Electronic Colloquium on Computational Complexity - Reports Series 1996 - available via:
E(:(:(: FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW: http://www.eccc.uni-trier.de/eccc/

T R96- 036 Email: ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

A large lower bound for 1-branching programs

Petr Savicky, Stanislav Zak*
Institute of Computer Science, Academy of Sciences of Czech Republic,
Pod vodarenskou vezi 2, 182 07 Praha 8, Czech Republic

e-mail: {savicky,stan}@Quivt.cas.cz

Abstract

Branching programs (b. p.’s) or decision diagrams are a general graph-based model of
sequential computation. B.p.’s of polynomial size are a nonuniform counterpart of LOG.
Lower bounds for different kinds of restricted b. p.’s are intensively investigated. An
important restriction are so called 1-b. p.’s, where each computation reads each input bit
at most once. There is a series of lower bounds for 1-b. p.’s. The largest known lower
bound was 27/2000 for a function of n variables, see [11]. In the present paper, a lower
bound of 27~=°(") is given.

1 Introduction

A branching program (b. p.) is a computation model for representing the Boolean functions.
The input of a branching program is a vector consisting of n input bits. The branching
program itself is a directed acyclic graph with one source. The out-degree of each node is at
most 2. Every branching node, i.e. a node of out-degree 2, is labeled by an index of an input
bit and one of its out-going edges is labeled by 0, the other one by 1. The sinks (out-degree
0) are labeled by 0 and 1. A branching program determines a Boolean function as follows.
The computation starts at the source. If a node of out-degree 1 is reached, the computation
follows the unique edge leaving the node. In each branching node the input bit assigned
to the node is tested and the out-going edge labeled by the actual value of the input bit is
chosen. Finaly, a sink is reached. Its label determines the value of the function for the given
input. By the size of a branching program we mean the number of its nodes.

The branching programs are a model of the configuration space of Turing machines,
where each node corresponds to a configuration. Thus the polynomial size b. p.’s represent a
nonuniform variant of LOG. A superpolynomial lower bound on b. p.’s for a Boolean function
computable within polynomial time would imply P # LOG.

In order to investigate the computing power of branching programs, restricted models
were suggested. Ome of the most basic restrictions are read once branching programs (1-
b. p.), where the restriction is such that during each computation each input bit is tested at
most once.

There is a series of lower bounds for 1-b. p.’s. For the Boolean function called half-
clique only, a lower bound 29V where n is the number of input bits, was proved in [16].
Independently, for the clique function with appropriate parameters, a lower bound 29(vn)

was proved in [14]. A lower bound 2V 7/2=0(1) appeared in [3] for testing Hamiltonian cycle

*The research of both authors was supported by GA of the Czech Republic, grant No. 201/95/0976.

and perfect matching in a graph. In [1] a lower bound 2%/¢ for a large ¢ for the function
parity of the number of triangles. This lower bound was improved in [11] to a lower bound
27/2000 for the same function. In [11] a technique for proving lower bounds for 1-b. p.’s is
described that generalizes most of the previous results on 1-b. p.’s. In [7], a bound 20UV) g
proved for multiplication.

Besides 1-b. p.’s more general models are investigated. Namely, k-b. p.’s and syntactic
k=b. p.’s. In a k-b. p., every computation can test each input bit at most £ times. Syntactic
k—b. p.’s are k—b. p.’s, where the restriction of at most k tests of each input bit is applied not
only to valid computations, but to all paths from the source to a sink. Note that each 1-b. p.
is a syntactic 1-b. p., while for £ > 2 this is not true in general. For syntactic k—b. p.’s for k
up to Q(logn), exponential lower bounds are known, see [2], [4], [6]. The results [2], [4] apply
even to nondeterministic syntactic k=b. p.’s. For general (nonsyntactic) k—b. p.’s, proving
exponential lower bounds for explicit functions is an open problem even for & = 2.

Another generalization of 1-b. p.’s are (1,+k)-b. p.’s. In a (1,+k)-b. p., in any compu-
tation, at most k& of input bits may be tested more than once. For such b. p.’s, exponential
lower bounds are known, see [5], [8] and [17].

The 1-b. p.’s are interesting also as a data structure for representing the Boolean func-
tions. If a function f is represented by a small 1-b. p., it is possible to test effectively if the
function f is not a zero function (satisfiability test). It is also possible to count the number
of assignments z satisfying f(z) = 1. Both these problems may be solved in time polynomial
in the size of the representation. Moreover, there is a probabilistic test of equivalence of two
1-b. p.’s, working in time polynomial in the size of the input b. p.’s. Since for some other
operations there are no efficient algorithms, even more restricted models are used, namely
OBDDs (ordered binary decision diagrams). OBDDs are used e.g. for representing the
Boolean functions in some CAD applications like design or verification of Boolean circuits.
As a review paper see [15].

In the present paper, a lower bound 27=°(") on the size of 1-b. p.’s is proved for an explicit
function of n variables.

2 Integer weight systems

In this section, we prove existence of integer weight systems that are used in the next section
to define a Boolean function.

Definition 2.1 A system of m integer weights wy, wy, ..., w,, is (s, n)—complete, if for every
subset I C {1,2,...,m} of size at least s and any index i, 1 < i < n, there are y; € {0,1}
for j € I such that }=,.; w;y; = i (mod n).

Lemma 2.2 Let p, q, r and b be integers, p and q relatively prime. Moreover, let b/2 < p <
g <band 0 <r <b. Then there are nonnegative integers x,y < b such that zp — yqg = —r.

Proof: By a well-known theorem, for every p and ¢ there are zy and gy such that zop — yoq
equals the largest common divisor of p and ¢. Since p and ¢ are relatively prime, there are
some z(, and y(, satisfying z(p—y\¢ = 1 and by choosing zg = —rz{, and yo = —ry,), we obtain
zop — yog = —r. Then, for any integer ¢, the pair z¢ + ¢q and yo + ¢p is also a solution of the
equation from the lemma. Let ig be the minimal 7 such that zg + i¢ > 0. Let x =g¢ xg + 70¢
and y =qf yo + iop. Wehave 0 <2 <¢g—1<b-—1and y =zp/q+r/q<b+1. Since y is an
integer, the lemma follows. O

Lemma 2.3 Let b be a positive integer and let wy,ws, ..., w,, be prime numbers. Let b/2 <
w1 < ... < wy < b < noand let the m numbers w; consist of d different primes, each
with at least |m/d] and at most [m/d]| occurrences. Let s be an integer satisfying s >
max{bd + [m/d],2b+ 2n/b}. Then the system wy,wq,...,wy, is (s,n)-complete.

Proof: Let I C{1,2,...,m}, |I| = s be a set of indices of some numbers among w;.

If each of the primes has at most b — 1 occurrences in I, we would have s < (b — 1)d.
This is a contradiction with the choice of s. Hence, some of the primes, say p, has at least b
occurrences. Let A C I be a set of indices of b occurrences of p.

The number p has at most [m/d] occurrences among w;. If all the other occur at most
b— 1 times in I, we would have s < [m/d] 4+ (b— 1)(d — 1). This is a contradiction with the
choice of s. Hence, some of the primes, say ¢ has at least b occurrences. Let B C [be a set
of b occurrences of g. W.l.o.g. we may assume that p < gq.

Now, let i be such that 1 < i <n. Let ¢ be such that 0 < ¢ < n and ¢t = ¢ — bg (mod n).
Let ¢ C I — A — B be a minimal subset of indices such that };ccw; > t. Such a set
exists, since) ;4 pw; > b/2(s — 2b) and this is at least n by our assumption on s. Let
r=3jec wj—t. Since C' was minimal and w; < b forall j =1,2,...,m, we have r < b. By
Lemma 2.2, there are z,y < b satisfying 2p — yg = —r. Now, let y; be 1 for z indices j from
the set A, for b — y indices from B and all indices from C'. Let y; be zero otherwise. Then,
we have 3 crw;y; =2p+(b—y)g+t+r=i. O

For simplicity of notation, we shall introduce the following abbreviation. Let
s(n) = [2 n?/31n!/3 n].

In fact, the multiplicative constant 2 in this definiton may be replaced by any number ¢ >
/9/2 = 1.65.... In order to simplify the proofs, we shall work with 2.

Theorem 2.4 For every n large enough, there is an (s(n),n)-complete weight system
wy, Wa, . .., w, computable in time polynomial in n.

Proof: Use Lemma 2.3 with b = [0.8n'/3In?/?n] and d = [n'/3In=13n]. By the prime
number theorem, for any positive ¢ and any b large enough, there are at least (1 —¢)b/Inb
different primes between 1 and b and at most (14 ¢)(b/2)/In(b/2) of them are below b/2. It
is easy to verify that for some small positive ¢ and every n large enough, we have

(1—e)b/Inb — (1+¢)(b/2)/In(b/2) = 1.2(1+ o(1))(1 = 3e)n P In~"3n > d.

Hence, there are at least d different primes between b/2 and b. Since testing primality of any
number less or equal to » may be trivially done in time polynomial in n, it is possible to find
the required number of primes in time polynomial in n. In order to complete the proof of
the lemma, it is sufficient to verify that bd + [n/d] = 1.8(1 £ o(1))n?/3In'/*n < s(n) and
2b+2n/b=2.5(1+ 0(1))n2/31n_2/3n < s(n). O

3 The result

We shall consider Boolean functions of n variables. A partial input is an element of {0, 1, x}".
As usual, the positions containing 0 or 1 mean that the corresponding input bit is fixed to

the specified value, while a * means that the input bit remains free. We say that a partial
input w is defined on I, if u; € {0,1} for all 7 € [and u; = * otherwise.

Let f be a function of n variables. Let u be a partial input. By f|, we mean the
subfunction of f obtained from f by setting z; to u; if u; € {0,1} for all i =1,2,...,n.

For any input of length n, say 2, and any integer j, let z; denote zj, where 1 < k < n
and k£ = j (mod n).

Definition 3.1 Let f be a Boolean function. We say that f is k—separable, if for every set
I C{1,2,...,n} such that |I| < n —k and for every two different partial inputs u, v defined
on I we have f|, # f|y.

Theorem 3.2 Let n and s be integers and let a weight system wy,wy,...,w, be (s,n)-
complete. Let f be defined as f(x) = z;, where i is the unique index determined by the
identity i = 3°7_; wjz;(mod n). Then, the function f is (s + 2)-separable.

Proof: Throughout this proof, the symbol = means a congruence relation modulo n. Denote
k = s+ 2. Moreover, let I C {1,2,...,n}, |[I| < n —k and let u, v be different partial inputs

defined on /. Let
A= Z w;v; — Z WU
el el

We are going to prove f|, # f|, by finding an extension z of u and an extension y of v such
that 2 and y coincide on the positions not in I and f(z) # f(y).

Case 1: A £ 0.
First, we extend « and v to «’ and ©" by setting one or two positions not fixed in « and wv.
Choose any j & I. If also j+ A & I, v’ and o' are created from u and v by setting the position
7 to 0 and the position 7+ A to 1. Hence, in this case, we have u; = v§- # “}+A = 7J§-+A. If
j+A €I, the position j of both «’ and v’ is set in such a way that u} = v} # vi, . We have
at least k — 2 = s positions that are still not specified in both «' and v’. Since the numbers
Wy, Wy, ..., W, are (s, n)-complete, there is an extension z of u’ such that >, w;z; = j. We
have f(z) = u}. Let y be a partial input extending v such that the bits with indices outside
I have the same value in @ and y. Then, f(y) = v, 5 and hence f(z)# f(y).

Case 2: A =0.
Let j € I be such that u; # v;. There is an extension z of u such that Y /", w;z; = j. Let y
be a partial input extending » such that the bits with indices outside [have the same value

in z and y. By our assumptions, we have 7", w;y; = j. Hence f(y) =v; # u; = f(z). O

As in [11], for any node v of a b. p., let T be the set of indices of input bits read in »
or on some directed path starting in ». For a partial input z, let S(z) be the set of specified
bits in z. The following theorem is a consequence of Theorem 2.4 in [11]. For convenience of
the reader, we present the proof of this theorem adopted for the special case.

Theorem 3.3 Any 1-b. p. computing a k-separable function has size at least 2",

Proof: Let P be a 1-b. p. computing a k—separable function f. For an input z, let e(z) be the
edge (u,v) such that both u and v belong to the computation path for z and |u™| > k41 and
|vF| < k. For each z, such an edge exists and it is unique. Moreover, let 2* be the restriction
of # to the bits read in the computation for z before reaching the node ». Hence, z* is the
minimal restriction of the input z that guarantees that the computation goes through the

edge (u,v).

Fix some input z9. We are going to count the inputs z satisfying e(z) = e(z¢). To this
end, we shall prove that for every z we have e(z) = e(zg) if and only if = extends z{j, and
S(zo) =n—k.

By definition of zg, it is clear that the computation for any input z extending 2§ goes
through the edge e(zy). Hence, in this case, we have e(z) = e(zg).

In order to prove the other direction of the equivalence, assume that x is such that
e(z) = e(zg), but @ does not extend zf. Hence, there is a node w reached in the computation
path for both = and z(y before reaching u and such that the two computations leave w by
different edges. Hence, the bit tested at w is specified in both z* and z{, but has different
values in these two partial inputs. We shall derive from this a contradiction with the assumed
k—separability of f.

Let e(z) = e(z¢) = (u,v) and let 7 be the label of the node u. Then, both S(z§)\ {i} and
S(z*)\ {7} are disjoint from u*t. Let I = S(z8)U S(z*). We have |I| <n—|ut|+1<n—k.
Consider any extension z{, of z{; and any extension y of z* such that both these extensions
specify all the bits with indices from I. Since zj and z* are incompatible, z{, and y are
different. On the other hand, the computations for both z{, and y go through the node v.
Since I and vt are disjoint, both the computations depend after the the visit of the node
v only on bits with indices outside /. Hence, f|x6 = fly. This is a contradiction with
k—separability of f.

To prove |S(z§)| = n — k, assume for a moment that |S(z§)| < n — k. Then, there is an
index ¢ of an input bit that is neither in S(z§) nor in v*. Let y and y’ be the extensions of
z{, obtained by setting the bit i to 0 and 1 respectively. The computations for both y and 3’
go through (u,v). Hence, as above, we have two different settings of at most n — &k input bits
giving the same subfunction of f. This is again a contradiction with k—separability of f.

Hence, there are exactly 2¥ extensions of 2 and hence 2% inputs z satisfying e(z) = (o).
This is satisfied for any input zo and, hence, the number of edges in the b. p. is at least 2"7%.
This implies that the size of P is at least 27~%~1, since the out-degree of every node is at
most 2.

In fact, one can prove the lower bound 2"~* for the number of nodes of P using the
following. The set of edges e(z) for all € {0,1}" has the property that no two of these
edges participate in a directed path. An easy argument shows that if G is a directed acyclic
rooted graph such that the out-degree of each node is at most two and S is a subset of the
edges with the above property, then |S| < |G|. O

Now, the main result follows immediately from Theorems 3.3, 3.2 and 2.4.

Theorem 3.4 There is a sequence of Boolean functions { f,}>2, that is in P and such that
fn is a function of n variables and for every n large enough, every 1-b. p. computing f, has

size at least 2"~5 where s = [2 n2/31n1/3 n] + 2.

It is interesting to compare this lower bound with the maximal complexity of 1-b. p.’s.
Every function has a 1-b. p. of size 2771087+0() 414 there is a nonconstructive proof that
some functions require size 271087=0(1) see [13].

4 Remarks and an open problem

In [12], Szemeredi presented a proof of the following. If n is a prime, then 0,1,2,...,n— 1 is
an (s,n)-complete system for s = n'/? logo(l) n. This yields an improvement on the present
result.

Moreover, he proved in [12] that, if n is a prime, then an (s,n)-complete system may
exist only if s > /n. Hence, a lower bound better than on—vn may be obtained using
the technique of the present paper, only if an (s,n)-complete system for a small s may be
constructed using the assumption that n is a composite number. There is also a possibility to
replace the weighted sum of input bits by a more general function ¢ : {0,1}" — {1,2,...,n}.
The following two conditions on such a function ¢ for some s < y/n are sufficient to prove a
good lower bound:

1. If at most » — s input bits are set to some constants, the restricted function ¢ has still
all the values from {1,2,...,n} in its range.

2. There is a polynomial p(n) such that for every I C {1,2,...,n}, |I| = n — s, there
is at most p(n) — 1 different settings of the bits with indices from I giving different
subfunctions of ¢ on the remaining bits.

If a function ¢ satisfies these two conditions, then every 1-b. p. for the Boolean function
f(x) = 74y has size at least 2"7*/p(n). The proof uses the lower bound technique of [11]
and it is omitted. It is an open problem if an explicitly defined function ¢ satisfying the two
conditions for some s < y/n may be constructed. The weighted sum of input bits described
in the present paper satisfies these two conditions with s = s(n) and p(n) = n + 1.

References

[1] L. Babai, P. Hajnal, E. Szemeredi and G. Turan, A lower bound for read-once-
only branching programs, Journal of Computer and Systems Sciences, vol. 35

(1987), 153-162.

[2] A. Borodin, A.Razborov and R. Smolensky, On Lower Bounds for Read-k-times
Branching Programs, Computational Complezity 3 (1993) 1 — 18.

[3] P. E. Dunne, Lower bounds on the complexity of one-time—only branching pro-
grams, In Proceedings of the FCT, Lecture Notes in Computer Science, 199
(1985), 90-99.

[4] S. Jukna, A Note on Read-k-times Branching Programs, RAIRO Theoretical
Informatics and Applications, vol. 29, Nr. 1 (1995), pp. 75-83.

[5] S. Jukna, A. A. Razborov, Neither Reading Few Bits Twice nor Reading Illegally
Helps Much, preprint

[6] E. A. Okolnishkova, Lower bounds for branching programs computing charac-
teristic functions of binary codes (in Russian), Metody diskretnogo Analiza, 51
(1991), 61-83.

[7] S. J. Ponzio, A lower bound for integer multiplication with read-once branch-
ing programs, Proceedings of 27’s Annual ACM Symposium on the Theory of
Computing, Las Vegas, 1995, pp. 130-139.

[8] P. Savicky, S. Zak, A Lower Bound on Branching Programs Reading Some Bits
Twice, to appear in TCS.

[9] D. Sieling, New Lower Bounds and Hierarchy Results for Restricted Branching
Programs, TR 494, 1993, Univ. Dortmund, to appear in J. of Computer and
System Sciences.

[10] D. Sieling and I. Wegener, New Lower bounds and hierarchy results for Re-
stricted Branching Programs, in Proc. of Workshop on Graph-Theoretic Con-
cepts in Computer Science WG9/, Lecture Notes in Computer Science Vol. 903
(Springer,Berlin, 1994) 359 — 370.

[11] J. Simon, M. Szegedy, A New Lower Bound Theorem for Read Only Once
Branching Programs and its Applications, Advances in Computational Complez-

ity Theory (J. Cai, editor), DIMACS Series, Vol. 13, AMS (1993) pp. 183-193.
[12] E. Szemeredi, personal communication.

[13] 1. Wegener, The complezity of Boolean functions, Wiley-Teubner Series in Com-
puter Science, 1987.

[14] I. Wegener, On the Complexity of Branching Programs and Decision Trees for
Clique Functions, JACM 35 (1988) 461 — 471.

[15] I. Wegener, Efficient data structures for the Boolean functions, Discrete Math-
ematics 136 (1994) 347 — 372.

[16] S. 73k, An Exponential Lower Bound for One-time-only Branching Programs, in
Proc. MFCS’84, Lecture Notes in Computer Science Vol. 176 (Springer, Berlin,
1984) 562 — 566.

[17] S. 74k, A superpolynomial lower bound for (1, +k(n))- branching programs, in
Proc. MFCS’95, Lecture Notes in Computer Science Vol. 969 (Springer, Berlin,
1995) 319 - 325.

