problem is Bl = { (F,G) | F =2 G }. It follows directly from the
definition that BI € X%, the second level of the Polynomial Hierarchy.

Iso( F, G) denotes the set of isomorphism between F and G. An automorphism of a formula F'
is an isomorphism between F' and F, Aut(F') = Iso(F, F). Aut(F) is a group with composition o
as group operation. It is a subgroup of the permutation group (on n variables). The Boolean
Automorphism problem is the set of formulas F that have a non-trivial automorphism, i.e.,
Aut(F)| > 1.

A negation mapping on n variables is a function v such that v(z;) € {z;,7;} for 1 < i < n.

Two formulas F' and G are congruent, if there exists a permutation ¢ and a negation mapping v
on {x1,...,2n}, such that f = gov o ¢. The Boolean Congruence problem, BC, is the set of
pairs of formulas that are congruent. Congruence is a more flexible notion than isomorphism,
however, BC is clearly in Y%, moreover BI =F, BC [BRS95].

Formulas F and G are affine equivalent if there exists a non-singular n x n matrix A and
a 1 x n vector ¢ over GF(2) such that for every x = (z1,...,2,), we have f(x) = g(xA + ¢)
(here addition and multiplication is over GF(2)). The formulas are linear equivalent if they are
affine equivalent with the vector ¢ being zero. We use BAE and BLE to denote the set of pairs
of formula that are respectively affine and linear equivalent.

The above definitions can be applied to circuits instead of formulas. We use CI, CC, CLE,
and CAE to denote the set of circuit pairs that are isomorphic, congruent, linear equivalent,
and affine equivalent, respectively. The reductions shown in [BRS95] can easily be seen to
carry over to circuits. That is, we have CI =P CC <P CLE =F CAE. Since a formula can
easily be transformed to a circuit, each Boolean formula problem is many-one reducible to its
corresponding circuit version. It follows that CLE and CAE are the computationally hardest
problems we have defined here.

We will use (fairly standard) notions of complexity theory. We refer the reader to [BDG-I&II,
HU79] for definitions of these. Here, we only give an informal description of a few notions.

Interactive proofs were defined in [GMR®&9]. Informally, a language has an interactive proof if
there is a probabilistic polynomial-time Verifier that accepts the strings in the language with the
help of an all powerful Prover with high probability, and rejects the strings not in the language
with high probability irrespective of the Prover. If the Verifier needs at most k& rounds of message
exchanges with the Prover to accept the language, we say that the language belongs to the class
IP[k] (one round consists of a question by Verifier and its answer by Prover). Arthur-Merlin
gamnes were introduced in [Bab85]. These are similar to interactive proofs with Arthur being the
Verifier and Merlin, the Prover except that here the Verifier is obliged to make all its random
bits also available to the Prover. The class AM[k] is similarly defined.

A language L is in the class BP - C if there exists a language A € C, and a polynomial p such
that for every = € L, (z,y) € A for at least 2/3 of the y’s of length p(|z|), and for every ¢ L,
(z,y) ¢ A for at least 2/3 of the y’s of length p(|z|). Similarly, one defines NP - C.



3 An Interactive Proof for BI

We show that there is a one round interactive proof for the complement of the Boolean Isomor-
phism problem, BI, where the Verifier has access to an NP oracle. It follows that BI is in BP- %
and is therefore not II5 complete unless the Polynomial Hierarchy collapses.

Our interactive proof is based on the one for GI [GMRS9] (see also [Sch88]), however, it
differs from it in one crucial aspect. Let us first recall the protocol for GI:

On input (G, Gy), the Verifier randomly picks ¢ € {1,2}, applies a random permu-
tation of the vertices of G; to obtain a new graph H and sends H to the Prover. The
Prover answers by sending j € {1,2} to the Verifier. Finally, the Verifier accepts if
and only if ¢ = j.

When the input graphs are not isomorphic, the Prover can find out from which of Gy or
G5 the graph H was obtained by the Verifier, and can therefore make the Verifier accept with
probability one. On the other hand, when the graphs are isomorphic, then no Prover can find
out the graph that was chosen by the Verifier to construct H. Therefore, the answer of any
Prover is correct with the probability at most 1/2.

Unfortunately the analog protocol for BI does not work. To see this, consider the above
protocol on input (Fy, Fy), where

= wl/\(fl \/52), and

F2 = fl/\mg.

Note that F} and F, are isomorphic (exchange z; and z5). The Verifier randomly picks 7 € {1,2},
obtains a formula G by randomly permuting F; and sends it to the Prover. However, even though
Fy and Fy are isomorphic, the Prover can easily detect from which one G has been obtained,
because of the syntactic structure of G: any permutation of F; will have three literals and any
permutation of F3 will have two literals.

It seems as what we need is a normal form for equivalent Boolean formulas that can be
computed by the Verifier. (Recall that the Verifier has access to an NP oracle.) For a formula F,
let [F] denote the set of all Boolean formulas that are equivalent to F. If we have a way to map
every formula in [F] to a particular formula in [F], then the protocol works: the Verifier can
map the formula G in the above protocol to its normal form G’, and then the Prover cannot
distinguish whether G’ is coming from Fy or F if the formulas are isomorphic.

Clearly, we cannot simply go for DNF or CNF, because this might lead to exponentially
longer formulas. Another obvious candidate for a normal form is the smallest equivalent Boolean
formula (under some suitable total ordering). However, computing this seems to require a X}
oracle, and our Verifier only has an NP oracle available.

To overcome this difficulty, we use a result from learning theory by Bshouty

et.al. [BCGKTY5).

Lemma 3.1 [BCGKT95] There is a probabilistic polynomial-time algorithm having access to
an NP oracle that learns a Boolean formula using equivalence queries. !

The scenario is roughly as follows. There is a Boolean formula F given in a black box. A
probabilistic polynomial-time machine, the learner, which cannot see F', has to compute with
high probability a formula that is equivalent to F. The learner can use an NP oracle, and

!The result is stated there only for DNF formulas, but their proof works for general Boolean formulas too.



furthermore ask equivalence queries to a teacher who knows F. That is, the learner can send
formulas G to the teacher. If F' and G are equivalent, the learner has succeeded in learning F
and the teacher will answer ‘yes’. Otherwise, the teacher will send a counter example to the
learner, that is, an 2 such that f(z) # g(z).

The most important thing to note is that the output of the learner does not depend on the
specific input formula F: because of the black box approach the learner makes the same outputs
on every F' € [F] as input. Note also that this does not provide us with a normal form because
the learner produces possibly several equivalent formulas depending on the random choices.
However, on each random path the output remains the same on any F’ € [F]. This will suffice
for our purposes.

Furthermore, the teacher can in fact be replaced by an NP oracle: an equivalence query
can be simulated deterministically by the learner, since testing equivalence of two formulas is a
coNP problem and computing counter examples can easily be done with several queries to NP.

Therefore, the above lemma gives a functional ZPPNF -type algorithm to learn Boolean for-
mulas. More precisely, we have the following.

Lemma 3.2 [BCGKT95] (restated) There is a probabilistic polynomial-time algorithm that
has access to an NP oracle such that on input of a Boolean formula F, the algorithm

e oulputs a Boolean formula that is equivalent to F with probability at least 2/3,
e never outputs a Boolean formula that is not equivalent to F, and

o uses the input F only to test its equivalence to some formula or to find counter examples
via the NP oracle.

Now the idea should be clear. The Verifier, instead of directly sending the randomly produced
formula G to the Prover, first learns G via the above algorithm and then sends the formula it
has learned. We give the full protocol below.

Theorem 3.3 BI € IP[1]"F.

Proof. The following IP-protocol accepts BI.

Input (Fy, F;) with both the formulas being over variables zq,...,z,.
Question Is Fj not isomorphic to F37

Protocol The Verifier randomly picks ¢ € {1,2} and a random permutation ¢ on n variables.
Let G = F; o ¢. Now, the Verifier uses the algorithm of Lemma 3.2 on input G to obtain
an equivalent Boolean formula G’ and sends G’ to the Prover. On those paths where the
algorithm does not make an output, the Verifier directly accepts.

The Prover answers by sending j € {1,2} to the Verifier. Finally, the Verifier accepts if
t = j, and rejects otherwise.




We show that the above protocol works correctly. If Fy is not isomorphic to Fs, a Prover
can determine to which of Fy and Fj formula G’ is isomorphic and tell it to the Verifier. Also,
on the random paths where no equivalent formula is produced the Verifier accepts. Therefore,
the Verifier accepts with probability one.

Now consider the case when Fj is isomorphic to F5. Then formula G is isomorphic to both,
Fy and F;. Since the algorithm of Lemma 3.2 has the same (set of ) outputs on any formula in
[G], any G’ that is sent to the Prover has the same probability irrespective of whether G was
obtained from Fj or F,. Hence, the Prover has no way of finding out which of Fy and F; were
used to construct G’. Thus, the best way for the Prover is to answer randomly and so its answer
is correct with probability at most 1/2. Therefore, the Verifier will accept with probability at
most 1/2 + 1/3 = 5/6 (the 1/3 comes from the paths on which the Verifier accepts without
asking the Prover).

The Verifier can execute the above protocol in parallel to obtain exponentially small bounds
on the error. This proves the theorem. a

It is known that the private coins of an IP protocol can be made public with only two
more rounds [GS89]. Moreover, a constant round AM protocol can be reduced to a single
round [Bab85]. Both results hold in the presence of an NP oracle as well. Therefore, we have

BI € AMNF,

Finally, it is known that AM = BP - NP, because in an AM protocol, Arthur can be replaced
by a BPP machine that just passes the result of the coin tosses to Merlin. After receiving the

answer, the final decision is a polynomial-time computation. Now, in AMNF the final decision
is in PNP, Therefore we have AMNY = BP . NP . PNP — BP . .

Corollary 3.4 Bl € BP - .

Schoéning [Sch89] showed that a IT5 complete set cannot be in BP - 35 unless the Polynomial
Hierarchy collapses.

Corollary 3.5 If BI is X0 -complete then PH = X5.

Bshouty et.al. [BCGKT95] show the analog result to Lemma 3.2 for circuits. Therefore we
can adapt the interactive proof for BI for the Circuit Isomorphism problem, CI which gives
CT e TP[1]NP,

Corollary 3.6 If CI is X-complete then PH = XE.

We can extend the interactive proof for BI even to the linear and affine equivalence pro-
blems. The only difference is when the Verifier randomly generates a permutation. Now, the
Verifier must randomly generate an affine transformation. To achieve this, the Verifier randomly
generates an n-bit vector and an n X n 0-1 matrix. If the matrix is singular, the Verifier accepts.
Otherwise, the protocol proceeds as in the case of a permutation.

Observe that we get an extra error because some random paths of the Verifier might lead to
singular matrices. However, the next lemma ensures that a constant fraction of all matrices are
non-singular. Therefore, the Verifier can repeat the experiment to find a non-singular matrix a
few number of times so that the probability of not finding one is very small.

Lemma 3.7 At least 1/4 of the n x n matrices over GF(2) are non-singular.



Proof. We successively choose the column vectors of a n X n matrix such that the next column
vector is linearly independent of the previous ones. The first column can be chosen arbitrary,
except that it can’t be zero. So there are 2" — 1 choices.

Any k linearly independent vectors in GF(2)" span a vector space of size 2%, Therefore,
when we choose the (k 4 1)-st column, we have 2" — 2¥ choices.

In total, [TfZ5(2" — 2%) of the 2"° n x n matrices over GF(2) are non-singular. Thus, their
proportion is

1 n—1 . n 1
o7 L1 =2 = JI0-5)
k=0 k=1

1 & 1

= - JI[(1-=) (forn>2)
2 2k

> 112[(1—i) (for n > 6)

a 2k:2 k? a

1, 1n+1

B 2(2 n )
1

> Rl

- 4

where the second line from bottom follows by induction on n. For values of n smaller than 6
also the above bound holds, as can be checked directly. O

Corollary 3.8 CAE ¢ IP[1]"F.

Proof. Let Cy and C3 be the input circuits with variables x = (24,...,2,). We have already
described the protocol of the interactive proof. It remains to show that the Prover cannot detect
which of the two input circuits was used to obtain the circuit he got, when Cy and C are affine
equivalent.

Let xA + ¢ be the affine transformation so that CQ(XA + c) is equivalent to C;. For a
random affine transformation, say xR + r, applied to C;, we get C3(xR + r). Applied to Cy, we
get C1(xR 4 r) which is equivalent to Cy3(xAR + ¢cR + r). Now note that x — xAR+cR +r

is still a random affine transformation for fixed A and c. O

Corollary 3.9 If CAE is X5-complete then PH = XE.

4 BI has AND and OR Functions

The complexity of sets can be compared by reductions. It two sets are equivalent with respect to
some reduction, they are considered as having similar complexity, where this similarity increases
the more restrictive the reduction is. As an example, in the Turing degree of SAT one can already
solve NP optimization problems while this might not be possible in the many-one degree of SAT.
On the other hand, a conjecture of Berman and Hartmanis is that the many-one degree of SAT
collapses to its isomorphism degree.

In this section we show that for BI, the disjunctive and conjunctive truth-table degree col-
lapses to the many-degree of BI. This is a consequence of BI having And- and Or-functions.

Definition 4.1 An And-function for a set A is a function ¢ : ¥* X ¥* — X such that for any
z,y € ¥*, we have x € A and y € A if and only if ¢(z,y) € A. Similar, an Or-function d for A
Julfills z € A or y € A if and only if d(z,y) € A.



Before we can define the And- and Or-functions, we need some technical lemmas providing
us with some marking or labelling mechanism for the variables of a Boolean formula such that a
labelled variable is a fizpoint of any autormorphism of the formula. It is not clear whether there
exists such labellings that are efficiently computable. However, the following weaker labelling
often suffices.

Let F' = F(z4,...,2,) be a Boolean formula. We call variables z; and z; equivalent (with
respect to F) if for any assignment « that satisfies F', we have a(z;) = a(z;). Let E(x;) denote
the set of variables that are equivalent to ;. Now consider any automorphism ¢ € Aut(F). If
@ maps x; to zx, then ¢ must map all variables equivalent to z; to variables that are equivalent
to ag, i.e., (E(x;)) = E(xg). We conclude that, in this case, F(x;) and E(z) must be of the
same size. Thus, we can label variable x; by taking n new variables yq,...,y,, and make them
equivalent to z; as follows. Define

Fy FAL(zi,y1,...,Yn), where

L(ziyr, .o yn) = N\(zi = y)).
=1

Then z; has more equivalent variables (with respect to Fj;;) than any other variable z; ¢
E(;), and hence, any automorphism of Fj; stabilizes E(xz;). Moreover, we can modify any
automorphism to pointwise stabilize E(z;) and still have an automorphism of F};;. The new
variables y; of I};) are referred to as the labelling variables.

Lemma 4.2 For all ¢ € Aut(Fy),

2. Define ¢' to coincide with ¢ on all variables not in E(xz;) and to be the identity on E(z;).
Then ¢’ € Aut(Fy;).

Now let G = G(z1,...,z,) be a second formula. We label variable z; with the same label
as x;, namely L(z;,y1,...,Yn) and define G;; = G A L(zj,91,...,9,). Then any isomorphism
for (F[i]: G[j]) must map all the variables equivalent to z; in ;] to the variables equivalent to
z; in Fp.

Corollary 4.3 For all ¢ € Iso(Fy;, G[j)),
1. o(Ec(xj)) = Er(:).

2. Define ¢' to coincide with ¢ on all variables not in Eqg(z;) and to map z; to x;, be
the identity on y1,...,yn, and arbilrary on the remaining variables of Eq(wx;). Then
s ISO(F[Z-], G[J])

It follows that when two formulas F};; and G; as above are isomorphic, we know that there
is an isomorphism that maps z; to z; and keeps the new variables from the labelling process on
themselves. We will therefore omit to explicitly mention the new variables in a label and will
simply write L(z;,n) when we label z; with n variables that do not yet occur in the considered
formula.

A more general task is to force automorphisms to stabilize a set of variables. Let x =
(z1,...,2,) and y = (y1,...,Ym), let F = F(x,y) and suppose we want to consider only
automorphisms of F that map z- to z-variables and y- to y-variables. Let n < m. Extending



the technique from Lemma 4.2, we could simply label variable y; with L(y;, m),fori=1,...,m.
However, the formula we get could increase quadratically in size. In order of being able to do
this process iteratively a logarithmic number of times, the size of the formula we obtain should
increase only linear in size. Here is a trick to achieve this. Define

S(x,y,s,M) = (iz/xi—hs) A (.\?yi—>§) AN L(s,M).

Let S = 5(x,y,s,n+ m). S has the following property: let a be a satisfying assignment of 5.
If a assigns a one to any of the z-variables, then a(s) = 1 which implies that «(3) = 0, and
therefore a must assign zero to all the y-variables. Symmetrically, if @ assigns a one to any of
the y-variables then a(3) = 1 which implies that a(s) = 0, and therefore @ must assign zero to
all the z-variables.

Now consider FFA 5. We claim that any automorphism of A S must map z- to z-variables
and y- to y-variables, unless they are equivalent.

Lemma 4.4 Let F be a formula as above such that the all-zero assignment does not satisfy F.
Let o € Aut(FAS).

1. If o(x;) = y; for some i and j, then x; and y; are equivalent with respect to F.

2. Define ¢' to coincide with ¢ on all variables where ¢ maps x- to x-variables and y- to
y-variables, and to be the identily on the remaining variables. Then ¢’ € Aut(F A S).

Proof. Any automorphism ¢ of F A S must stabilize s because of its label. Let a be an
assignment that satisfies F' A S and let ; be a variable such that a(z;) = 1 (recall that the all
zero assignment does not satisfy F). Since z; — s we have that a(s) = 1. Since y; — 3, we
have that a(y;) = 0 for j = 1,..., m. Therefore, ¢ cannot map z; to some y; in order of ¢(a) to
satisfy ' A 5. We conclude that ¢ must map z; to some z;. It follows that whenever ¢ maps,
say, z; to y;, then any satisfying assignment of F'A S assigns zero to both, z; and y;. This means
that z; and y; are equivalent (with respect to F' A S). O

We extend the lemma to isomorphisms. Let G = G(x,y). Then any isomorphism of (F' A
S,G A S) must map a- to z-variables and y- to y-variables, unless they are equivalent.

Corollary 4.5 Let F and G be formulas as above such thal the all-zero assignment does not
satisfy F or G. If (F,G) € BI then there is a ¢ € Iso(F A S,G A S) that maps all the z- to
x-variables and all the y- to y-variables.

For a last generalization step, consider again F' = F(x,y) where n = m. Now we want
to allow automorphisms of F to map z- variables to y-variables in the following way: either
x-variables are only mapped to xz-variables or z-variables are only mapped to y-variables. We
can achieve this as follows. Define

ST(x,y, 8,6, M) = (\/zi—=s) A (\/yi—3 A (s=1) A L(s,M) A L(t,M).
=1 =1

Let ST = ST(x,y,s,t,2n). As above for 5, a satisfying assignment of ST can assign a one
to either any of the z-variables or any of the y-variables, but not to both. The difference to S
is that now an automorphism of ST’ can interchange s and ¢ because they have the same label.
Now consider F* A ST. We claim that any automorphism of F* A ST



(i) either maps z- to xz-variables and y- to y-variables,
(ii) or interchanges z- and y-variables,
unless they are equivalent.

Lemma 4.6 Lel F be a satisfiable formula as above such that the all-zero assignment does not

satisfy F'. For all ¢ € Aut(F A ST),
(i) either ¢(s) = s and then we have that if p(x;) = y; for some i and j, then z; and y; are
equivalent with respect to F,
(ii) or ¢(s) = t and then we have that if ¢(x;) = x; for some i and j, then z; and z; are

equivalent with respect to F.

Furthermore, we can modify ¢ to an automorphism of FF A ST thal keeps z- on x-variables in
case (i), and interchanges x- and y-variables in case (ii).

Proof. We have to distinguish two cases according to whether an automorphism ¢ maps s to
s or t. In the case that ¢(s) = s we can directly use the proof of Lemma 4.4. If ¢(s) = ¢, then
by the same argument again, ¢ has to interchange all the z- and y-variables as well. O

Corollary 4.7 Let F and G be formulas as above such that the all-zero assignment does not
satisfy F' or G. If (F,G) € BI then there is a ¢ € Iso(F AN ST,G A ST) that

(i) either maps z- to z-variables and y- to y-variables,
(ii) or interchanges x- and y-variables,
Theorem 4.8 BI has And- and Or-functions.

Proof. Let (F{, F}) and (G, GY%) be two instances for BI, the F’s have variables z1,...,2,_1
and the G'’s have variables yi,..., Ym—1, and let n < m.
Our first step is to switch to formulas

F, = F;, ANz, and
G; = G,‘/\’ym,

for ¢ = 1,2. The new formulas have the following properties.
(a) (F|,F}) € Bl <= (F1, F3) € Bl and (G},G%) € Bl <= (G,G3) € BI, and
(b) 0™ and 0™ are not satisfying assignments of Iy, F, and Gy, Gy, respectively.

Property (b) is obvious. To see (a) note that any satisfying assignment for Fy or F, must
set z,, to one. Thus, any isomorphism for (Fy, F3) must stabilize E(z,), and hence there is an
isomorphism that stabilizes z,,. This gives an isomorphism for (F}, F}).

For constructing the And-function, we simply combine the formulas by or-ing together F; and
(G1 on one side, and F5 and G2 on the other side. However, we have to make sure that we don’t get
automorphisms that map z-variables to y-variables. For this we use formula S = S(x,y,s, M)
from above, where M = n + m. Define

And((Fl,FQ),(Gl,GQ)) = (01702), where

Cy = (FFVvGy) A S and
Cy; = (FvGy) A S

10



If (F1, Fy) € BI and (G1,G2) € BI, then clearly (Cy,C3) € BI. For the reverse direction
assume that (Cy,C3) € BI. By Corollary 4.5 there is an isomorphism ¢ that maps z- to a-
variables and y- to y-variables, i.e., ¢ can be written as ¢ = ¢, U ¢, U ps, where ¢, is a
permutation on {z1,...,2,}, ¢, on {y1,...,y,}, and @g on the extra variables from formula §.
Moreover, ¢, has to be an isomorphism for (Fy, F,): we know that ¢;(0™) = 0, and g2(,(0™)) =
g2(0™) = 0. Therefore, we must have fi(a;) = f2 o ¢r(a,) for any assignment a, of the z-

variables.
By a symmetric argument we have that ¢, must be an isomorphism for (G4, G3).
For constructing the Or-function, we need a copy of the variables x = (24,...,2,) and

y=(y1,...,Ym) used yet. Let u= (uq,...,u,) and v = (v1,...,0y). Define

Or((Fl,Fg),(Gl,Gg)) (Dl,Dg), where
Dy (Fi(x)VGi(y)) V (Fa(u) VGa(v))) AR and
Dy = ((Fa(x)VGi(y)) V (Fi(u)V Ga(v))) A R, where

R = S((x,u),(y,v),s0, Mog) N ST((x,y),(u,v),s,t, M),

where My = n+m and M = 2My. (The additional brackets for the variables in formulas S and
ST indicate the two groups of variables occuring in the definition of these formulas.)

The rough idea of this definition is that if one of (Fy, F3) or (Gy,G3) are isomorphic then
we can use such an isomorphism for (Dy, D3) extended by the identity mapping for the other,
maybe non-isomorphic, pair. Formula R will ensure that we don’t get more isomorphisms than
the ones just described.

Suppose first that (Fy, F) € BI and let ¢, be an isomorphism. Let o, be ¢! but on the
u-variables. That is, define

eu(w) = uj, i g7t (e) = 2;.

Define ¢ as the union of ¢, and ¢, and the identity on all the other variables of D5. Then it is
straight forward to check that ¢ is an isomorphism of (Dy, D3) which is therefore in BI.
Now assume that (Gy,G3) € BI via isomorphism ¢,. Then we get an isomorphism ¢ for

(D1, D3) as follows. Define

Uy, 99(5) = t7
Ti, (t
yi, if oy(y:) = vj, ©(s0
= vy, iy (m) = y;.

— e
(l
VA

6666
B
[

The remaining variables coming from the labelling process are mapped according to the variables
they are equivalent to.
In summary, the isomorphisms we constructed have the following property:

(i) either they map s and ¢ to itself, respectively, and map z- to z-variables, u- to u-variables,
y- to y-variables, and v- to v-variables,

(ii) or they interchange s with ¢ and interchange z- with u-variables and y- with v-variables.

Conversely, if there is an isomorphism for (D, D;) fulfilling property (i) or (ii), then it is easy
to see that we get an isomorphism for either (Fy, Fy) or (G1, G3) from it, respectively. We now
show that every isomorphism for (Dy, D) must (almost) satisfy one of these two properties.

11



Assume that (Dy, D3) are isomorphic. We consider formula R. By Corollary 4.5, its first
part, S((x,u),(y,V),s0, Mg), implies that there is an isomorphism ¢ of (D, D3) that can be
written as a union of permutations ¢, , on z- and u-variables, ¢, , on y- and v-variables, s on
s and t, and ¢r, for the remaining variables from the labelling. Combined with its second part,
ST((x,y),(u,v),s,t, M), we get by Corollary 4.7, that ¢, ,, depending on s, either maps all
xz-variables to z-variables or interchanges z- and w-variables. The same holds analogously for
@yv. Thus we get an isomorphism fulfilling property (i) or (i) above. a

We remark that we can extend the And- and Or- functions to more than two arguments by
combining them in a binary tree like fashion with the above functions for two arguments. Since
the size of the output of our And- and Or- function is linear in the size of the input formulas, it
is polynomial when having more arguments.

Corollary 4.9 If a set L is disjunctively or conjunctively reducible to BI, then L <P BI.

We give two applications of Corollary 4.9. The Boolean Automorphism problem, BA, is
disjunctively reducible to BI, because a formula F' = F(#1,...,2,) is in BA if and only if for
some pair ¢, j € {1,...,n}, i # j we have that (Ff;), F{;) is in BI. It follows that BA is many-one
reducible to BI.

Corollary 4.10 BA <P BI.

We have already seen that Bl is coNP hard. Unique Satisfiability (USAT) [BG82] is the set of
all Boolean formulas that have exactly one satisfying assignment. The function F(z1,...,2,) —
(FANz) V (A2 @i AZ) reduces unsatisfiable formulas to uniquely satisfiable ones. Therefore
USAT is coNP hard. Since USAT can be written as the difference of two NP sets, USAT is in
DF, the second level of the Boolean Hierarchy. On the other hand, USAT is not known to be NP
hard. The function F(z1,...,z,) — (F, A\l z;) reduces USAT to BC, the Boolean Congruence
problem. Since BI =, BC [BRS95], USAT can be reduced to BI.

A seemingly harder problem than USAT is the Unique Optimal Clique problem (UOCLI-
QUE), that is, whether the largest clique of a given graph is unique. The standard reduction
from SAT to CLIQUE also reduces USAT to UOCLIQUE. An upper bound for the complexity
of UOCLIQUE is PNPllogl: with logarithmically many queries to an NP oracle one can compute
the size of the largest clique of a given graph. Then, with one more query, one can find out
whether there is more than one clique of that size. Papadimitriou and Zachos [PZ83] asked
whether UOCLIQUE is complete for PNPlogl  This is still an open problem. Buhrman and
Thierauf [BT96] provide strong evidence that UOCLIQUE is not complete for pNPllog],

UOCLIQUE can be disjunctively reduced to USAT [BT96]. To see this let UCLIQUE be
the unique CLIQUE version. That is, given a graph G and a integer k, decide whether G has
a unique clique of size k. Now, observe that G € UOCLIQUE <= 3k :(G,k) € UCLIQUE.
Since the Cook reduction is parsimonious, this provides a disjunctive reduction of UOCLIQUE
to USAT.

Combined with the reduction from USAT to BI, we have that UOCLIQUE can be disjunc-
tively reduced to BI. By Corollary 4.9, this can be turned into a many-one reduction.

Corollary 4.11 UOCLIQUE <P BL

As for UOCLIQUE, it is not known whether BI is NP hard.
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5 The Counting Version of BI

Mathon [Mat79] showed that the counting version of the Graph Isomorphism problem can be
(truth-table) reduced to the decision version. Thus GI behaves differently than the known NP
complete problems. This was historically the first hint that GI might not be NP complete.

We will show an anlogous result for BI. The proof follows essentially the one for GI, however,
there is again a technical difficulty to get around. For GI, the idea is as follows. First of all
it is enough to compute the number of automorphismn of a graph G, because there are exactly
as many isomorphism to any graph, G is isomorphic to. In the beginning, label all nodes of GG
(with pairwise different labels), so that the identity is the only automorphism of the resulting
graph. Then successively take away the labels. If ¢ is the node where the label was cancelled
last, compute the orbit of ¢ by asking queries to GI. When all labels are taken away, the number
of automorphisms of GG is the product of the orbit sizes constructed during this procedure.

In the above algorithm one needs to construct a graph Gyp, where I C {1,...,n} such that
any automorphism of G/ pointwise stabilizes the nodes in I. Correspondingly, given a formula
F in n variables, we need to construct a formula Fi;y whose set of automorphisms (roughly)
corresponds to the pointwise stabilizer of I in Aut(F’). More precisely, Fiy; must retain exactly
those automorphisms of F' that map variables in E(xz;) to themselves, for all ¢ € I. Observe that
the labelling method given in Section 4 takes m new variables to label a variable in a formula
with m variables. Thus, starting with n variables, we would get n(2/!l — 1) new variables to
carry out the marking which is exponential in n when |I| = O(n). This is clearly too much in
general.

Here, we give a method of computing Fijj that works in FPNP. Recall that BI is coNP hard.
Therefore we can especially use this method when having BI as an oracle.

Lemma 5.1 Fjj is computable in FPWP.

Proof.  Recall from Section 4 that for any automorphism ¢ of F, we have |E(z;)| = |E(¢(2;))]
for any variable z;. The trick in Lemma 4.2 was to make |E(z;)| unique by appending enough
equivalent variables to z;. Now, with an NP oracle, we can actually compute sets E(z;) by
finding out whether F' is equivalent with F' A (2; < z;), for all j. Then, if we want to label z;,
we take the smallest label such that z; gets a unique number of equivalent variables. This will
keep the number of new variables needed small.

We construct formula Fiy) by successively labelling the variables in I. Let Fo = F. Suppose
that we have already labelled the first k£ variables of I and obtained the formula Fj, for some
k > 0. Say that x; is the next variable to label, for some ¢ € I. That is, x; is not equivalent to
any of the variables already labelled. Now, let ¢ be the smallest number such that, with respect
to Fj, we have

|E(@i)| + 1 # |E(x;)| forany z; ¢ E(x;),

and define Fy1y = Fj, A L(z;,t). This ensures that any automorphism of the new formula Fj
stabilizes the set E(z;). Thus Fi41 has the desired property. Furthermore, the only equivalence
class of variables that changed in this process is F(z;) which has now all the new variables added
to it. Therefore, no equivalence class will have size more than n during any stage of the above
construction, and thus the number ¢ will be at most n. It follows that in total at most n? new
variables are introduced, and the construction works in polynomial time. a

Using the labelling technique from Lemma 5.1, we can compute the number of isomorphisms
of a Boolean formula in polynomial time relative to BI.
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Theorem 5.2 #BI ¢ FPﬁI.

Mathon’s algorithm for computing the number of isomorphisms of two graphs is an inductive
process, where at each intermediate stage one knows the number of isomorphisms of the labelled
graphs that are considered. This observation led to the result that GI € LWPP [KST92]. Since
LWPP is low for PP, that is, PPYWFP — PP [FFK94], it follows that GI is low for PP.

Using Lemma 5.1, an analogous argument shows that BI ¢ TWPPNP. Since PPIWF
PPNF| we get kind of a lowness result for BI.

PNP .

Theorem 5.3 PPB! = ppNP,

6 BI is self-reducible

A set A is self-reducible if, very informally, the decision problem whether a given instance z
is in A can be reduced to the same problem but for smaller (under some ordering) instances.
Self-reducibility is a very useful property of a set. For example, if an NP set is self-reducible
then the (seemingly more complex) construction problem, i.e., constructing a witness, can be
reduced to the decision problem. In this section we show that BI is self-reducible.

Definition 6.1 A partial ordering < on ¥* is polynomially related if < is decidable in polyno-
mial time and there is a polynomial p such that

(i) for any x,y € ¥*, we have © < y = |z| < p(|yl),

(ii) any chain is polynomially length bounded, that is, if 11 < x3 < --- < x, then k < p(|zg|).

Definition 6.2 A set A is self-reducible if there is a polynomially related partial ordering <
and a deterministic polynomial-time Turing machine M such that

(i) M4 accepts A and

(ii) on input x and any oracle B, MPB queries only strings y such that y < .
Theorem 6.3 BI is self-reducible.

Proof. We first give an informal description of the self-reducing machine for BI. For two
formulas F and G, we have that

(F,G) € BT <= 3i,j: (F}y,Gp;) € BL

Thus, the self-reducing machine simply constructs these formulas for all values of 7 and 5 and
queries the oracle. However, we need to define a polynomially related partial ordering according
to these queries. There are some subtle points that one has to take care of.

The self-reducing machine uses the labelling scheme from Lemma 5.1, which yields a poly-
nomially sized formula even after several labellings. To ensure polynomially-sized chains, the
machine must check if some variables in F' and G are already labelled, and, in this case, not
relabel them. This is possible since a label is easily detectable: it is of the form x < y. We use
the variable with the smallest index as a representative for a label and call it a basic variable of
F. Note that the variables that don’t have a label are also basic variables. The other variables
we refer to as labelling variables. The label size of a basic variable is the number of labelling
variables labelling it.

14



When all the basic variables of F and G have a unique label size, they define a permutation
on the variables which the machine can use to permute the variables of F. Then it checks if the
permuted formula F is equivalent to . This checking is done by setting the first variable of
both formulas to zero and one, respectively, and then verifying that both pairs of the resulting
formulas are equivalent. Note that all tests can be done with BI as an oracle.

The underlying polynomially related partial ordering < is defined in the following way.
By True, we denote a fixed formula over n variables that is a tautology (e.g., Ai=;(z; V &;)).
In the following, we drop the subscript n and simply write True to denote such a formula
when the number of variables is clear from the context. For formulas F,G, F',G’, we define
(F,G) < (F',G") if |F| and |G| is bounded by a fixed polynomial in |F’| and |G'| respectively,

and one of the following conditions hold:

(i) the number of basic variables in F' is less than that in F’, and either G = True or the
number of basic variables in G is less than or equal to that in G,

(ii) the number of basic variables in G is less than that in G', and either F' = True or the
number of basic variables in F is less than or equal to that in F’, or

(iii) the number of basic variables in F’ and G equals that in F’ and G’, and more basic variables
in F and G have unique label sizes than in F’ and G’, respectively.

We now describe the self-reducing machine, M, in detail. At several places, M has to test
whether a Boolean formula 7" is a tautology. This is done by checking that (7[0], True) and
(T[1], True) belong to BI, where by T'[b], b € {0,1}, we denote the formula obtained from 7' by
setting its first basic variable—and the labelled variables associated with it—to the value b.

Let F and G be formulas over variables zq, ..., z,.

M on input (F,G) first checks if any of F' and G equals True. If both of them do,
then they are isomorphic and so M accepts. If exactly one of them, say G, does,
then F and G are isomorphic if F is also a tautology. This can be checked using the
scheme described above. M accepts iff F is a tautology.

If none of F and G equals True, M does the following. It detects the basic variables
of F" and G, and finds out if any two basic variables of F’ are equivalent by checking
if the formula TF; ; is a tautology, where

TFJ'J' = (F N (:UZ — x])) — F,

for every pair of basic variables z; and z; of F. If T, ; is a tautology then z;
and z; are equivalent in F’, otherwise not. If there are z; and z; in F’ that are
equivalent then M accepts iff (F’,G) € BI where F' is obtained from F by replacing
all occurrences of z; in F’ by z;. Then we ‘and’ the formula z; < z; to the resulting
formula. By this transformation, F and F' are equivalent and F’ has one less basic
variables than F. If F has no equivalent basic variables, then the above is repeated
for G instead of F.

If no two basic variables of F or G are equivalent, M computes, for each basic
variable, its label size. It then checks whether these numbers of F and G match. If
not, then M rejects as there cannot be any isomorphism between F and G.

If the numbers match, and all basic variables of F are uniquely labelled, then M
constructs a permutation ¢ of variables of F' such that ¢(a;) = «;, where the label
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size of z; in F and z; in G are the same. ¢ also maps labelled variables associated
with z; to those associated with z;. Now, M permutes the variables of F' using ¢
to obtain the formula F o ¢ and then checks whether F'o ¢ <+ G is a tautology, and
accepts in this case.

Finally, if there are some basic variables of F with identical label sizes, for every
such variable z; of F', and for every basic variable z; of G that has the same label
size, M queries the oracle whether (Fy;;, G[;1) € BI. It accepts iff at least one of these
pairs belong to BI.

It is straight forward to see that M respects the partial order defined above, works in polynomial-
time, and accepts BL a
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