Electronic Colloquium on Computational Complexity - Reports Series 1996 - available via:

P FTP: ftp.eccc.uni-trier.de:/pub/eccc/
Revision 01 of
S0 O 0 WWW: http://www.eccc.uni-trier.de/eccc/

ECCC TR96'036 Email: ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

A large lower bound for 1-branching programs

Petr Savicky, Stanislav Zak*
Institute of Computer Science, Academy of Sciences of Czech Republic,
Pod vodarenskou vezi 2, 182 07 Praha 8, Czech Republic

e-mail: {savicky,stan}@Quivt.cas.cz

Abstract

Branching programs (b. p.’s) or decision diagrams are a general graph-based model
of sequential computation. B.p.’s of polynomial size are a nonuniform counterpart of
LOG. Lower bounds for different kinds of restricted b. p.’s are intensively investigated.
An important restriction are the so called 1-b. p.’s, where each computation reads each
input bit at most once. There is a series of lower bounds for 1-b. p.’s. The largest
known lower bound was 27/2°90 for a function of n variables, see [14]. In the present
paper, a lower bound of 27 =3V7 ig given for an explicit function. A generalization of the
construction is also presented that may in principle lead to a lower bound that almost
matches a general upper bound.

1 Introduction

A branching program (b. p.) is a computation model for representing Boolean functions. The
input of a branching program is a vector consisting of n input bits. The branching program
itself is a directed acyclic graph with one source. The out-degree of each node is at most
2. Every branching node, i.e. a node of out-degree 2, is labeled by an index of an input bit
and one of its out-going edges is labeled by 0, the other one by 1. The sinks (out-degree 0)
are labeled by 0 and 1. A branching program determines a Boolean function as follows. For
an input vector the computation starts at the source. If a node of out-degree 1 is reached,
the computation follows the unique edge leaving the node. In each branching node the input
bit, assigned to the node, is tested and the out-going edge, labeled by the actual value of the
input bit, is chosen. Finaly, a sink is reached. Its label determines the value of the function
for the given input. By the size of a branching program we mean the number of its nodes.

Branching programs are a model of the configuration space of Turing machines, where each
node corresponds to a configuration. Thus the polynomial size b. p.’s represent a nonuniform
variant of LOG. A superpolynomial lower bound on b. p.’s for a Boolean function computable
within polynomial time would imply P # LOG.

In order to investigate the computing power of branching programs, restricted models
were suggested. Ome of the most basic restrictions are read once branching programs (1-
b. p.), where the restriction is such that during each computation each input bit is tested at
most once.

There is a series of lower bounds for 1-b. p.’s. For a Boolean function called half-clique
only a lower bound QQ(ﬁ), where n is the number of input bits, was proved in [19]. Indepen-
dently, for the clique function with appropriate parameters, a lower bound 22(vV7) was proved

*The research of both authors was supported by GA of the Czech Republic, grant No. 201/95/0976.

in [17]. A lower bound 9V/n/2-0(1) appeared in [5] for testing existence of a Hamiltonian
cycle and existence of a perfect matching in a graph. In [2] a lower bound 27/¢ for a large ¢
is proved for the function “parity of the number of triangles in a graph”. This lower bound
was improved in [14] to a lower bound 27/29%0 for the same function. In [14] a technique for
proving lower bounds for 1-b. p.’s that generalizes most of the previous results on 1-b. p.’s,
is described. In [10], a bound 20(v7) ig proved for multiplication.

Besides 1-b. p.’s more general models are investigated. Namely, k—b. p.’s and syntactic
k=b. p.’s. In a k-b. p., every computation is allowed to test each input bit at most k£ times.
Syntactic k=b. p.’s are k=b. p.’s, where the restriction of at most k tests of each input bit is
applied not only to valid computations, but to all paths from the source to a sink. Note that
each 1-b. p. is a syntactic 1-b. p., while for £ > 2 this is not true in general. For syntactic
k=b. p.’s for k up to Q(logn), exponential lower bounds are known, see [3], [6], [9]. The
results [3], [6] apply even to nondeterministic syntactic k~b. p.’s. For general (nonsyntactic)
k—b. p.’s, proving exponential lower bounds for explicit functions is an open problem even
for k = 2.

Another generalization of 1-b. p.’s are (1, +k)-b. p.’s. In a (1, 4+k)-b. p., in any computa-
tion, at most k of the input bits may be tested more than once. For such b. p.’s, exponential
lower bounds are known, see [7], [11] and [20].

The 1-b. p.’s are also interesting as a data structure for representing Boolean functions.
If a function f is represented by a small 1-b. p., it is possible to test if the function f is
not a zero function (satisfiability test) efficiently. It is also possible to count the number of
assignments x satisfying f(z) = 1. Both these problems may be solved in time polynomial
in the size of the representation. Moreover, there is a probabilistic test of equivalence of
two 1-b. p.’s, working in time polynomial in the size of the input b. p.’s. Since for some
other operations there are no efficient algorithms, even more restricted models are used,
namely OBDDs (ordered binary decision diagrams). OBDDs are used e.g. for representing
the Boolean functions in some CAD applications like the design or verification of Boolean
circuits. As a review paper see [18].

In the present paper, a lower bound 27=3V™ on the size of 1-b. p.’s is proved for an
explicit function of n variables. The function is constructed in the form f(z) = Tg(x), Where
¢ :{0,1}" — {1,2,...,n} is a specific function. In the last section we present a condition on
the mapping ¢ that generalizes the properties of ¢ used to prove the lower bound for z4(;) in
Section 2. The condition implies a lower bound 27~°0°87) and we provide a nonconstructive
proof of the fact that functions satisfying the condition exist. An explicit construction of
such a mapping ¢ would imply a lower bound that almost matches a general upper bound
on the size of 1-b. p.’s that is 27~logn+0(1)

2 The lower bound

We shall work with Boolean functions of n variables. By a partial input we understand an
element of {0,1,*}". As usual, the positions containing 0 or 1 mean that the corresponding
input bit is fixed to the specified value, while a * means that the input bit remains free. We
say that a partial input u is defined on I, if u; € {0,1} for all i € I and u; = * otherwise.
For a subset I C {1,2,...,n}, let B(I) mean the set of partial inputs defined on 7. Let
f be a Boolean function, I a set of indices of the variables and let u be a partial input from
B(T). Then, let f|, mean the subfunction of f obtained from f by setting z; to u; for all
i€ 1. Let I and J be disjoint sets of indices of bits and let u € B([) and v € B(J). Then, let

[u,v] mean the input from B(/ U J) in which the bits with indices from I resp. .J have the
same values as in u resp. v.

To prove lower bounds on 1-b. p.’s, we shall use the technique from [14]. For a Boolean
function f of n variables and a subset 1 C {1,2,...,n}, let

v(f, 1) =4 Inax Hv e B(I): flu= flu}l-

The following theorem (Theorem 2.1 from [14]) is a special case of a general lower bound for
1-b. p.’s also presented in [14]. For convenience of the reader, we include a complete proof of
the special case.

Theorem 2.1 (Simon, Szegedy) Let f be a Boolean function of n variables and let r < n be
an integer. Then, any 1-b. p. computing f has size at least

27’L—7‘
max v(f, 1)
|I|=n—r
Proof: As in [14], for any node v of a b. p., let v* be the set of indices of input bits read in
» or on some directed path starting in v.

Let P be a 1-b. p. computing a function f. For every input z, let e(z) be the edge (u,v)
such that both u and v belong to the computation path for z and |ut| > r+4+1 and |oH| < 7.
For each z, such an edge exists and it is unique.

Fix some input z and let (u,v) be the edge e(z). We are going to bound from above the
number of inputs y satisfying e(y) = e(z).

Let u be labeled by z;. Let J be a set of size r such that u* \ {i} D J 2 vT. Let
I={1,2,...,n}\ J, especially 7 € I. For every input y, let y* be the restriction of y to the
indices from /. Note that, for every y going through the edge (u,v), all the bits read before
reaching » are preserved in y*. Hence, for every y, the computation for y goes through (u,v)
if and only if the computation for y* goes through (u,v).

If e(y) = e(x) then the computation for both y* and z* leads to the node v. Hence, for
every partial input z defined on J, we have f([y*, z]) = f([2*, z]). In other words, f|,« = f|z*.
There are at most v(f, I') different y* for inputs y satisfying this. Since every y* is a restriction
of 2" total inputs y, there are at most 2"v(f, I) inputs y satisfying e(y) = e(z).

The upper bound from the previous paragraph is valid for any input z and the cor-
responding set I of size n — r. Hence, the number of edges in the b. p. is at least
2"7" [max|=p—, v(f,1). This implies that the size of P is at least one half of this num-
ber, since the out-degree of every node is at most 2.

In fact, one can improve the lower bound for the number of nodes of P by a factor of two
using the following. The set of edges e(z) for all z € {0, 1}" has the property that no two of
these edges participate in a directed path. An easy argument shows that if G is a directed
acyclic rooted graph such that the out-degree of each node is at most two and 5 is a subset
of the edges with the above property, then |S| < |G|. O

In order to define the Boolean function f,, for which the lower bound will be proved, we
need the following technical definition.

Definition 2.2 Let n be an integer and let p[n] be the smallest prime greater or equal to
n. Then, for every integer s, let w,(s) be defined as follows. Let j be the unique integer
satisfying j = s (mod p[n]) and 1 < j < p[n]. Then, w,(s) =j,if 1 < j < mn,and w,(s) =1
otherwise.

Definition 2.3 For every n, the Boolean function f, is defined for every z € {0,1}" as
fn(w) =2y, where j = wy, (Z;(Lzl sz)

Using Theorem 2.1, proving a lower bound for the function f, may be reduced to proving
an upper bound to v(f,,) for some sets I. In Theorem 2.5, we show that v(f,,I) =1 for
all sets I of size at most n — s for some s = o(n). For this, we shall use the following theorem
originally proved in [4]. A different proof of this theorem may be found in [1] and both proofs
in [8].

Theorem 2.4 (Dias da Silva and Hamidoune) Let p be a prime and let k and h be integers.
Moreover, let h < k < p and let A C Z, such that |A| = k. Let B be the set of all sums of h
distinct elements of A. Then, |B| > min(p, hk — h% 4+ 1).

Theorem 2.5 For every I C {1,2,...,n}, |I| < n—k(n)— 2, we have v(f,I) = 1 ,where

k(n) = [VAp[]=3].

Proof: Throughout this proof, the symbol = means the congruence relation modulo p[n].
For simplicity let k& = k(n). Moreover, let I C {1,2,...,n}, [I| <n—k —2 and let u, v be
different partial inputs defined on 7. Let J = {1,2,...,n}\ [and let

A:Zim—Ziui.

el el

We are going to prove f|, # f|, by finding an extension z of u and an extension y of v such
that 2 and y coincide on the positions in J and f(z) # f(y).

Case 1: A £ 0.
We extend u» and » to u’ and »' by setting some positions not fixed in » and ». First we
choose any 7 € J \ {1}. Let | = w,(j+ A). We have j # [, since either [= j+ A £ j or
Il =14# j. Recall that j € J. If also! € J, in «/ and v' we set the position j to 0 and the
position [to 1. Hence, in this case, we have u’; = v’ # uj = v. If | € I, we set the position j
of both u’ and v" in such a way that u} = v} # v].

We have at least k positions that are still not specified in both ' and v’. Let A be a set of
k of them; the remaining ones of them we set to zero in both u’,»’. Moreover, let h = |k/2].
It is easy to verify that h(k — h) > p[n] — 1. By Theorem 2.4, there is a set H C A of size h

such that
di=ji— Y dul

1€H 1€Tu{j,l}

Let z extend ' so that z; = 1 for all i € H and z; = 0 for all i € A\ H. Then, we have

zn:mz dit > duj=j.
=1

i€H ielu{jl}

Hence, f(z) = ?1,;-. Let y be a partial input extending » such that the bits with indices in J
have the same value in z and y. Then, we have w, (> i—q 1 y;) = w, (O t2; + A) = [and,
hence, f(y) = vf # f(2).

Case 2: A =0.
Let j € I be such that u; # v;. Let J be the complement of I. Since |J| > k, Theorem 2.4
may be used as above to prove the existence of an extension x of u such that > 7, iz; = j.
Let y be a partial input extending v such that the bits with indices in J have the same value in

2 and y. According to our assumptions, we have 3>_"" , iy; = j. Hence f(y) = v; # u; = f(2).
O

Now, the main result follows from Theorems 2.5 and 2.1, since p[n] = n + o(n).

Theorem 2.6 There is a sequence of Boolean functions {f,}°2, that is in P and such that
fn 1s a function of n variables and for every n large enough, every 1-b. p. computing f, has
size at least 2=3Vn,

In the present paper we use the weighted sum "7, 7 z; to define the function f,. In an
earlier version of the paper a weighted sum " ; w; z; was used to prove a lower bound of
the size 27~* where s = n?/%In'/3n without an application of Theorem 2.4.

For completness let us mention the following facts without proof. The sequence {f,}
from our theorem is computable on (1,+1)-b. p.’s within the size O(n*). Hence we have
a separation between 1-b. p.’s and (1,+1)-b.p.’s. Similarly, on nondeterministic 1-b. p.’s
O(n?) vertices are sufficient.

Theorem 2.6 may be compared with the maximal complexity of 1-b. p.’s. Every function
has a 1-b. p. of size 27~1087+0(1) an(there is a nonconstructive proof that some functions
require size 2771087=001) ' see [16].

3 A possible generalization

The function f, from the previous section is defined as z;, where j is computed from a
weighted sum of the bits in the input vector z. The basic property of this weighted sum used
in the proof of Theorem 2.5 was that if some setting leaves at least 3/n free input bits, it
is still possible to set these bits in such a way that the weighted sum belongs to any given
residue class modulo p[n]. In [15], Szemeredi proved that for any weighted sum of the input
bits with any integer coefficients, there is a setting that leaves Q(y/n) free bits that are not
sufficient to reach any residue class modulo p[n]. Hence, in order to get better lower bounds,
it is necessary to use a different approach.

In this section, we shall investigate the possibility to replace the weighted sum of input
bits by a more general function. More exactly, we shall investigate the complexity of functions
in the form z,(,) on 1-b. p.’s, where ¢ is a function of the type ¢:{0,1}" — {1,2,...,n}.

If I is any subset of the indices of the input bits, u is a partial input from B(I) and ¢ is
a function on the domain {0,1}" and any range, then let g|, mean the function of n — |/
Boolean variables obtained from ¢ by setting the bits specified in u according to u.

Definition 3.1 Let n, s and ¢ be integers and let ¢ : {0,1}" — {1,2,...,n} be a function.
Then, we say that ¢ is (s, n, ¢)-complete, if for every I C {1,2,...,n}, |I| = n — s, we have:
(i) For every u € B(I), the restricted function ¢|, has all the values from {1,2,...,n} in its
range.

(ii) There is at most ¢ different partial inputs u from B(I) giving different subfunctions ¢|,.

The condition (i) is a straightforward generalization of the basic property of the weighted
sum used in the previous section. It appears, however, that this condition is not sufficient to
prove a good lower bound in a way similar to the application of the weighted sum. The reason
is that in the proof of Theorem 2.5, we essentially use the fact, that we work with a weighted
sum, i.e. with a linear combination of the input bits. In order to work with a general function
¢, we include condition (ii). Using this condition, the proof is slightly different from the use
of the weighted sum, but it yields almost the same lower bound.

Theorem 3.2 Let ¢ be (s,n,q)-complete. Then, every 1-b. p. computing Ty(c) has size at
least 2"~*% /q.

Proof: Denote by f the function z4(,. In order to prove the theorem, we shall prove that
for any [satisfying |I| = n — s we have v(f,I) < ¢q. Then, the required lower bound follows
from Theorem 2.1.

Let I be such that [I| = n — s. Assume for a moment that v(f,1) > ¢. Then, there
are partial inputs uy, ug, ..., uy41 defined on I such that f[,, is the same subfunction for all
i=1,2,...,¢+ 1. By the assumption (ii) on ¢, there are some indices i and j such that
®lu; = ¢lu,. Let k € I be an index of a bit, where u; and u; differ. By the assumption (i) on ¢,
there is a partial input 2 defined on the complement of I such that ¢([u;, z]) = ¢([u;, z]) = k.
Then, f([u;,z]) # f([u;,z]), a contradiction with the choice of uy,ug, ..., ugq1. O

Note that f, = 4, where ¢(z) = w, (372, i2;). It is easy to see that this function is
([3y/n7] ,n,n)-complete. This together with Theorem 3.2 yields a lower bound that is worse
than the lower bound of Theorem 2.6 only by a factor of n. It is an open problem if an
explicitly defined (s,n,q)—complete function ¢ may be constructed for some s = o(y/n) and

In the rest of this section, we exhibit a nonconstructive proof of the fact that for every n

an (s,n,q)-complete function ¢ exists with s = O(logn) and ¢ = n9).
Lemma 3.3 Let A be a t x n matriz over GI'(2) such that every t X s submatriz has rank
at least r. Let ¢ : {0,1} — {1,2,...,n} be such that on every affine subset of {0,1}" of
dimension at least v, it reaches all the values from {1,2,...,n}. Then, ¢(z) = Y(Az) is
(s, m,2")—complete.

Proof: To prove the property (ii) of Definition 3.1, note that the contribution to Az of
setting any subset of the input bits to some constants is expressible as a vector of length ¢
over GF(2). Hence, at most ¢ = 2" different subfunctions ¢|, are possible for u € B([I) for
any fixed 1.

In order to prove property (i), note that if |[I| = n—s and u € B(I), then the set of vectors
A X [u, z] of length ¢ for all settings @ € B(J), where J = {1,2,...,n}\ I, is an affine subset
of {0, 1} of dimension equal to the rank of the ¢ x s submatrix of A formed by columns with
indices in J. By our assumption on A, this dimension is at least r. Hence, by the assumption
on ¥, every value from {1,2,...,n} is equal to ¥(A X [u, z]) for an appropriate z € B(J). O

Theorem 3.4 For every n large enough, there is an (s,n,q)-complete mapping ¢ : {0,1}" —

{1,2,...,n} for some s = O(logn) and ¢ = n°(),

Proof: Let € > 0 and let s, ¢ and r be given by the formulas:
s=[(243¢)logn]
t=1[(343¢)logn]

r=[(1+42¢)logn].

We are going to prove that a random ¢ X n matrix A and a random mapping ¢ : {0,1}* —
{1,2,...,n} satisfy the assumptions of Lemma 3.3 with positive probability. This implies
that a matrix A and a mapping 1 satisfying the assumptions of Lemma 3.3 with the given

parameters s, ¢ and r exist. For such A and ¥, the mapping ¥(Az) is (s, n,¢)-complete with
q = 2' by Lemma 3.3. Since we have s = O(logn) and ¢ = O(logn), this will imply the
theorem.

Let A be chosen at random. Choose some 7 X s submatrix of the matrix A. If this
submatrix has rank at most r, then there is a set of s —r of its columns that are in the linear
span of the remaining r columns. For a fixed choice of these s —r columns, this happens with
probability at most (27/2")*~". Hence, the total probability of the event that A contains a
t X s submatrix of rank at most r is at most

()
S T

slogn+ rlogs — (t —r)(s — 1) = —¢*log” n + O(logn log log n) — —oc.

The logarithm of this is at most

Hence, the probability that A does not satisfy the requirements of Lemma 3.3 converge to
7ero.

Let ¢ be chosen at random. Every affine subset of {0,1}! of dimension r is determined
by some of its elements and a linear subspace of dimension r of {0,1}’. The subspace is
determined by some set of its generators. Hence, the number of affine subsets of dimension
r is at most 2(r+1)1, (This estimate will be sufficient for our purpose. A better calculation
yields an upper bound 0(2(7""'1)(15_7")).) The probability that a random mapping misses some
of the values from {1,2,...,n} on some subset of size 2" of its domain is at most n(1—1/n)* .
Hence, the total probability that 1 does not satisfy our requirements is at most

T

2(7‘+1)tn <1 _ l) S 20(10g2 n)e—QT‘/n S 20(10g2 n)e—n2e .
n

Since this converges to zero, the theorem is proved. O

Note that Theorem 3.4 implies existence of ¢, for which Theorem 3.2 yields a lower bound
Qn—O(log n) .

Acknowledgement The authors are grateful to Endre Szemeredi for directing their
attention to [1], [4] and [8].

References

[1] N. Alon, M. B. Nathanson and I. Z. Ruzsa, The polynomial method and re-
stricted sums of congruence classes, J. Number Theorey, to appear.

[2] L. Babai, P. Hajnal, E. Szemeredi and G. Turan, A lower bound for read-once-
only branching programs, Journal of Computer and Systems Sciences, vol. 35

(1987), 153-162.

[3] A. Borodin, A.Razborov and R. Smolensky, On Lower Bounds for Read-k-times
Branching Programs, Computational Complezity 3 (1993) 1 — 18.

[4] J. A. Dias da Silva and Y. O. Hamidoune, Cyclic spaces for Grassmann deriva-
tives and additive theory, Bull. London Math. Soc., 26 (1994), 140-146.

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

P. E. Dunne, Lower bounds on the complexity of one—time—only branching pro-
grams, In Proceedings of the FCT, Lecture Notes in Computer Science, 199
(1985), 90-99.

S. Jukna, A Note on Read-k-times Branching Programs, RAIRO Theoretical
Informatics and Applications, vol. 29, Nr. 1 (1995), pp. 75—83.

S. Jukna, A. A. Razborov, Neither Reading Few Bits Twice nor Reading lllegally
Helps Much, TR96-037, ECCC, Trier.

M. B. Nathanson, Additive Number Theory: 2. Inverse Theorems and the Ge-

ometry of Sumsets. Graduate Texts in Mathematics, Springer-Verlag, New York,
1995.

E. A. Okolnishkova, Lower bounds for branching programs computing charac-
teristic functions of binary codes (in Russian), Metody diskretnogo Analiza, 51

(1991), 61-83.

S. J. Ponzio, A lower bound for integer multiplication with read-once branch-
ing programs, Proceedings of 27’s Annual ACM Symposium on the Theory of
Computing, Las Vegas, 1995, pp. 130-139.

P. Savicky, S. Zék, A Lower Bound on Branching Programs Reading Some Bits
Twice, to appear in TCS.

D. Sieling, New Lower Bounds and Hierarchy Results for Restricted Branching
Programs, TR 494, 1993, Univ. Dortmund, to appear in J. of Computer and
System Sciences.

D. Sieling and [. Wegener, New Lower bounds and hierarchy results for Re-
stricted Branching Programs, in Proc. of Workshop on Graph-Theoretic Con-
cepts in Computer Science WG9/, Lecture Notes in Computer Science Vol. 903
(Springer,Berlin, 1994) 359 — 370.

J. Simon, M. Szegedy, A New Lower Bound Theorem for Read Only Once
Branching Programs and its Applications, Advances in Computational Complex-

ity Theory (J. Cai, editor), DIMACS Series, Vol. 13, AMS (1993) pp. 183-193.
E. Szemeredi, personal communication.

1. Wegener, The complexity of Boolean functions, Wiley-Teubner Series in Com-
puter Science, 1987.

I. Wegener, On the Complexity of Branching Programs and Decision Trees for
Clique Functions, JACM 35 (1988) 461 — 471.

1. Wegener, Efficient data structures for the Boolean functions, Discrete Math-

ematics 136 (1994) 347 — 372.

S. Zak, An Exponential Lower Bound for One-time-only Branching Programs, in
Proc. MFCS’84, Lecture Notes in Computer Science Vol. 176 (Springer, Berlin,
1984) 562 — 566.

[20] S. 74k, A superpolynomial lower bound for (1, +k(n))- branching programs, in
Proc. MFCS’95, Lecture Notes in Computer Science Vol. 969 (Springer, Berlin,
1995) 319 - 325.

