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Abstract

We define and examine several probabilistic operators ranging over sets (i.e., op-
erators of type 2), among them the formerly studied ALMOST-operator. We compare
their power and prove that they all coincide for a wide variety of classes. As a con-
sequence, we characterize the ALMOST-operator which ranges over infinite objects
(sets) by a bounded-error probabilistic operator which ranges over strings, i.e. finite
objects. This leads to a number of consequences about complexity classes of cur-
rent interest. As applications, we obtain (a) a criterion for measure 1 inclusions of
complexity classes, (b) a criterion for inclusions of complexity classes relative to a
random oracle, (c) a new upper time bound for ALMOST-PSPACE, and (d) a char-
acterization of ALMOST-PSPACE in terms of checking stack automata. Finally, a
connection between the power of ALMOST-PSPACE and that of probabilistic �����
circuits is given.

1 Introduction

In a fundamental paper, John Gill introduced probabilistic Turing machines and the com-
plexity classes they define [18]. During the run of their computation these machines have
the possibility to toss fair coins, and then continue their work depending on the outcome.
In the polynomial time case this yields the well-known classes �	� (for probabilistic poly-
nomial time; with unbounded error probability) and 
��	� (for bounded error probabilistic
polynomial time) which are regarded as natural probabilistic counterparts of the deter-
ministic class � ; and moreover 
��� is felt to be the class of “tractable” problems (since
the error bound can be made arbitrarily small).
�
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But how do define probabilistic analogues for other (possibly not deterministic)
classes? The “traditional” way is to consider operators in an abstract way as we will
do in this paper. This kind of randomness can best be visualized as allowing Turing ma-
chines access to a random tape, or equivalently supplying them together with their regular
input with an input sequence of random bits. Thus, here the random bits may be mul-
tiply accessed. (This should be contrasted with the machines with built-in probabilism
described above: If those machines want to re-use their random bits later, they have to
store them on their worktape—which might make a difference for space-bounded compu-
tations. Therefore the aforementioned built-in probabilism is also called one-way access
to randomness, see [30].)

Well known examples for operators as just described are Wagner’s counting operator���
[44], and the corresponding bounded error operator BP

�
(see e.g. [37]). It is relatively

easy to see that
� �
��� �	� and BP

�
��� 
��� , i.e. when applied to the class � these

operators yield as results the classical probabilistic classes. But the operators can be
applied in a general way to arbitrary classes � , giving

� � � and BP
�
� . For example, the

class BP
���
� has attracted some attention and has been shown to be equal to Babai’s class

AM (for “Arthur-Merlin,” a class defined in terms of interactive proof systems, see [3]).

Yet another approach to define probabilistic computation is to consider complexity
classes of the form ALMOST- � , see e.g. [1, 6, 9, 10, 11, 28, 30]. ALMOST- � is defined
to be the class of all sets which are in �	� for almost every oracle A. For example, 
��
ALMOST- � if and only if the set of all  such that 
�� � � has measure 1 (in the usual
product measure on sets, for details see Section 2). Thus, the machines have here in this
case in a sense some kind of access to a database (oracle), and they are required to work
correctly for almost all such databases.

It has been observed that in a number of classes, the ALMOST- and the BP
�
-operator

coincide, e.g. ALMOST- ��� 
��	� and ALMOST-
�
��� AM [6, 28]. However, the

general relationship between the operators is open. Especially, no characterization of
ALMOST- ��� ��� ��� is known.

In this paper we introduce a type-2 probabilistic quantifier, which we will denote by
BP � , and show that for a wide variety of classes, the ALMOST- and the BP � operators
coincide, i.e., ALMOST- � � BP ��� . “Type 2” means that the operator is based on a
quantifier that does not range over words but over sets (databases, i.e., oracles). Thus
ALMOST-classes are classes accepted with bounded-error probability by machines with
access to a random database. Moreover, it is not too hard to see that the type-2 operator
BP � can often be replaced equivalently by a “classical” operators ranging over finite (i.e.,
type 1) objects (words). The most important special case here is the case of so called leaf
language definable classes � (a definition is given in Section 2). Here we see that the BP�
operator coincides with a type-1 operator ranging over exponentially long strings (com-
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pared to the length of the input), in contrast to the usual quantifiers where polynomially
long words are considered. We will denote this new operator by BP � � � . Combining this
with the above, we get for such � that ALMOST- � � BP � � � BP � � � � , for example
ALMOST- ��� ��� ��� � BP � � � ��� � � ��� or ALMOST- �� � BP � � � �	� . Thus, in this case
it turns out that working in the “ALMOST-mode” is equivalent to working with random
input sequences. We think this characterization is advantageous compared to the defini-
tion since here we only have to deal with finite objects (strings) in contrast to (infinite)
oracles.

We give several applications of our characterization: Since for all classes � , BP
�
� �

BP ��� , we see that a relativizable inclusion � �
�

BP
�
� � implies the measure 1 inclusion

� �
� � � . As a consequence, we show that e.g. the set of all oracles relative to which the

polynomial time hierarchy is strictly included in � � has measure 1 (a result which has
already been proved by Regan and Royer [35]). We improve the best known EXPSPACE
upper bound for ALMOST- ��� ��� ��� to � � � ��

��� � � �� . We prove that ALMOST- ��� ��� ���

allows a machine characterization in terms of checking stack automata. These automata
were introduced by Oscar Ibarra in [21], where it was also shown that when working
nondeterministically these machines are strictly power powerful than when working de-
terministically. Our results imply that the nondeterministic mode is (under reasonable
complexity theoretic assumptions) even more powerful than the bounded-error proba-
bilistic mode. Finally, we draw a connection between the power of ALMOST- ��� ��� ���

and a problem from circuit complexity by showing that proving upper bounds for prob-
abilistic

� � � circuits better than the up to now known 
��	� -bound will result in better
upper bounds for ALMOST- ��� � � ��� .

All in all we see that our systematic comparison of several ways of introducing ran-
domness into computation allows us to improve a number of results for complexity classes
of current topical interest. Along the way, we get new insights into the relationship be-
tween statements holding for a measure 1 set of oracles and statements holding for an
algorithmically random oracle in the sense of Martin-L öf (see [10]), thus improving re-
sults in [9, 22].

2 Preliminaries

We assume that the reader is familiar with basic complexity theory notions, classes and
reducibilities, see e.g. [4, 32]. Let �
	������� denote the set of finite binary words, whereas
�
	������� denotes the set of infinite binary words. Following common use, we identify a
language, i.e. a subset of �
	������� , with its characteristic sequence, which is an element of
�
	����� � . For � ���
	����� � we denote the � -th bit of � by ������� . Similarly, for  ���
	����� �
we denote the � -th bit of  by ������ . Using the lexicographic ordering of �
	������� , there is

3



a natural bijection between �
	������� and the set � � of natural numbers. Thus, we will also
write  ��� � for � � �
	����� � and  � �
	����� � . We then mean the bit in  at “position � ,”
i.e. ���� � �  if � �  and ���� � � 	 otherwise.

For concreteness, we fix the following pairing function: Let � ��� � �
	����� � , ���
� ������� ��� 	
� , � � � ������� ��� �� , where � � ������������� 	
� ��� � ������� ����� �� � �
	����� . Then we define� � ����� ��� ��� � � � ������� � � 	
� � � 	
� 	��� � � ������� � � �� � � �� .

Let ����� ���! �" # be a recursive enumeration of all oracle Turing machines. Let � �� ��$ � be
the result of ��� ’s work on input $ and oracle  if this computation stops, and let � �� �%$ �
be undefined otherwise. Define 
 �&����� �'� �%� � �  ��$ �)(*� �� �%$ � �  � and 
 �&� �� � ��� ����+$,(�� �� �%$ � �  � .

A class �.-0/ 1 �325476�8 �79&:�; 476�8 �79=< is a relativized class if and only if there exists a recursive
function > (the enumeration function) such that

? ���@ -BAC1 ��$ � halts for every D���$ �� with result 0 or 1.
? � -0/ 1 � � 
 �7� @ - A�1 �'(�D �E� � � .
Define � � �'� �%� � 
 �&� �@ -BAC1 �F(�D �E� � � and ����� ��� �HG .

Proposition 2.1 For every relativized class � -0/ 1 , every set in � � is recursive in  . Par-
ticularly, every set in � is recursive.

Proof. By the requirement that the machines that form a recursive enumeration halt on
all their inputs. ❑

We say that a relativized class � is invariant under finite variations of the oracle, if
and only if � � � �JI for every  �LK � �
	������� such that HMNK is finite. A relativized
class � with enumeration function > is uniformly invariant under finite variations of
the oracle, if and only if for every � � �
	������� and every � �O� � there exists a D �
� � such that for all oracles  we have 
 �7� 	 / �@ - � 1 � � 
 �7� �@ - A�1 � , where � �  is defined
as � �  �P� � 2 � ����� � �Q( �R( �  �L( �R(�S  �  �Q( �R(TS 2 � ����� . Note that the uniform invariance under
finite variations of the oracle implies the (simple) invariance under finite variations of the
oracle.1

A special type of relativized classes are those defined by leaf languages (see [12, 20]
and the recent textbook [32]). Let �
UV� ���W �" # be a recursive enumeration of all polynomial
time nondeterministic oracle Turing machines such that for every � �,� � , every oracle 
and every input $ , every path of UV� on input $ with oracle  is time bounded by ( $R( � S��
and produces a symbol from some finite alphabet �X� . Let Y �Z\[ ��$ � be the string of the
such produced symbols (based on the natural order of paths of the machine). For some

1Merkle [27] has pointed out that the converse can also be shown using the patching methods from [26].
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K � � � , the class �&K � � -W/ 1 is the class of all languages 
 for which there is some � � � �
such that 
 � � �  �C$ � (�Y �� [ �%$ � � K � . In this case, K is the so called leaf language

defining class � K � � -0/ 1 . As above, define �&K � � � for some oracle  and �&K�� ��� � K � � G .
Note that every �&K � � -0/ 1 is uniformly invariant under finite variations of the oracle.

Let ��� 2 476�8 �79 :�� � 	���	� be the product measure based on the measure � 6 � 2 476�8 �79 �
� 	���
� which is defined by � 6 ���
	�� � ��� 6 ������ � � �

� . If
� � � � is some predicate with a free

set variable, then we write also �  � � �  � � instead of � � �  ( � �  � � � .
We will use the following well known fact:

Proposition 2.2 (Kolmogorov 0-1-law) If � � �
	�����
� is measurable and closed under
finite variations, then either � �� � � 	 or � �� ���  .

We will also make use of the following observation, which is an immediate conse-
quence of the Lebesgue Density Theorem (see also [36, p. 272] or [28, Fact on p. 163]):

Proposition 2.3 Let � -0/ 1 be a relativized class with enumeration function > , which is uni-
formly invariant under finite variations of the oracle. Let ��� 	 and let 
 be a language.
Then for every � � � � such that � �� 
�� 
 �&� �@ - � 1 � ��� 	 there exists a D � � � such that
�  � 
 ��
 �7� �@ - A�1 � ��� ���� .

3 Bounded-error probabilistic operators

In this subsection we will introduce several bounded-error probabilistic operators. We
start with “classical” operators, i.e. operators based on quantifiers which range over (fi-
nite) words. Let ��� �
	��� � ��� � � be any recursive function. For relativized classes � -W/ 1
we define the operators BP� , BP

�
, and BP � � � as follows:

? 
 � BP ��� iff there exists an 
�� � � such that for every $ ,

� ���N( ( ��( ��� �Q( $R( �! ��$ � 
�" �$# � � $ �%�X� ��� 
 � � �'&
2
( � 2 � - � )T� 1 �

? 
 � BP
� � iff there exists a polynomial * such that 
 � 
��,+ �

? 
 � BP � � � � iff there exists a polynomial * such that 
 � 
�� �.- �
A result by Nisan and Wigderson [28] states the coincidence of BP

�
and BP � � � when

applied to some important complexity classes (Note that � � / -machines can have access to
the bits of an exponentially long auxiliary input string via a special index tape):

Theorem 3.1 BP � � � � � / � BP
� � � / and BP � � � � � / � BP

� � � /
for every 01& 

5



Type 2 operators are operators ranging over languages (oracles). More specifically,
let � -0/ 1 be a relativized class. (If no confusion can arise, we will from now on omit

the superscript � � � .) Then we define type 2 operators ALMOST-, BP� , �BP � , and
�
BP � as

follows:

? 
 � ALMOST- � iff � �� 
 � � � � �  .
? 
 � BP ��� iff there exists an 
���� � such that for all $ ,

�  ��$ � 
�" �  ��$ � � 
 � �,& � � .
? 
 � �BP � � iff for every polynomial � there exists an 
 ��� � such that for all $ ,

�  ��$ � 
 " �  ��$ ��� 
 � �,& �� 2���� - � )T� 1 .
? 
 �

�
BP � � iff there exists an 
���� � such that � �� 
 � � $�(��  �C$ � � 
 � � � & �� .

In the definition of ALMOST- and
�
BP � the condition on oracle  makes use of all

instances of  . Thus the use of infinite objects in this definition seems to be unavoidable.

The situation is different for the operators BP � and �BP � where the conditions on an oracle
involve only single inputs $ . Since the underlying machines halt for every input $ with
every oracle  , only a finite part of the oracle (whose length is computable) is really
used. This suggests that for every relativized class � there exists a recursive function �
such that BP � ��� BP ��� . However, there are technical difficulties to state such a general
theorem since if we simulate machines with oracle queries by machines which instead
consult their input bits in a straightforward way, then we end up with another relativized
class. However, we are especially interested in the case of leaf language defined classes,
and there we can prove the following:

Proposition 3.2 BP � � K � � � BP � � � �&K�� � for every recursive set K .

Proof. We just noted that by simply replacing oracle queries by consuming input bits
we might leave the relatived class under consideration. However, in the case of leaf
language classes the robustness of the underlying class of machines allows the required
simulation. To be more precise, for every polynomial time machine � with run time � we
can construct a machine � � such that �  ��$ � � 
 �&� � if and only if � # � � $ �%�X� � � 
 �7��� � ,
where � is the length

2�� - � )T� 1
	 � �  prefix of  .

Vice versa, we find for every polynomial time NTM � and every polynomial * an
NTM � � such that for every $ and every � of length

2 + - � )T� 1 we have � # � � $ �%�X� � � 
 �&� � if
and only if �  ��$ ��� 
 �7� � � for every oracle  with prefix � .

Thus, we see that though the accepted language changes when we go from � to � � ,
the obtained classes under the operators BP � and BP � � � are the same. ❑
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Corollary 3.3 1. BP � ��� BP � � � � for � �
�
� , co

�
� , � � / , � � / , � � / , � � / (for 0 & 2

),
��� , � � , �	� , ��� ��� ��� , and many others.

2. BP ��� � BP
� � .

Proof. Statement 1 follows immediately from Proposition 3.2. The proof for Statement
2 is very similar. ❑

Corollary 3.4 If � � �&K�� � for a recursive K , then every set in the class BP ��� is recur-
sive.

We say that class � -0/ 1 has the amplification property, if BP ��� � �BP � � . We say
that �.-0/ 1 with enumeration function > has the uniform amplification property, if for every
polynomial � and every � � � � there exists a D � � � such that for every oracle K and
every input $ , if � ��%$ � 
 �&� ��� I@ - � 1 � �,& �� then �  �%$ � 
 �7� ��� I@ -BAC1 � � & �� 2���� - � )T� 1 ; and if

�  �%$
	� 
 �7� ��� I@ - � 1 � ��& � � then �  ��$�	� 
 �&� ��� I@ - A�1 � �,& �� 2 ��� - � )T� 1 .
It is straightforward to verify that the following classes have the uniform amplification

property (see [37]):
�
� , co

�
� , � � / , � � / , � � / , � � / (for 0�& 2

), ��� , � � , �	� , ��� ��� ��� ,
and many more.

4 Relationships between different operators

We start with the following inclusion chain between classes defined by the different type
2 operators:

Theorem 4.1 If � is a relativizable class which is uniformly invariant under finite varia-
tions of the oracle, then

�BP � � �
ALMOST- ���

�
BP � � �

BP � � �

Proof. Let > be an enumeration function for � .

�BP � � �
ALMOST- � : Let 
 � �BP � � . Then, for every 0 �E� � , there exists a machine

� @ - � 1 such that � ��%$ � 
��� $ � 
 �7� �@ - � 1 � ��& �� 2 � � � )T� �
/
� � . Now, � �� 
 � � � �,&

�  � 
 � 
 �7� �@ - � 1 � � � �� �  � 
�	� 
 �7� �@ - � 1 � � , and �  � 
�	� 
 �&� �@ - � 1 � � � � �����$ ��$ �

 " $�	� 
 �7� �@ - � 1 � � ����� ) � ��%$ � 
 " $�	� 
 �7� �@ - � 1 � ����� )

2 � � � )T� �
/
� � � 2 � /

.
Hence, � �� 
 � � � ��& �� 2 � /

for every 0 ; i.e. 
 � ALMOST- � .

ALMOST- � � �
BP � � : Let �  � 
 � � � � �  . Then there exists an � � � � such

that � �� 
 � 
 �7���@ - � 1 � ��� 	 . By Proposition 2.3 there exists a machine � @ - A�1 such that
�  � 
 ��
 �7���@ - A�1 � ��& �� .
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�
BP � � �

ALMOST- � : Let � �� 
 � 
 �7� �@ - � 1 � � & �� . By Proposition 2.3, for every
��� 	 there exists a D �E� � such that �  � 
 � 
 �7� �@ - A�1 � �,&  � � . Hence, � �� 
 � � � � �
 .

Finally,
�
BP � � �

BP � � is obvious. ❑

An immediate consequence is that we obtain the equivalence between all type 2
bounded-error probabilistic quantifiers for classes which have the amplification property.

Corollary 4.2 If � is a relativizable class which is uniformly invariant under finite vari-
ations of the oracle and has the amplification property, then

BP � ��� ALMOST- ���
�
BP � ��� �BP � � �

The first equality of the just given corollary was proved independently, and in fact
somewhat earlier, by Merkle and Wang in [26]. The special case ALMOST- � � BP � �
can already be found in [30].

In the light of Proposition 3.2 this result says that all our bounded-error probabilistic
operators of type 2, which are defined by quantifiers over infinite sets, can also be defined
by quantifiers ranging over finite words, when we deal with leaf language defined classes.
This makes these operators easier to understand and to handle.

Corollary 4.3 For any recursive K such that � K � � has the amplification property, we
have ALMOST- �&K�� � � BP � � � �&K � � .

Thus, we get as consequences all the known results about ALMOST-classes men-
tioned in the introduction, i.e. (1) ALMOST- � � 
��	� , (2) ALMOST-

�
� �

BP
� �
� � AM, (3) ALMOST- ��� � BP

�
��� � ��� ; but as well characterizations of

ALMOST-classes which are of current topical interest, where no coincidence with a “clas-
sical” class is known, e. g. (4) ALMOST- �	� � BP � � � �	� , (5) ALMOST- ��� ��� ��� �
BP � � � ��� ��� ��� . Observe that for the equalities (2) and (3), we need Theorem 3.1, which
builds on the pseudorandom numger generator construction from [28]. A similar newer
construction of a pseudorandom generator for space-bounded computations is presented
in [29]. One might first suspect that this newer generator leads to a positive settlement of

the ALMOST- ��� ��� ������ ��� ��� ��� question, but this is not the case since this genera-
tor can only fool a machine with one-way access to its random bits. These questions are
discussed in the appendix of [30].

The following result shows that for almost all oracles  , the class of recursive sets in
� � coincides with ALMOST- � . Let

� ���
denote the class of all recursive sets.
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Theorem 4.4 If ��� �&K � � for a recursive set K and if � is uniformly invariant under
finite variations of the oracle, then

� �� ALMOST- ��� � � � � ��� � � 5�

Proof. 1. Because of ALMOST- � �
BP ��� and Proposition 3.4 every 
 � ALMOST- �

is recursive. Hence, �  � ALMOST- � 	� � � � � ��� � � � �� ALMOST- � 	� � � � �
�  ��� 
 � 
�� ALMOST- �  
�	� � � � � ��� �����  ����	��
��� ��� �  ( 
 	� � � � � � 	 , since
this is a countable union of measure 0 sets.

2. We conclude as follows: �  � � � � � ��� 	� ALMOST- ��� � � ���� 
 � 
 �
� � � � ���  
 	� ALMOST- � � � � � �����  ������ �  ( 
 � � �  � K � 
 � � I ���
 �
����� � � �  ������ �  ( 
 �	� � �  � K � 
 � � I � � 	���� 	 , where the third equality is a
consequence of Proposition 2.2. ❑

Bennett and Gill [6] showed that the class of all oracles relative to which 
��	� � �
has measure 1. Using the operator BP � , we can generalize this result for a large variety of
relativized classes instead of � .

Theorem 4.5 If � � �&K � � for some recursive set K and if � has the uniform amplifica-
tion property, then

�  � BP � � � � � � � � 5�

Proof. The proof follows the one given by Bennett and Gill for their just mentioned
result.

Recall that U � �LU � ������� denotes an effective enumeration of all polynomial time ma-
chines, where for every � , UJ� is time-bounded by the polynomial � � S � . Define a function
> as follows: For every � � � � , let > � ��� be the index (in our enumeration of all oracle
Turing machines, see Section 2) of the machine which on input $ simulates all paths of
U � and then accepts iff Y �� [ �%$ ��� K . Obviously �&K � � � � � 
 �&���@ - � 1 ��( ��� �

� � .
Fix a number 0 & 	 . By the uniform amplification property there exists a function� such that for every  , if � � �%$ � 
 �7� � 8 !@ - � 1 � �1& �� then � � �%$�� 
 �7� � 8 !@ -#"C- � 101 � � & '�2 � � / � )T� � � �

/
� � , and if � � �%$ � 
 �7� � 8 !@ - � 1 � � � �� then � � �%$ � 
 �&� � 8 !@ -$"�- � 101 � � �

2 � � / � )T� � � �
/
� � .

Now, it will be our goal to replace the two oracles in the above by queries to just one
oracle. For this, define a function % by the following construction: Machine � �@ -'&P- � 101 sim-

ulates the computation of � � 8 !@ -#"C- � 101 but handles oracle queries differently: When � � 8 !@ -$"�- � 1W1
asks query � to oracle  , then � �@ -'&P- � 1W1 asks � to its oracle; and when � � 8 !@ -#"C- � 101 asks query

� to oracle � , then � �@ -(&=- � 101 asks query
2 � )T� )+* [$, 	�"C- � 1 S � to its oracle (in order for the “ S ”
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to make sense, we of course use the bijection between �
	����� � and � � mentioned in Sec-
tion 2). Hence, � 	 / !�8 !@ -#"C- � 101 � � 	 / !@ -'&P- � 1W1 , if ( �R( ������$ � ��� ��� ���

2 � )T� )+* [$, 	�"�- � 1 .
Now we argue as follows: If the implications � � �%$ � 
 �7� � 8 !@ - � 1 � � & �� � � $ �


 �&� �@ -(&=- � 101 � and � � �%$ � 
 �&� � 8 !@ - � 1 � � � ���� � $
	� 
 �7� �@ -'&P- � 101 � both hold for every ��� � �
and every input $ , then certainly BP � �&K � � � � � K � � � . This allows us to show that the
set of all  such that BP � �&K � � � 	� �&K � � � has measure zero by the following calculation,
which we can make for every numer 0 �E� � :

�  � BP � � K � � � 	� � K � � � � �
� �  � ����� �E� � ��� ��$ � �
	�����
� � � � � � ��$ � 
 �7� � 8 !@ - � 1 � ��& ��, )$
	� 
 �7� �@ -'&P- � 1W1 � �� � � � �%$ � 
 �&� � 8 !@ - � 1 � � � ��  $ � 
 �7� �@ -'&P- � 101 � � � �
� ��! �" # �)� 476�8 �79 <

� �  � � � �%$ � 
 �&� � 8 !@ - � 1 � ��& � �  $�	� 
 �7� �@ -'&P- � 101 � �
S � �� � � �%$ � 
 �7� � 8 !@ - � 1 � � � ��  )$ � 
 �&� �@ -(&=- � 1W1 � � �

� ��! �" # �)� 476�8 �79 <
� �	 s.t. � 	
� ��� - ) 8 � 1! s.t. � ! - )� � - Z��
	 �� * [#, 1W1 ���

�
�
� *�� 	 [$, � �  �  � � � �  N$
	� 
 �7���@ -'&P- � 101 � �

S �	 s.t. � 	
� ��� - ) 8 � 1! s.t. � ! - )� � - Z �
	 �� * [$, 101 ���
�

�
� *�� 	 [#, � � ��  � � � �  N$ � 
 �&� �@ -(&=- � 101 � � �

� ��! �" # �)� 476�8 �79 <
�	 s.t. � 	�� ��� - ) 8 � 1

�
�
� *�� 	 [#, �

2 � � � )T� � � �
/
� �

� ��! �" # �)� 476�8 �79 <
2 � � � )T� � � �

/
� � � �

�
� �

�
���� 6 �
�
[�� � ���

�
�� � 6

2 �
� �
�
��� � � � � �

�
�

❑

5 Measure 1 inclusions between complexity classes

Inclusions between classes that hold relative to oracles with probability 1 have been an
important topic in complexity theory, see e.g. [6, 13, 14, 35] and many more. From
Theorem 4.1, we obtain the following general result:

Theorem 5.1 Let � � ��� � be relativizable classes, where � � is uniformly invariant under
finite variations of the oracle and has the amplification property. Then the following
holds:

� �
�

BP � � �  � � �� � � � � �� ��� 5�
10



Proof. “ � � ”: If � �
�

BP � � � , then by Corollary 4.2, � �
�

ALMOST- � � . Thus, for
every 
�� � � , � �� 
 � � �� ���  . Then we conclude � ���� � 	� � �� � � � �  � � �  � 
 	�
� �� ��� 	 .

“  � ”: If �  � � � � � �� � �  , then for every 
 � � � , we have � �� 
 � � �� � �  ;
thus 
 � ALMOST- � �� , which implies by Theorem 4.1 that 
 � BP ��� � . ❑

For classes defined via leaf languages, we find the following “lifting” for measure 1
inclusions:

Theorem 5.2 Let � � � � � be relativizable classes, where � � � � K � � for some recursive
leaf language K , and � � has the amplification property. Then the following holds:

�  � � � �
� � �� ��� �  � � � �

�
BP � � �� �Q�

In particular,

� �� � � �
� � �� � �  �� � �� � � �

�
BP � � �� � � 

� �� � � � 	
� � �� � �  �� � �� � � � 	

�
BP � � �� � � 

Proof. Follows from Theorem 4.5. ❑

From this, we conclude immediatly the following easily applicable criterion to get
measure 1 inclusions:

Corollary 5.3 Let � � � � � be relativizable classes, where � � � �&K�� � for some recursive
leaf language K , and � � has the amplification property. Then the following holds:

If � �
�

BP � � � is relativizable, then �  � �	� �
� � �� ���  .

This gives us a number of applications:

Let ��� denotes the union of all classes of the polynomial time hierarchy and � �
denotes Papadimitrou and Zachos’s “modest counting class” [34].

Corollary 5.4 �  � ��� ��� � � � � �  .

Proof. Toda [40] showed that ��� �
BP
� � � . It is easy to observe that his result in

fact holds relativizably. For every leaf language definable classes � , we have obviously
BP
�
� �

BP � � . Now the inclusion follows immediately from Corollary 5.3. The strict-
ness follows from the proof given by Cai in [13], where he not only separates ��� from
��� � � ��� , but in fact from � � . ❑
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Corollary 5.4 has already been shown in [35].

Corollary 5.5 �  � co
�
� � 	� AM � � � 

Proof. Follows from the fact � �� co
�
� � 	� � � � � �  [6], from Corollary 5.2, and from

BP
���
� �

BP �
�
� . ❑

Corollary 5.6 �  � ��� � � � � � � �	� � � ��� � � ��� � � �  .

Proof. ��� � �
BP
� �

� � for all oracles  follows by observing that the proof given
for ��� �

BP
� �

� in [41] relativizes. Thus � �� ��� � � �
� � � �  follows from

Corollary 5.3. Green’s result that
�
��	� co

�
� for all random oracles [19] now shows

that � �� ��� � � � � � � �  . � � � � �	� � holds for all oracles  . �  � � � � � �	� � � �
 follows again from Green’s result. The strict inclusion of �	� in ��� � � ��� relative to
any random oracle was shown in [2]. This immediately yields �  � �	� � � ��� ��� ��� � � �
 . ❑

Let � � denote the class of all sets  for which there is a nondeterministic polynomial
time Turing machine � such that for all $ , $ �  if and only if � on input $ has exactly
one accepting path [7]. Valiant and Vazirani [42] show that

�
� randomly reduces to � � .

However, the error probability in their reduction is not small enough to get
�
� �

BP � � �
(which would then immediately allow us to apply Corollary 5.3), and as argued in [16]
there is no obvious way to amplify the reduction.

However, the situation becomes simpler if we consider the disjunctive truth-table clo-
sure of � � (which we denote by �

������ ��� � � ). Let � � � denote the restriction of � #�� , where
the deterministic base machines are allowed to ask only � �
	��� � � oracle queries on inputs
of length � [45]. Now we can show:

Corollary 5.7 �  ��� � � � ���
������ �
� � � � � �  .

Proof. In [16, Fact 1] it is argued that a random reduction from � to � � in the sense
of Valiant/Vazirani can be amplified if the class � � is closed under disjunctive truth-table
reducibility. Moreover, in [16, Lemma 1] it is shown that � � � randomly reduces to � �
in the sense of Valiant/Vazirani. Both results together yield � � �

�
BP � �

������ �
� � � . It can
easily be checked that this inclusion even holds relativizably. Thus, the statement follows
from Corollary 5.3. ❑

12



6 Random oracles

In the preceding sections, we obtained results for a class of oracles with measure 1. In
this section, we want to contrast these results with results for one single random oracle.
We denote by RAND the class of all random oracles in the sense of Martin-L öf, see [10].

The relationship between statements holding for a measure 1 set of oracles vs. those
holding for a single random oracle vs. those holding for all random oracles has been
examined in several papers [9, 10, 22]. Our Theorem 6.1 extends these results.

We recall that some � � �
	��� � � is recursively open, if � ��� � �
	����� � for some
recursively enumerable set � � �
	������� . A set � is recursively G � , if � ��� ���� � ��� where
the � � � � � ������� are recursively open. A set � is recursively F � , if � is the complement of a
set which is recursively G � . The � -algebra over a class � � 2 476�8 �79 : is the smallest class
containing � closed under complementation and countable intersection. Observe that if
a set � is in the � -algebra over the class of all recursivly G � sets which are closed under
finite variation, then � itself is closed under finite variation.

We need the following easy consequence of a result from Kautz [22, 23]:

Lemma 6.1 If � is in the � -algebra over the class of all recursivly G � sets which are
closed under finite variation, then the following are equivalent:

(1) � �� ��� 	 .

(2) � �� � �  .
(3) RAND

� � 	� # .
(4) RAND

� � .

Proof. (Sketch) The result for sets which are recursively G � or recursively F � can be
found in [22, 23]. An induction shows that if the result holds for any class, then it also
holds for both its closure under complementation and its closure under countable inter-
section. ❑

Now we obtain immediatly the following improvement of a result from [10, 9], where
additional assumptions on � � ��� � were made:

Theorem 6.2 Let � � � � � be relativizable classes which are closed under finite variations
of the oracle. Then the following are equivalent:

1. �  � � � �
� � �� �,� 	 .

2. �  � � � �
� � �� � �  .

3. � � �
� � �� for some random oracle  .
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4. � � �
� � �� for all random oracles  .

Proof. It was shown in [10], that if � is a relativized class which is invariant under finite
variations of the oracle, then for any � �E� � the set �  ( 
 �7� �� ��� � � � is recursively G �
and closed under finite variation. The theorem now is an application of Lemma 6.1. ❑

Thus, we have the following results:

Corollary 6.3 1. ��� � � � � � for all random oracles  [35].

2. co
�
� � 	� AM � for all random oracles  .

3. ��� � � � � � � �	� � � ��� ��� ��� � for all random oracles  .

4. � � � � ���
������ ��� ��� � for all random oracles  .

Proof. Using Theorem 6.2, all results follow immediately from Corollaries 5.4 to 5.7
from Section 5. ❑

7 Type 2 operators vs. polynomially bounded operators

In this section, we want to compare type 2 operators with the familiar operators ranging
over polynomially length bounded strings [48, 37]. To this end we define type 2 existential
and universal operators. Let � be a relativized class with 0 oracles with enumeration
function > (a machine � @ - � 1 with the 0 oracles  � ��������� 

/
uses in fact the one oracle

�
/
��� � ��

� 	�$R( $ � F� � ).
? 
 � � � � iff there exists an � �E� � such that for all $ ,

��$ �� � � ����� ��
/
� � ��� 
  � � 

/
�7� � � 8 /B/B/ 8 � ��� � 8 � �@ - � 1 �%$ � �  �

? 
 � � � � iff there exists an � �E� � such that for all $ ,

��$ �� � � ����� ��
/
� � ��� 
  �

� 
/
�7� � � 8 /B/B/ 8 � ��� � 8 � �@ - � 1 �%$ � �  �

Clearly, if � is a relativized class then so are � � � and
� � � .

Define � � � �/ to be the set of all languages  accepted by �
/

machines (i.e. alternating
Turing machines with 0 �  alternations, starting in an existential state), which on inputs
of length � run in time bounded by

2 � - � 1 for some polynomial � . Now the classes of
the � � - � � -hierarchy (restricted to “ordinary” languages of words) can be characterized as
follows [38, 31, 46]:

Theorem 7.1 1. � � � � � � �����
� �
/ � �/ � � � � � � � � � �����

� �
/ � � /

� � � � � � � � � �����
� �
/
�

��� ��� ��� � � � � �/
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2.
� � � � � � �����

� �/ � �/ � � �
� � � � � � �����

� �/ � � / � � �
� � � � � � �����

� �/ � ��� ���
��� � � � � �/

where
� / ��� and

� / � �
if 0 is odd, and

� / � �
and

� / � � if 0 is even. The
operators � � and

� �
are the classical operators defined by the � and

�
quantifier, resp.,

ranging over polynomially length bounded words.

Let � be the class of logspace-decidable sets. Let
� �

/
be the class of sets decidable by

uniform circuit families of polynomial size and � � 	�� 
/
� � depth [17]. (Without going into

details, we remark that we adopt the uniformity condition from [5].) Let 
��
� �

/
denote

the bounded error probabilistic analogue of
� �

/
(see [17]), i.e., 
��

� �
/

circuits have
regular input gates plus gates for probabilistic bits. The probability is then taken over all
possible inputs to the latter gates, where we assume (as usual) uniform distribution. We
remark that 
��

� �
/
� BP

� � �
/
.

To compare type 2 operators with the “usual” operators, we use translational methods,
which have a long history in complexity theory, see e.g. [8]. In all these arguments,
padding plays a crucial role—in the just mentioned paper, tally versions of languages
were used. We here introduce the following form of padding: For a language  and some
integer � , define

�� ��� ��� �+$  	 �
� � � � � � )T� � � (T$ �  �X�

Then, the following lemma is easy to see:

Lemma 7.2 1.  � � � � �/ iff there exists some ���E� � such that �� � � � / .
2.  � ��� ��� ��� iff there exists some � � � � such that �� � � , iff there exists some

���E� � such that �� � � � � ,
3.  � BP � ��� � � ��� iff there exists some � � � � such that �� � BP

� � , iff there
exists some ���E� � such that �� � 
��

� � � .
4.  � BPTIME � 2 �	��
 � iff there exists some ��� � � such that �� � 
��	� .

Proof. By standard translational arguments. For the only non-trivial claims (2 and 3)
we remark that ��� ��� ��� can be characterized by polynomial time alternating Turing
machines [15], whereas

� � � can be characterized by logarithmic time alternating Turing
machines [5]. ❑

Theorem 7.3 BP � ��� � � ��� �
BPTIME � 2 �	��
 � � � � � ��

� � � � �� .

Proof. The result is obtained by applying the translational results from Lemma 7.2 to
Sipser’s and Lautemann’s result that 
��� is included in the polynomial time hierarchy
[39, 24]. ❑
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The up to now best known upper bound for ALMOST- ��� ��� ��� is ALMOST-
��� � � ��� �

EXPSPACE [25]. We obtain the following improvement:

Corollary 7.4 ALMOST- ��� � � ��� � � � � ��
��� � � �� .

In the theory of efficient algorithms, if no good parallel algorithm for a given problem
is within reach, one tries to design efficient probabilistic parallel algorithms, i.e., to prove
that the problem under consideration is in 
��

� �
/

for some 0 . Therefore, it is of great
importance to have tight upper bounds for those classes. Unfortunately, essentially only

��
� �

/ � 
��	� is known. It turns out that this problem is related to that of giving upper
bounds for ALMOST- ��� ��� ��� : Any upper bound for 
��

� � � better than 
��	� will give
us an upper bound for ALMOST- ��� � � ��� better than the one given in Corollary 7.4; for
example:

Corollary 7.5 If 
��
� � � � � , then ALMOST- ��� � � ��� � ��� ��� ��� � .

8 A characterization of the class BP
2
DSPACE

�����

In the Section 4, we saw that ALMOST- ��� � � ��� � BP � ��� ��� ��� , and we gave
new upper time bounds for that class in Section 7. However, the question of whether
BP � ��� � � ��� � ��� ��� ��� remains unresolved. In this section, we give a machine char-
acterization of BP � ��� ��� ��� which makes this equality seem unlikely to us.

A checking stack [21] is a stack which can be used only in the following way in two
phases. In the first phase, the writing phase, the head of the checking stack can only write
new symbols on top of the stack (in a one-way manner); it cannot erase symbols or visit
some inner part of the stack. In the second phase, the checking phase, the head of the
checking stack can only read the contents of the stack (in a two-way manner), but without
changing the stack, that is, without erasing symbols or pushing new symbols on top.

A CS-DTM (CS-NTM, CS-PTM, CS-BPTM) is a deterministic (nondeterministic,
probabilistic, bounded-error probabilistic) Turing machine with a two-way input tape, a
constant number of working tapes, and a checking stack. For % �*� � � � � , we define

 � CS- 	 SPACE ��% � if there exists a CS- 	 TM (for 	 either D, N, P, or BP) such that
every computation path of � on input $ halts and is space-bounded by %��L( $R( � , where the
workspace used in the checking stack is not taken into account. For these definitions as
well as general background and results, see [47, pp. 252ff].

Now we see that ALMOST- ��� ��� ��� is exactly the class of all languages accepted by
probabilistic checking stack automata working in polynomial space; more generally:
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Theorem 8.1 For every fully space-constructible function %!��� � � � � such that %�� � � &
	�� �� for all � ,

BP � DSPACE ��% � � CS-BPSPACE ��%
�Q�

Proof. “
�

”: Let 
 � BP � DSPACE ��% � ; let � be a deterministic oracle Turing machine
such that for every input $ and every oracle  the machine halts using workspace no more
than %��L( $R( � , and

$ � � � � � ��7� � �%$ � �  � & ��
$ 	� � � � � ��7� � �%$ � �  � � ��

Notice that because every oracle query of � while working on input $ is length bounded
by % �L( $R( � , only an initial segment of length at most

2 &P- � )T� 1 	 � of any oracle  can influence
the value of � � ��$ � .

Now construct a CS-BPTM � � (without oracle) simulating � as follows: On input $ ,
the � � first computes (in binary)

2 &P- � )T� 1 	 � and then creates in a nondeterministic manner
for every string � of length

2 &=- � )T� 1
	 � exactly one computation path while writing � into
the checking stack. Then on the path corresponding to some string � � � simulates the
computation of � on input $ with oracle �� � � �
	�����
� , where an oracle query of � to
 is replaced by looking up the corresponding bit of � in the checking stack.

For all � such that ( ��( � 2 &P- � )T� 1 	 � , � � in this simulation accepts a string $ on path
� if and only if � with any oracle  � � � �
	�����
� accepts $ . Thus we obtain that
�  �7� � �%$ � �  � is exactly the probability with which � � accepts $ , which proves the
inclusion from left to right.

“ � ”: Let � be a CS-BPTM accepting a language 
 such that every computation path
of � on any input $ halts and is space-bounded by %��Q( $R( � (recall that the workspace used
in the checking stack is not taken into account). In the writing phase of any computation,
no configuration (that is a tuple consisting of worktape contents, top symbol of the check-
ing stack, worktape and input tape head positions, and internal state of the machine) can
appear twice, since then the computation were not halting. Hence, on every computation
path of � on $ , the writing phase is time-bounded by � &P- � )T� 1 for some � � 	 . Thus, the
contents of the checking stack is length bounded by the same function.

Now a deterministic % -space-bounded oracle machine � � can simulate � as follows:
� � works as � but

(a) if � branches nondeterministically during its computation for the � -th time, then
� � queries the � -th bit of the oracle instead. Hence the oracle of � � describes the
nondeterministic path of � .

(b) � � does not store the contents of the checking stack (since it is too long to be
written down) but the position of the checking stack head in binary. Note that this
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takes no more than � � %��Q( $R( � bits. If during the simulation of the checking phase, � �
needs the D -th symbold of the stack, it starts a re-simulation of the writing-phase up
to the moment where the D -th symbol is printed. Using the help of the oracle, it is
ensured that the correct computation path of � is taken in the re-simulation.

Now we have that � accepts $ on some path � � �
	����� � if and only if � � accepts $ with
oracle � . Thus, the probability that � accepts an input $ is exactly the measure of the set
of all oracles  such that � � accepts $ using oracle  , which finishes the proof. ❑

Corollary 8.2 1. BP � � � ��� ��� ��� � CS-BPSPACE � � � 	 � .
2. BP

� � � CS-BPSPACE �
	�� �� .

Proof. Follows from Theorem 8.1, recalling that BP � ��� ��� ��� � BP � � � ��� � � ��� and
BP � � � BP

� � by Proposition 3.2. ❑

So far it is not known whether CS-BPSPACE ��%
� coincides with one of the well-studied
complexity classes. However, in this context the following results should be mentioned
which can be found in [21]: For arbitrary % &������ , the equations CS-DSPACE ��% � �
DSPACE ��% � and CS-NSPACE ��% � � NSPACE � 2�� -'&71 � hold. That is: Checking stack au-
tomata working nondeterministically are more powerful than those working deterministi-
cally.

Our Theorem 8.1 now gives the following extension: For polynomial space plus
checking stack, the nondeterministic computation mode is strictly more powerful than
the bounded-error probabilistic mode (unless � � � �� � EXPSPACE).
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