Electronic Colloquium on Computational Complexity - Reports Series 1996 - available via:
E(:(:(: FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW: http://www.eccc.uni-trier.de/eccc/

T R96- 037 Email: ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

Neither Reading Few Bits Twice nor Reading
[llegally Helps Much

S. Jukna* A. Razborov'
Universitat Trier Steklov Mathematical Institute
Fachbereich Informatik Vavilova 42, 117966, GSP-1
Trier, Germany Moscow, Russia
Abstract

We first consider so-called (1, +s)-branching programs in which along every
consistent path at most s variables are tested more than once. We prove that
any such program computing a characteristic function of a linear code C' has
size at least 29(min{di, d2/3}), where d; and dy are the minimal distances of C'
and its dual C't. We apply this criterion to explicit linear codes and obtain a
super-polynomial lower bound for s = o(n/logn).

Then we introduce a natural generalization of read-k-times and (1,+s)-
branching programs that we call semantic branching programs. These programs
correspond to corrupting Turing machines which, unlike eraser machines, are
allowed to read input bits even illegally, i.e. in excess of their quota on multiple
readings, but in that case they receive in response an unpredictably corrupted
value. We generalize the above-mentioned bound to the semantic case, and
also prove exponential lower bounds for semantic read-once nondeterministic

branching programs.

1. Introduction

We consider the usual model of branching programs (b.p.). This model captures in

a natural way the deterministic space whereas nondeterministic branching programs

(n.b.p.) do the same for the nondeterministic mode of computation. A similar model

of switching-and-rectifier nelworks appeared already in pioneering work of Shannon

and was extensively studied in the Russian literature since early 50th. The best lower

bound for unrestricted n.b.p., however, remains the lower bound of Q(n3/2/log n)

*Supported by DFG grant Me 1077/10-1. On leave from Institute of Mathematics, Vilnius,

Lithuania. E-mail: jukna®ti.uni-trier.de

tSupported by grant # 96-01-01222 of the Russian Foundation of Fundamental Research, and by

an AMS-FSU grant. E-mail: razborov@class.mian.su

proved by Neciporuk in 1966 [11]. A survey of known lower bounds for these models
can be found in [13].

In order to learn more about the power of branching programs, various restricted
models were investigated. One of the most intensively studied was that of read-k-times
programs (k-b.p. or k-n.b.p.) where in each computation every input bit can be tested
at most k times. This model introduced in [10] corresponds to so-called eraser Turing
machines, and the first super-polynomial lower bounds for 1-b.p. were obtained in
[19, 18]; see also [3, 6, 1, 8] for further results in that direction. Exponential lower
bounds for 1-n.b.p. were proven in [4, 7, 2, 5]. However, any attempts to get such
bounds for 2-b.p. bitterly failed (so far).

One possible explanation of this failure might be that the restriction of being
read-k-times is somewhat “unstructured” and, as such, is difficult to capture in an
argument. Its stronger and more constructive version requires that in every path,
be it consistent or not, every variable appears at most k& times: the corresponding
branching programs were called in [2] syntactic. This restriction is much easier to
capture and analyze, and, indeed, strong lower bounds for syntactic k-b.p. (for an
arbitrary but fixed k) were independently established in [2] (for the nondeterministic
case) and in [12] (for the deterministic one); see also [5]. As a matter of fact, the
difference between syntactic and ordinary programs disappears in the read-once case,
and this provides us with some intuition as to why already the next case k = 2 (= the
first non-syntactic case) presents a new level of difficulties. Another piece of evidence
that “syntactic” is a rather strong restriction is given by the exponential separation
between syntactic and non-syntactic models established in [5] by exhibiting an explicit
function which can be computed by a read-once switching-and-rectifier network! of
size O(n3/2) but requires (syntactic) 1-n.b.p. of exponential size.

Another idea to get closer to the 2-b.p. case is to allow a limited number of bits be
tested more than once. More specifically, (1, +s)-branching programs are the usual
b.p. where in every consistent path at most s variables are tested more than once.

For syntactic (1,+s)-b.p., where s = s(n) < o <n1/3/10g2/3 n), exponential lower
bounds were proved in [15, 16]. [14], improving upon [20], established (implicitly) the
lower bound exp <Q ((2

s+1)logn
ing some function in ACC. This is super-polynomial in n as long as s = o (n/(log n)?).

1/2
) /) on the size of non-syntactic (1, +s)-b.p. comput-

In the first part of this paper we apply some of the techniques of [20, 14] to
show that any (1,4s)-b.p. computing the characteristic function of a linear code
C' has size at least 2min{di, d2/8}), where d; and dy are the minimal distances of

C' and its dual C'*, respectively (Corollary 2.4). We then apply this criterion to
concrete linear codes. For a Reed-Muller codes this yields the bound exp <Q (-)1/2>

s+1
(Theorem 2.5), and for a Bose-Chaudhuri-Hocquenghem code the bound becomes

"This is the weakest natural nondeterministic model that is non-syntactic, and no non-trivial

lower bounds are known for it. See Section 4 for a more thorough discussion.

exp (Q (min{y/n, n/s})) (Theorem 2.6). This is super-polynomial in n for any s =
o(n/logn). Whereas we have only a slight numerical improvement over [20, 14],
the combinatorial part of our bound is much easier, essentially trivial (modulo some

known deep facts from the coding theory).

In the second part of this paper we introduce a stronger and, perhaps, more
natural? version of eraser machines that we call corrupting machines. In this model
the main accent is made upon acceptance/rejectance conditions rather than on pro-
hibiting the machine to follow certain paths. For that reason we call the correspond-
ing non-uniform version semantic branching programs: these are stronger than their
ordinary counterparts.

One of our motivations for introducing semantic b.p. is the common belief that
working in a “right” model can significantly advance us to the task of proving lower
bounds for the original (weaker, but more awkward) model. In pursuit of this goal
we generalize the results about (1,4s)-b.p. to the semantic case (Theorem 3.3), and
also we prove exponential lower bounds for semantic 1-n.b.p. (Theorems 3.7 and
3.9). Our methods tend to examine multiple readings along rejecting (rather than
accepting) computations, and we hope that this approach may turn out to be helpful

for the future research in the area.

2. Lower bounds for (1, +s)-branching programs

We will use the following notation. A partial input is a mapping a : [n] — {0,1,x*}
where [n] = {1,...,n}. If a(i) = % we say that the ¢-th bit in a is unspecified (or
undefined). By S(a) we denote the set of all specified bits, i.e. S(a) = {i € [n] :
a(i) # }. For (partial) inputs a1,az,...,as such that all I[; = S(a;) are pairwise
disjoint, [a1,ay,...,a,] is the input specifying bits from (Ji_, I; and defined by the
equality [a1, as, ..., a](2) = a;(¢) for ¢ € I;. The length |a| of a is the number of bits in
S(a). For two partial inputs a and b, let D(a, b) be the set of all bits where they both
are defined and have different values. Given a boolean function f(zy,...,z,), every
partial input a (treated for this purpose as a restriction) defines the subfunction f|, of
fin n—|a| variables in a usual manner. A minterm (mazterm) of f is a partial input
a for which f|, =1 (f|. = 0, respectively), and which is minimal in the sense that
unspecifying every single value a(z) € {0,1} already violates this property. Given a

boolean function f, we say that:

o [isd-rareif |D(a,b)| > d for every two different totally defined inputs a, b such
that f(a) = f(b) =1;

o [is m-dense if |a] > m for every maxterm a of f.

Zespecially in the context of quantum computations, although we have not been able to draw any

direct analogies

We adopt the standard definition of a branching program (b.p.), see e.g. [17,
Section 14]. The size |P| of a b.p. P is the number of nodes. For a partial input
a:[n] —{0,1,%}, comp(a) is the path in P consistent with a until we reach a node
where the first test of * is made. If the input a is totally defined, cormp(a) leads to
one of the sink nodes. P is read-k-times (k-b.p. for short) if for every (total) input a
every variable appears at most k times along comp(a). P is (1,+s) if the number of

variables tested more than once along comp(a) does not exceed s, for every a.

2.1. General bounds

The following general bound was implicitly proved (but not stated exactly in this
form) in [14]:

Theorem 2.1. Let 0 < d,m,s < n be arbilrary integers. Fvery (1,+s)-branching

program compuling a d-rare and m-dense function must have size al least

2(min{d7 m/(s+1)}—1)/2.

For completeness we include here its independent proof. Recall first the main

technical statement from [20, 14] concerning so-called “forgetting pairs” of inputs.

Definition 2.2. Let a, b be (partial) inputs with S(a) = S(b). Given a branching
program P, the pair a,b is called a forgetting pair (for P) if there exists a node w
such that w belongs to both comp(a) and comp(b), and both computations read all the

variables with indices in D(a,b) at least once before reaching w.

Given a b.p. P, one can get a forgetting pair by following all the computations
until r := [log, |P|] + 1 different bits are tested along each of them. Since |P| <
27, at least two of these paths must first split and then stick in some node. Take
the corresponding partial inputs @} and b} and extend them to a; and b; such that
S(ay) = S(by) = S(a}) U S(b)) and D(ay,by) € S(a}) N S(b)). This way we get a
forgetting pair of inputs ay # by both of which are defined on the same set of at
most |S(a})US(H)] < 2r —1 bits. We can now repeat the argument for the naturally
defined sub-program P|,, and obtain next forgetting pair of inputs [ay, as] and [ay, by],
etc. We can continue this procedure for s steps until s(2r —1) < s(2log, |P|+ 1) does
not exceed the minimum number of different variables tested on a computation of P.

This proves the following

Proposition 2.3. ([20, 14]) Let P be a branching program in which every computa-
tion reads at least m different variables. Lel s be a natural number in the interval
1 <s< m. Then there exist pairwise disjoint sets I; C [n] forj =1,...,s
and partial inpuls a; # b; with S(a;) = S(b;) = I; such thatl for all j =1,2,...,s we

have:

1. 11| < 2log, |P| + 1,

2. the inputs [ay,...,a;] and |ay,...,aj_1,b;] form a forgetting pair. Moreover,
nodes wy, ..., ws fulfilling Definition 2.2 for these pairs can be chosen in such a

way that they appear on the path comp([ay, ..., as)) in the non-decreasing order®.

Proof of Theorem 2.1. Suppose the contrary, that some (1, +s)-b.p. P computes
a d-rare and m-dense function and has size less than 2min{d 7/(s+1)}=1)/2 " We can
assume w.l.o.g. that d > 2 (otherwise the bound becomes trivial), and this implies
that every minterm of f has size n > m. Hence, in order to force f to either 0 or 1
we must specify at least m positions, therefore every computation of P must read at
least m different variables. Since |P| < 20m/(s+1)=1/2" we can apply Proposition 2.3
(with s := s 4+ 1) and find I;,a;,b; (1 <j < s+ 1) with properties 1), 2). From 1)
and the bound on |P| we have |[;| < min{d, m/(s + 1)}, and this implies that the
partial input [ay, ..., as41] specifies strictly less than m variables. Since f is m-dense,
[a1,...,as41] can be extended to a totally defined input a such that f(a) = 1.

As I;’s are pairwise disjoint and P is (1,+s), there exists j, 1 < j < s+ 1, such
that all variables with indices from [; are tested at most once along comp(a). Now,

let w be the node that corresponds to the forgetting pair
[ay,...,a5_1,a;], [ar,...,a;j_1,b]

accordingly to Definition 2.2; clearly, w is on comp(a). All variables with indices from
D(aj,bj) C I; are already tested along comp(a) before w, hence no such variable is
tested after w, and the computation on the input ¢ obtained from a by replacing a;
with b; can not diverge from comp(a) after the node w. Therefore, f(c) = f(a) = 1.
But this, along with |I;| < d, contradicts d-rareness of f. The proof of Theorem 2.1

is complete.m

This theorem is especially useful for (characteristic functions of) linear codes. Say
that a subset C' C {0,1}" is d-rare or m-dense if such is the characteristic function
of C.

C'is d-rare if and only if the minimal distance of C' (treated as a code over GF(2))
is at least d.

m-density of C' means that for any subset of coordinates S C [n] with |S| < m
and for each vector v € {0,1}", there is at least one vector in C' whose projection
onto S coincides with v. It follows that a linear code C' (over GF(2)) is m-dense iff
the minimal distance of its dual C't is at least m. Indeed, the set of all projections of
strings in C' onto S is a linear subspace in {0,1}°, and this subspace is proper if and
only if all strings a € (' satisfy a non-trivial linear relation }; ¢;a; = 0 mod 2 whose
support {7 : & = 1} is contained in S. But, by definition, C* consists exactly of all
relations ¢ satisfied by C, and its minimal distance is exactly the minimal possible

cardinality of a set S for which the projection of C onto {0,1}° is proper.

3this extra property of wy, ..., w, will be used only in Section 3

Hence Theorem 2.1 implies:

Corollary 2.4. Let C be a linear code with minimal distance dy, and let dy be the
minimal distance of the dual code C*+. Then every (1,+s)-branching program com-
puling the characteristic function of C' has size at least 2(Min{d, d2/(s+1)}=1)/2,

2.2. Lower bounds for explicit codes

Reed-Muller codes. Recall that the r-th order binary Reed-Muller code R(r, /)
of length n = 2 is the set of graphs of all polynomials in ¢ variables over GF(2) of

degree at most r. This code is linear and has minimal distance 2°".

Theorem 2.5. Let n =2, 0 < s < n and r = [%(E + log,(s 4+ 1))|. Then every
(1,4s)-branching program compuling the characteristic function of the Reed-Muller

code R(r,l) has size at least exp (Q (311)1/2> :

Proof. It is known (see, e.g. [9, p. 375]) that the dual of R(r, /) is R({ —r — 1,7).
Hence in the notation of Corollary 2.4 we have d; = 277 > Q(L) and dy =

s+1
27t > Q) (n(s +]) . The desired bound follows.m

Bose-Chaudhuri-Hocquenghem codes. Tet n = 2 — 1, and let ¢ C {0,1}"
be a BCH-code with designed distance § = 2t + 1, where ¢t < \/n/4. Let dy be the
minimal distance of its dual C*+. The Carliz-Uchiyama bound (see, e.g., [9, p. 280])
says that dy > 271 — (¢ — 1)2’5/2 which is ©(n) due to our assumption on ¢. Since the
minimal distance d; of a BCH-code is always at least its designed distance 6, we get

from Corollary 2.4

Theorem 2.6. Let n = 2 — 1, and let C' be a BCH-code with designed distance
6 =2t 41, where t < /n/4. Then every (1,+s)-branching program computing the
characteristic function of C has size exp(Q(min{t, n/s})). In particular, if t >

w(logn) then every such program must have super-polynomial size as long as s <

o(n/logn). -

3. Semantic branching programs

The uniform model corresponding to k-b.p. are so-called eraser machines, and a
similar definition capturing the (1,+4s)-case can be given in a straightforward way.
It is not clear, however, to which extent the very name “eraser” is justified; perhaps,
something like poisoning machines would be more natural. Indeed, these machines
model the situation when after reaching the quota on the amount of readings, input

bits get “poisoned” so that any extra attempt to read them leads to something really

bad (short circuit, for example). Accordingly, programs for such machines should be
designed in such a way that they avoid this unpleasant situation by any means.
Apparently, “truly” eraser machines should rather erase the input bit and put in
its place a question mark to be observed during subsequent readings. Unfortunately,
this model does not behave well in combination with sub-linear space limitations, and
the reason is that these question marks can be (at least, in principle) used for storing
information on the input tape. For example, it is clear how to model read-once by
read-twice: duplicate every reading. But we don’t know if eraser (in the sense of
this paragraph) read-twice machines can be simulated by read-thrice: the duplicating
trick does not seem to work any longer since we can not distinguish bits read once

from those not read yet at all.

We propose corrupting machines as an intermediate model between poisoning
and eraser machines which is (apparently) free of these disadvantages. Namely, when
such a machine attempts an illegal reading (that is, in excess of its quota), nothing
bad happens (as with poisoning machines) except that the machine gets a possibly
corrupted value. Our machine (unlike “truly” eraser machines) does not know whether
the reading was legal or not, and it is required to output the correct answer at the
end of the computation no matter which corruption took place during illegal readings
(adversary model).

In the definition of a corrupting machine we put the main accent on accep-
tance/rejectance conditions rather than on the way the machine is allowed to perform.
For that reason we call the corresponding non-uniform model semantic branching pro-
grams and immediately proceed to this setting for precise definitions. The interested

reader should have no difficulties in adopting them to the uniform version.

3.1. Deterministic case

Let) € N" be an anti-monotone non-trivial predicate which in the sequel will be
called the quota predicate. Here N is the set of positive integers including zero, n is
the number of variables, and the anti-monotonicity means that Q(ky,...,k,) along
with &) < kq,...,kl, <k, implies Q(k{,...,k.,). The predicate) expresses the quota
on the amount of legal readings, and the following examples are the most important

for us:

o Qr(ki,... ky) =Vi€ [n](k; < k) (every variable is read at most k times);

. Q(1,+s)(k17 ooy ky) =|{i €[n] : ki > 2}| < s (at most s variables are read more

than once).

Definition 3.1. For a path p in a b.p. P and a quota predicate (), we define a vector
ke = (k?’Q, o, kPR) € N such that Q(kP?) by induction on the number of edges

m p.

1. If p is empty then kP9 = (0,...,0).
2. Let p = (q,¢€), and suppose thal the head node of e is marked by x;.
(a) If Q(k%’Q, ceey kfﬁ, k?’Q +],kf_ﬁ, oy kD9) then we lel

PQ (k%,Q’ Y LI A B o, kD9,

s V=19 s V419

In that case we say that the reading of x; at w along the path p is legal.
(b) If ~Q(EL®, .. k29 kP? 4 1, k5D, .. k29) then we let kP9 = k9 and

=19 g 419

say that x; is read illegally.

Notice that illegal readings do not increment the counter k7. This allows our ma-
chine/b.p. to function properly between different attempts to read illegally.

Given a b.p. P, a quota predicate) and a totally defined input a € {0,1}", we let
Comp®(a) denote the set of all possible I/O paths such that all legal readings along
these paths are consistent with a. Obviously, comp(a) € Comp?(a), but Comp?(a)
may also contain other paths (typically inconsistent). We say that P is semantic
w.r.t. Qif for every a € {0,1}" all paths in Comp®(a) lead to a sink of the same type
(accepting or rejecting) as comp(a). A semantic read-k-times branching programis a

b.p. semantic with respect to Q. A semantic (1,+s)-b.p. is a b.p. that is semantic
w.r.t. Q(1,+s)-

Remark 3.2. Notice that every (ordinary) k-b.p. or (1,4s)-b.p. is also seman-
tic simply for the reason that there can be no illegal readings, and Comp?(a) con-
sists of the single path comp(a). In fact, it is easy to see that the condition Va €
{0,1}"(Comp@(a) = {comp(a)}) characterizes ordinary programs in the class of se-

mantic.
Now we show how to extend Theorem 2.1 to the semantic case.

Theorem 3.3. Let 0 < d,m,s < n be arbitrary inlegers. Fvery semantic (1,+s)-

branching program computing a d-rare and m-dense function must have size al least
2(min{d, m/(23+1)}—1)/2.

In particular, both our bounds for explicit codes (Theorems 2.5, 2.6) are still valid

in the same form for the more general case of semantic (1, +s)-b.p.

Proof. We begin as in the proof of Theorem 2.1 but with the assumption |P| <
9(min{d, m/(25+1)}_1)/2, and construct I,..., Iosp1,a1,. .., G541, b1, .. ., basyy satisfying
Proposition 2.3 (with s := 2s + 1) and a total extension a of [ay,. .., azs41] such that
f(a) = 1. The rest of that proof basically says that every D(a;,b;) C I; contains at
least one variable tested for the second time along cornp(a), meaning that P is not
a (1,42s)-b.p. In our case, however, we have to derive a contradiction from the fact

that P is a semantic (1, +s)-b.p., which requires some extra work.

8

Let ¢; be the input obtained from a when we replace a; with b;, and let p;, p’
be the sub-paths of comp(a), comp(c;) respectively ending at the node w; fulfilling
Definition 2.2 for the forgetting pair [ai,...,a;],[a1,...,a;-1,b;]. Let also ¢; be the
remaining part of comp(a) so that comp(a) = (pjq;). As in the proof of Theorem 2.1
we are going to force P to accept at least one of the inputs ¢; which, together with
f(a) = 1, would contradict d-rareness of f. For doing this, it suffices to show that
(Piq;) € Comp?0.+9 (¢;) for some 1 < j < 25+ 1. Consider two cases.

Case 1. At least s variables are tested more than once along p,;;. We
claim that in this case (ph,1¢2s11) € Comp?0+9 (cye41). Indeed, ply, . is OK since all
readings along this path (legal or not) are consistent with ¢y,41. Moreover, since wqs41
appears on comp(a) after wy, (by property 2) from Proposition 2.3), pj, ., extends
p2s which implies that fPos41Q049) already contains (exactly) s components that are
greater or equal than 2. Thus, every repetitive reading along (p},_¢2s41) that occurs
on ¢as41 is illegal. This, in particular, applies to all bits from D(ags41,b2s41), and all
other readings along ¢us41 are consistent with a and, hence, with cgs11.

Case 2. Less than s variables are tested more than once along py,. For
1 < j < 2s denote by w! the earliest node along comp(a) where the second test of a
bit from D(a;,b;) is made. The assumption of Case 2 implies that at least (s + 1)
nodes among wf, wh, . . ., wh, must belong to gas. Let w! be the latest (along comp(a))
of these nodes. Note that ¢; contains the segment ¢; of comp(a) bounded by w; and
w’, and this segment is consistent with ¢;. Moreover, at least s variables are already
tested more than once along pg; (namely, at nodes from the list {w},w},... w,}
belonging to gy5 and other than w’). Now, the same argument as in Case 1 shows
that (plq;) € Comp®t+9(c;).

This completes the proof of Theorem 3.3.m

3.2. Nondeterministic case

We introduce nondeterminism into branching programs simply by additionally allow-
ing guessing nodes of out-degree 2 that are not marked by any variable and have an
obvious computational meaning. A nondeterministic branching program (n.b.p.) is
read-k-times or (1,+s) when this restriction is satisfied by all consistent paths begin-
ning at the source node [13].* Notice that every consistent path in a n.b.p. can always
be extended to a consistent path terminating at a sink node, so we could equally well
consider in this definition only such 1/0O paths.

We extend Definition 3.1 to nondeterministic b.p. in an obvious way. Namely, if
p = (g,€) and e goes out of a guessing node, we let k7@ = k29,

In order to define acceptance/rejectance conditions for a n.b.p. P on a string
a with respect to some quota predicate) we introduce a game of two players, B

(brancher) and C (corrupter). This game, which we denote by G%(a), develops along

4One natural modification of this definition will be discussed in the next section.

a path in P, and it begins at the source node. At a guessing node, B simply chooses
one of the two alternatives for the game to proceed. Suppose (G%(a) arrives at a
computational node w along some path ¢, and let e be the outgoing edge consistent
with a. If the reading at w is legal (along the joint path (g,e¢)), G?(a) follows e.
Otherwise (' chooses one of the two continuations. The game terminates when it
arrives at a sink node.

The goal of the brancher is to reach one of the accepting sink nodes, and we say
that in this case he wins. The goals of the corrupter are defined less clearly: in
general, she is interested in creating as much damage by corrupting the computation

as possible. This leads us to the following definition:

Definition 3.4. A n.b.p. P is semantic with respect to a quota predicate ()
if for every string a € {0,1}" either B has a winning strateqy against C in the game
G9(a) (a is accepted) or B looses in the cooperative version of this game, thal is even

when C helps him to win (a is rejected).

A semantic k-n.b.p. [(1,45)-n.b.p.] is a n.b.p. semantic with respect to Qx [Q(1 +5),
respectively].

Semantic b.p. make a subclass of semantic n.b.p. (with respect to the same quota
predicate). In this case there is no brancher, and C' is doomed to fail in the solitaire
game G9(a), both for accepted and rejected inputs.

Ordinary (read-k-times or (1,+s)) n.b.p. also make a subclass of semantic n.b.p.
(cf. Remark 3.2). This is because C' never has a chance to participate in the game, due
to the structure of the program, and the game itself proceeds only along consistent
paths.

Finally, note that if a semantic program accepts or rejects according to Definition
3.4, it also accepts (or rejects) in the usual sense. Indeed, it is easy to see that accep-
tance/rejectance conditions from Definition 3.4 turn into ordinary ones in the partial
case when the corrupter is passive, i.e. refrains from corrupting the computation by

always choosing the continuation consistent with a.

For a Boolean function f and an integer d we denote by cov(f, d) the minimal A for
which there exist monomials uy, ..., u, of d literals each, such that f < wuy V...V uy.

Our general bound for semantic 1-n.b.p. looks as follows:

Theorem 3.5. Lel f be a d-rare function, d > 1. Then every semantic read-once

nondeterministic branching program computing [has size at least cov(f,d —1).

Proof. We can assume w.l.o.g. that d > 2 (otherwise the bound becomes trivial).
Let P be a semantic 1-n.b.p. computing some d-rare function f. Fix arbitrarily one

consistent® accepting path p, for every accepted input a. Since d > 2, p, must read

®Such path exists since the brancher must have a winning strategy on a also in the case when

the corrupter plays passively.

10

all variables at least once. Let p, = (p,pl/), where p), is a segment of p, along which

exactly (d — 1) variables are tested (at least once), and let w, be the terminal node
of pl,. For each node w in W := {w, : f(a) = 1} select arbitrarily one path from all
the paths p! with w, = w, and denote this path by p,. Let u, be the monomial of
(d — 1) literals corresponding to that path p,. We are going to finish the proof by
showing that f <\ ,cw tuw.

For this we will exploit one particular property of semantic read-once n.b.p. (not
shared already by (1,4+1)-n.b.p.). Namely, in the cooperative mode of the game
G (a), B and C can follow every path p (consistent or not) for some input a, €
{0,1}". This input a, is simply constructed by letting a,(z) to be the result of the
first reading of x; along p. The input a, is in general partial, but when p leads to an
accepting sink, and the function f computed by the program is known to be 2-rare,
a, must be a totally defined accepted input.

Suppose now that f(b) = 1, and w is the terminal node of p;. We claim that
uy,(b) = 1.

Indeed, otherwise the input a, corresponding to the path p = (p,pj) would be
an accepted input different from b (since readings along p,, have priority in defining
a,). On the other hand, all bits from D(b, a,) must be tested along p,,. To show this,
notice that every bit 2 not tested along p,, is tested for the first time only on py. Let €
be the result of the earliest reading of z; along p}. Then b(z) = € since pj is consistent
with b, and a,(z) = € by construction of a,. Hence, i & D(b, a,).

Thus, u,(b) = 0 could happen only if P would accept two different inputs a, and
b with |D(b,a,)| < d, which is impossible by d-rareness of f. This completes the
proof of the fact u,(b) = 1, and the proof of Theorem 3.5.m

The following easy lemma provides a lower bound on cov(f,d) in terms of density.

Lemma 3.6. For an m-dense function [in n variables, cov(f,d) > exp (Q (de))

Proof. Let [< V™, u;, where u; are monomials of d literals and h = cov(f,d). Hit
this inequality with a restriction p assigning random (0-1) values to randomly chosen
(rm — 1) variables. Then

n

Pluly 0] < P|I50) 01 (0)| < B

(o)

and P[f|, #Z 0] = 1 since f is m-dense. On the other hand,

Pl 0] 1500 0 500 > 5 |

h
Plf], 0] < 3 Plu, £0].
=1
The statement follows.m

11

Theorem 3.5 and Lemma 3.6 imply the lower bound exp (Q (de)) on the size of
semantic 1-n.b.p. computing a d-rare and m-dense function. In particular, this gives

an exp (2 (y/n)) bound for BCH-codes:

Theorem 3.7. Let n = 2" — 1, and let C be a BCH-code with designed distance § =
2t + 1, where t < \/n/4. Then every semantic read-once nondeterministic branching

program compuling the characteristic function of C has size exp(2(t)).

The following theorem extends the lower bound argument used in [4, 2] (for ordi-
nary 1-n.b.p.) to semantic 1-n.b.p., and works for Boolean functions which are not
sufficiently rare.

For a set of inputs A C {0, 1} and an integer 0 < k < n, we define the k-th degree
di(A) as the maximum number of inputs in A, all of which have 1’s on some fixed set
of k coordinates. An input a is a lower one of a Boolean function f if f(a) =1 and
f(b) = 0 for all inputs b # a such that b < a. We say that f is r-uniform if |a| = r

for every lower one a of f.

Theorem 3.8. Let [be a r-uniform function and A be the set of all lower ones of
f. Then, for every 0 < k < r, every semantic read-once nondeterministic branching
program computing f has size at least W'

Proof. Let P be a semantic I-n.b.p. computing f, and A be the set of lower ones of
f. Given an input a € A, let p, be any accepting path which is followed by the game
(G9'(a) when the corrupter always chooses to continue along the edge marked by 0,
totally disregarding real values of bits. p, may be inconsistent but it has one nice
property: for each bit 7, the variable z; appears positively on p, ezactly a(7) times.
Let p, = (p,pl)), where p/, is a segment of p, with exactly k positive readings. We
denote the corresponding set of bits by I,, and let J, denote the set of remaining
r — k bits in a™'(1). For a node w of P, let A, denote the set of all inputs a € A
such that w is the terminal node of p/. We are going to finish the proof by showing
that |A,| < dg(A)d,_k(A) for every node w.

Fix some node wof P,and let Z ={I,:a € A,}, J = {J,: b€ A,}. Consider an
arbitrary pair [€ Z, J € J, and denote by (1V .J) the input defined by (IV.J)(z) =1
iff : € TU.J. Choose some a,b € A, such that I = [,, J = .J;, and let the input
a, € A correspond to the path p = (p)p/) as in the proof of Theorem 3.5. Then,
clearly, a, < (I'V .J). But since |I|+ |J| = r and [is r-uniform, this is possible only
when INJ = and (] V J) = a, € A. Let us emphasis that this conclusion holds for
everypair I € Z, J € J.

With this observation in mind, we fix an arbitrary J € J and notice that {(/V.J) :
I € I} is a set of different inputs from A, all of which have 1’s on J. Hence,
|Z| < d.—x(A) (provided J # 0). Similarly, | 7| < di(A) which implies |Z| - |J| <
dy(A)d,_r(A). Finally, every a € A, is uniquely determined by the pair (I,,.J,),

12

therefore |A,)| < |Z|-|J|. This completes the proof of the desired inequality |A,,| <
di(A)d,_1(A), and of Theorem 3.8.m

We demonstrate the theorem by a lower bound for an explicit function in AC?.

2

The ezact-perfect-matching function is a Boolean function FPM, in n* variables,

which, given an n x n matrix X with entries in {0,1}, computes 1 iff there is a
permutation ¢ : [n] — [n] such that X,;; =1 <= o(i) = j. The perfect-matching
function PM,, is a monotone Boolean function, the set of lower ones of which coincides
with EPJ\/[TL_I(l). It is clear that EPM, is in AC°. Moreover, it is known that £P M,
has 1-s.r.n. of size O(n?) but cannot be computed by a 1-n.b.p. of polynomial size
[4]. Note also that neither of these two functions is 5-rare, so Theorem 3.5 cannot
give any super-polynomial lower bounds for them.

Since, for every 1 < k < n, the k-th degree of EPM'(1) is exactly (n — k)!, we
get by Theorem 3.8 that this function, as well as i1ts monotone version PM,,, are hard

for semantic 1-n.b.p.:

Theorem 3.9. Neither EPM, nor PM, can be computed by a semantic read-once

nondeterministic branching program of size smaller than (L?ﬁﬂ)'

4. Conclusion and open problems

In this paper we have further (after [14]) simplified the original lower bound argument
of [20] and applied it to explicit linear codes. The most interesting open question
certainly consists in modifying that argument in order to make some variable be read
for the third time, i.e. in trying to prove super-polynomial lower bounds for the
read-twice case.

Our knowledge about the power of n.b.p. is even more depressing: for this model
the (1,41) case is still open. In fact, there are no non-trivial lower bounds even for
a weaker model of read-once switching-and-rectifier networks (1-s.r.n.)®. Moreover,
the example from [5] somehow suggests that methods previously known for 1-n.b.p.
(including our Theorems 3.5 and 3.8) seem to be inherently too weak to deal with
1-s.r.n., and the latter model probably requires some new machinery.

We have introduced semantic branching programs and proved in this framework
exponential lower bounds for (1,4s)-b.p. (when s = o(n/logn)) and 1-n.b.p. These
are exactly at the border of our knowledge about ordinary branching programs. In
this connection, it would be interesting to prove (or disprove) that semantic b.p.
are strictly stronger than their ordinary counterparts. This could be done, say, by
exhibiting a function that can be computed by a poly-size semantic 1-b.p. or 1-n.b.p.

but requires super-polynomial size in the corresponding ordinary model.

In [13] these were defined in such a way that they are equivalent to 1-n.b.p. Here we adopt
stronger and more meaningful definition: a s.r.n. is read-once if every variable is tested at most once
along every consistent path beginning at the source node.

13

One more natural class of nondeterministic models (both in ordinary and semantic
settings) is obtained when we relax the rejectance condition. More specifically, for
ordinary programs we only require that for every accepted input there exists at least
one accepting path obeying the quota on the amount of reading (but paths violating
this quota are also allowed, both accepting and rejecting). For semantic n.b.p. we
simply relax the rejectance condition to its ordinary form (B looses in cooperation
with the passive corrupter). Let us call these nondeterministic models strong. We
remark that we do not know of any lower bounds for strong 1-n.b.p. (even ordinary),
and that in fact strong 1-n.b.p. can be easily shown to include 1-s.r.n.

The overall conclusion is that 1-s.r.n. seems to be the “minimal” nondeterministic
model for which no non-trivial lower bounds are known, and it is also remarkable that
at the same time it is the weakest non-syntactic model. Thus, proving exponential
lower bounds for 1-s.r.n. (along with proving such bounds for 2-b.p.) is the next

logical challenge in the area.

References

[1] L. BaBar, P. HaiNaL, E. SzemEREDI, AND G. TURAN, A lower bound for read-

once-only branching programs, Journal of Computer and System Sciences, vol. 35(1987),
153-162.

[2] A. BoropIN, A. RAZBOROV AND R. SMOLENSKY, On lower bounds for read-k times
branching programs, Computational Complexity, 3(1993), 1-18.

[3] P. E. DunNE, Lower bounds on the complexity of one-time-only branching programs,
In Proceedings of the FCT, Lecture Notes in Computer Science, 199 (1985), 90-99.

[4] S. JukNaA, Lower bounds on the complexity of local circuits, In Proc. of MFCS’86,
Lecture Notes in Comput. Science, 233 (1986), 440-448. [Journal version: S. Jukna,
Entropy of contact circuits and lower bounds on their complexity, Theoretical Computer

Science, 57 (1988), 113-129.]

[6] S. JUKNA, A note on read-k-times branching programs, RAIRO Theoretical Informatics
and Applications, vol. 29, Nr. 1 (1995), pp. 75-83.

[6] M. KrRAUSE, Exponential lower bounds on the complexity of local and real-time branch-
ing programs, EIK, vol. 24, Nr. 3 (1988).

[7] M. Krausg, C. MEINEL, AND S. WAACK, Separating the eraser turing machine classes
Le,NL.,co— NL,and P., Theoretical Computer Science, 86:267-275, 1991.

[8] K. KRIEGEL AND S. WAACK, Lower bounds on the complexity of real-time branching
programs, In Proceedings of the FCT, Lecture Notes in Computer Science, 278(1987),
pages 90-99.

9] F. J. MacWiLriams aAND N. J. A. SLOANE, The theory of error-correcting codes.
Elsevier, North-Holl., 1977.

[10] W. MASEK, A fast algorithm for the string editing problem and decision graph com-
plexity. Master’s thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, 1976.

11] ©. . Hewnnopyk. O6 ommoil 6ynesckoil pyurmum. JAH CCCP, 169(4):765—
Py y y)
766, 1966. E. I. Neciporuk, On a Boolean function, Soviet Mathematics Doklady 7:4,
pages 999-1000.

14

[12] E. A. OrxonpHummmkoBa. HuKHME OLEHKM CIOMKHOCTH —DPeaU3ALAN
XapaKTePUCTUUECKAX (PYHKIUN ABOMYHBIX KOLOB OMHAPHBIMU IPOTrDAMMAMU.
MeTtoabr suckpeTHOro aHaausa, 51:61-83,1991. E. A. Okolnishnikova, Lower bounds
for branching programs computing characteristic functions of binary codes, Metody dis-
cretnogo analiza, 51(1991), pages 61-83 (in Russian).

[13] A. A. RazBorov, Lower bounds for deterministic and nondeterministic branching

programs, In Proceedings of the FCT, Lecture Notes in Computer Science, 529(1991),
47-60.

[14] P. SAVICKY AND S. ZAK, A lower bound on branching programs reading some bits
twice. Tech. Report Nr. 647, Inst. of Comp. Sci, Acad. of Sci. of Czech Republic, 1995.
To appear in Theoretical Computer Science.

[15] D. SIELING, New Lower Bounds and Hierarchy Results for Restricted Branching Pro-
grams. TR 494, Univ. Dortmund, 1993. To appear in J. of Computer and System Sciences.

[16] D. SIELING AND 1. WEGENER, New Lower bounds and hierarchy results for Restricted
Branching Programs. In Proc. of Workshop on Graph-Theoretic Concepts in Computer
Science WG’94, Lecture Notes in Computer Science, 903 (1994), 359 — 370.

[17] 1. WEGENER, The complexity of Boolean functions, Wiley-Teubner, 1987.

[18] 1. WEGENER, On the complexity of branching programs and decision trees for clique
functions. JACM, 35 (1988), 461-471.

[19] S. ZAK, An exponential lower bound for one-time-only branching programs. In Proc.
of MFCS’84, Lecture Notes in Comput. Sci., 176 (1984), 562-566.

[20] S. ZAK A superpolynomial lower bound for (1,4k(n))-branching programs. In Pro-
ceedings of the MFCS, Lecture Notes in Computer Science, 969, 1995, Springer-Verlag,
319-325.

15

