Neither Reading Few Bits Twice nor Reading Illegally Helps Much

S. Jukna*  
Universität Trier  
Fachbereich Informatik  
Trier, Germany

A. Razborov†  
Steklov Mathematical Institute  
Vavilova 42, 117966, GSP-1  
Moscow, Russia

Abstract

We first consider so-called $(1, +s)$-branching programs in which along every consistent path at most $s$ variables are tested more than once. We prove that any such program computing a characteristic function of a linear code $C$ has size at least $2^{\Omega(\min\{d_1, d_2/s\})}$, where $d_1$ and $d_2$ are the minimal distances of $C$ and its dual $C^\perp$. We apply this criterion to explicit linear codes and obtain a super-polynomial lower bound for $s = o(n/\log n)$.

Then we introduce a natural generalization of read-$k$-times and $(1, +s)$-branching programs that we call semantic branching programs. These programs correspond to corrupting Turing machines which, unlike eraser machines, are allowed to read input bits even illegally, i.e. in excess of their quota on multiple readings, but in that case they receive in response an unpredictably corrupted value. We generalize the above-mentioned bound to the semantic case, and also prove exponential lower bounds for semantic read-once nondeterministic branching programs.

1. Introduction

We consider the usual model of branching programs (b.p.). This model captures in a natural way the deterministic space whereas nondeterministic branching programs (n.b.p.) do the same for the nondeterministic mode of computation. A similar model of switching-and-rectifier networks appeared already in pioneering work of Shannon and was extensively studied in the Russian literature since early 50th. The best lower bound for unrestricted n.b.p., however, remains the lower bound of $\Omega(n^{3/2}/\log n)$

*Supported by DFG grant Me 1077/10-1. On leave from Institute of Mathematics, Vilnius, Lithuania. E-mail: jukna@vi.univ-trier.de
†Supported by grant # 96-01-0122 of the Russian Foundation of Fundamental Research, and by an AMS-FSU grant. E-mail: razborov@class.mian.ru
proved by Nečiporuk in 1966 [11]. A survey of known lower bounds for these models can be found in [13].

In order to learn more about the power of branching programs, various restricted models were investigated. One of the most intensively studied was that of read-\(k\)-times programs \((k\)-b.p. or \(k\)-n.b.p.) where in each computation every input bit can be tested at most \(k\) times. This model introduced in [10] corresponds to so-called eraser Turing machines, and the first super-polynomial lower bounds for 1-b.p. were obtained in [19, 18]; see also [3, 6, 1, 8] for further results in that direction. Exponential lower bounds for 1-n.b.p. were proven in [4, 7, 2, 5]. However, any attempts to get such bounds for 2-b.p. bitterly failed (so far).

One possible explanation of this failure might be that the restriction of being read-\(k\)-times is somewhat “unstructured” and, as such, is difficult to capture in an argument. Its stronger and more constructive version requires that in every path, be it consistent or not, every variable appears at most \(k\) times: the corresponding branching programs were called in [2] syntactic. This restriction is much easier to capture and analyze, and, indeed, strong lower bounds for syntactic \(k\)-b.p. (for an arbitrary but fixed \(k\)) were independently established in [2] (for the nondeterministic case) and in [12] (for the deterministic one); see also [5]. As a matter of fact, the difference between syntactic and ordinary programs disappears in the read-once case, and this provides us with some intuition as to why already the next case \(k = 2\) (= the first non-syntactic case) presents a new level of difficulties. Another piece of evidence that “syntactic” is a rather strong restriction is given by the exponential separation between syntactic and non-syntactic models established in [5] by exhibiting an explicit function which can be computed by a read-once switching-and-rectifier network\(^1\) of size \(O(n^{3/2})\) but requires (syntactic) 1-n.b.p. of exponential size.

Another idea to get closer to the 2-b.p. case is to allow a limited number of bits be tested more than once. More specifically, \((1, +s)\)-branching programs are the usual b.p. where in every consistent path at most \(s\) variables are tested more than once.

For syntactic \((1, +s)\)-b.p., where \(s = s(n) \leq o\left(n^{1/3}/\log^{2/3} n\right)\), exponential lower bounds were proved in [15, 16]. [14], improving upon [20], established (implicitly) the lower bound \(\exp\left(\Omega\left(n^{\frac{n}{(s+1)\log n}}^{1/2}\right)\right)\) on the size of non-syntactic \((1, +s)\)-b.p. computing some function in \(ACC\). This is super-polynomial in \(n\) as long as \(s = o\left(n/\left(\log n\right)^3\right)\).

In the first part of this paper we apply some of the techniques of [20, 14] to show that any \((1, +s)\)-b.p. computing the characteristic function of a linear code \(C\) has size at least \(2^{\Omega(\min\{d_1, d_2/s\})}\), where \(d_1\) and \(d_2\) are the minimal distances of \(C\) and its dual \(C^\perp\), respectively (Corollary 2.4). We then apply this criterion to concrete linear codes. For a Reed-Muller codes this yields the bound \(\exp\left(\Omega\left(n^{\frac{n}{(s+1)}}^{1/2}\right)\right)\) (Theorem 2.5), and for a Bose-Chaudhuri-Hocquenghem code the bound becomes

\(^1\)This is the weakest natural nondeterministic model that is non-syntactic, and no non-trivial lower bounds are known for it. See Section 4 for a more thorough discussion.
exp(Ω(min{√n, n/s})) (Theorem 2.6). This is super-polynomial in n for any s = o(n/log n). Whereas we have only a slight numerical improvement over [20, 14], the combinatorial part of our bound is much easier, essentially trivial (modulo some known deep facts from the coding theory).

In the second part of this paper we introduce a stronger and, perhaps, more natural\footnote{especially in the context of quantum computations, although we have not been able to draw any direct analogies} version of eraser machines that we call 
\textit{corrupting machines}. In this model the main accent is made upon acceptance/rejectance conditions rather than on prohibiting the machine to follow certain paths. For that reason we call the corresponding non-uniform version 
\textit{semantic} branching programs: these are stronger than their ordinary counterparts.

One of our motivations for introducing semantic b.p. is the common belief that working in a “right” model can significantly advance us to the task of proving lower bounds for the original (weaker, but more awkward) model. In pursuit of this goal we generalize the results about (1, +s)-b.p. to the semantic case (Theorem 3.3), and also we prove exponential lower bounds for semantic 1-n.b.p. (Theorems 3.7 and 3.9). Our methods tend to examine multiple readings along rejecting (rather than accepting) computations, and we hope that this approach may turn out to be helpful for the future research in the area.

\section{Lower bounds for (1, +s)-branching programs}

We will use the following notation. A \textit{partial input} is a mapping \(a : [n] \to \{0,1,*\}\) where \([n] = \{1,\ldots,n\}\). If \(a(i) = *\) we say that the \(i\)-th bit in \(a\) is \textit{unspecified} (or undefined). By \(S(a)\) we denote the set of all specified bits, i.e. \(S(a) = \{i \in [n] : a(i) \neq *\}\). For (partial) inputs \(a_1, a_2,\ldots, a_s\) such that all \(I_j = S(a_j)\) are pairwise disjoint, \([a_1, a_2,\ldots, a_s]\) is the input specifying bits from \(\bigcup_{j=1}^s I_j\) and defined by the equality \(a_1(i_1) = a_2(i_2) = \cdots = a_s(i_s)\) for \(i = i_j\). The \textit{length} \(|a|\) of \(a\) is the number of bits in \(S(a)\). For two partial inputs \(a\) and \(b\), let \(D(a, b)\) be the set of all bits where they both are defined and have different values. Given a boolean function \(f(x_1,\ldots, x_n)\), every partial input \(a\) (treated for this purpose as a restriction) defines the subfunction \(f|_a\) of \(f\) in \(n-|a|\) variables in a usual manner. A \textit{minterm} (\textit{maxterm}) of \(f\) is a partial input \(a\) for which \(f|_a \equiv 1\) (\(f|_a \equiv 0\), respectively), and which is minimal in the sense that unspecifying every single value \(a(i) \in \{0,1\}\) already violates this property. Given a boolean function \(f\), we say that:

- \(f\) is \(d\)-\textit{rare} if \(|D(a, b)| \geq d\) for every two different totally defined inputs \(a, b\) such that \(f(a) = f(b) = 1\);
- \(f\) is \(m\)-\textit{dense} if \(|a| \geq m\) for every maxterm \(a\) of \(f\).
We adopt the standard definition of a branching program (b.p.), see e.g. [17, Section 14]. The size \(|P|\) of a b.p. \(P\) is the number of nodes. For a partial input \(a : [n] \to \{0, 1, \ast\}\), \(\text{comp}(a)\) is the path in \(P\) consistent with \(a\) until we reach a node where the first test of \(\ast\) is made. If the input \(a\) is totally defined, \(\text{comp}(a)\) leads to one of the sink nodes. \(P\) is read-k-times (k-b.p. for short) if for every (total) input \(a\) every variable appears at most \(k\) times along \(\text{comp}(a)\). \(P\) is \((1, +s)\) if the number of variables tested more than once along \(\text{comp}(a)\) does not exceed \(s\), for every \(a\).

2.1. General bounds

The following general bound was implicitly proved (but not stated exactly in this form) in [14]:

**Theorem 2.1.** Let \(0 \leq d, m, s \leq n\) be arbitrary integers. Every \((1, +s)\)-branching program computing a \(d\)-rare and \(m\)-dense function must have size at least

\[
2^{\min\{d, m/((s+1))\}-1}/2.
\]

For completeness we include here its independent proof. Recall first the main technical statement from [20, 14] concerning so-called “forgetting pairs” of inputs.

**Definition 2.2.** Let \(a, b\) be (partial) inputs with \(S(a) = S(b)\). Given a branching program \(P\), the pair \(a, b\) is called a **forgetting pair** (for \(P\)) if there exists a node \(w\) such that \(w\) belongs to both \(\text{comp}(a)\) and \(\text{comp}(b)\), and both computations read all the variables with indices in \(D(a, b)\) at least once before reaching \(w\).

Given a b.p. \(P\), one can get a forgetting pair by following all the computations until \(r := \lceil \log_2 |P| \rceil + 1\) different bits are tested along each of them. Since \(|P| < 2^r\), at least two of these paths must first split and then stick in some node. Take the corresponding partial inputs \(a'_1\) and \(b'_1\) and extend them to \(a_1\) and \(b_1\) such that \(S(a_1) = S(b_1) = S(a'_1) \cup S(b'_1)\) and \(D(a_1, b_1) \subseteq S(a'_1) \cap S(b'_1)\). This way we get a forgetting pair of inputs \(a_1 \neq b_1\) both of which are defined on the same set of at most \(|S(a'_1) \cup S(b'_1)| \leq 2r - 1\) bits. We can now repeat the argument for the naturally defined sub-program \(P|_{a_1}\) and obtain next forgetting pair of inputs \([a_1, a_2]\) and \([a_1, b_2]\), etc. We can continue this procedure for \(s\) steps until \(s(2r - 1) \leq s(2\log_2 |P| + 1)\) does not exceed the minimum number of different variables tested on a computation of \(P\). This proves the following

**Proposition 2.3.** ([20, 14]) Let \(P\) be a branching program in which every computation reads at least \(m\) different variables. Let \(s\) be a natural number in the interval

\[1 \leq s \leq \frac{m}{2\log_2 |P| + 1} \]

Then there exist pairwise disjoint sets \(I_j \subseteq [n]\) for \(j = 1, \ldots, s\) and partial inputs \(a_j \neq b_j\) with \(S(a_j) = S(b_j) = I_j\) such that for all \(j = 1, 2, \ldots, s\) we have:
1. \( |I_j| \leq 2\log_2 |P| + 1 \).

2. the inputs \([a_1, \ldots, a_s]\) and \([a_1, \ldots, a_{s-1}, b_j]\) form a forgetting pair. Moreover, nodes \(w_1, \ldots, w_s\) fulfilling Definition 2.3 for these pairs can be chosen in such a way that they appear on the path \(\text{comp}([a_1, \ldots, a_s])\) in the non-decreasing order\(^2\).

**Proof of Theorem 2.1.** Suppose the contrary, that some \((1, +s)\)-b.p. \(P\) computes a \(d\)-rare and \(m\)-dense function and has size less than \(2^{\min\{d, m/(s+1)-1\}}/2\). We can assume w.l.o.g. that \(d \geq 2\) (otherwise the bound becomes trivial), and this implies that every minterm of \(f\) has size \(n \geq m\). Hence, in order to force \(f\) to either 0 or 1 we must specify at least \(m\) positions, therefore every computation of \(P\) must read at least \(m\) different variables. Since \(|P| \leq 2^{\min\{d, m/(s+1)-1\}}/2\), we can apply Proposition 2.3 (with \(s := s + 1\)) and find \(I_j, a_j, b_j \,(1 \leq j \leq s + 1)\) with properties 1), 2). From 1) and the bound on \(|P|\) we have \(|I_j| < \min\{d, m/(s+1)\}\), and this implies that the partial input \([a_1, \ldots, a_{s+1}]\) specifies strictly less than \(m\) variables. Since \(f\) is \(m\)-dense, \([a_1, \ldots, a_{s+1}]\) can be extended to a totally defined input \(a\) such that \(f(a) = 1\).

As \(I_j\)'s are pairwise disjoint and \(P\) is \((1, +s)\), there exists \(j, 1 \leq j \leq s + 1\), such that all variables with indices from \(I_j\) are tested at most once along \(\text{comp}(a)\). Now, let \(w\) be the node that corresponds to the forgetting pair

\[
[a_1, \ldots, a_{j-1}, a_j], \quad [a_1, \ldots, a_{j-1}, b_j]
\]

accordingly to Definition 2.2; clearly, \(w\) is on \(\text{comp}(a)\). All variables with indices from \(D(a_j, b_j) \subseteq I_j\) are already tested along \(\text{comp}(a)\) before \(w\), hence no such variable is tested after \(w\), and the computation on the input \(c\) obtained from \(a\) by replacing \(a_j\) with \(b_j\) can not diverge from \(\text{comp}(a)\) after the node \(w\). Therefore, \(f(c) = f(a) = 1\).

But this, along with \(|I_j| < d\), contradicts \(d\)-rareness of \(f\). The proof of Theorem 2.1 is complete.

This theorem is especially useful for (characteristic functions of) linear codes. Say that a subset \(C \subseteq \{0, 1\}^n\) is \(d\)-rare or \(m\)-dense if such is the characteristic function of \(C\).

\(C\) is \(d\)-rare if and only if the minimal distance of \(C\) (treated as a code over \(GF(2)\)) is at least \(d\).

\(m\)-density of \(C\) means that for any subset of coordinates \(S \subseteq [n]\) with \(|S| < m\) and for each vector \(v \in \{0, 1\}^S\), there is at least one vector in \(C\) whose projection onto \(S\) coincides with \(v\). It follows that a linear code \(C\) (over \(GF(2)\)) is \(m\)-dense iff the minimal distance of its dual \(C^⊥\) is at least \(m\). Indeed, the set of all projections of strings in \(C\) onto \(S\) is a linear subspace in \(\{0, 1\}^S\), and this subspace is proper if and only if all strings \(a \in C\) satisfy a non-trivial linear relation \(\sum \xi_i a_i = 0 \mod 2\) whose support \(\{i : \xi_i = 1\}\) is contained in \(S\). But, by definition, \(C^⊥\) consists exactly of all relations \(\xi\) satisfied by \(C\), and its minimal distance is exactly the minimal possible cardinality of a set \(S\) for which the projection of \(C\) onto \(\{0, 1\}^S\) is proper.

\(^2\)this extra property of \(w_1, \ldots, w_s\) will be used only in Section 3
Hence Theorem 2.1 implies:

**Corollary 2.4.** Let $C$ be a linear code with minimal distance $d_1$, and let $d_2$ be the minimal distance of the dual code $C^\perp$. Then every $(1, +s)$-branching program computing the characteristic function of $C$ has size at least $2^{\min\{d_1, d_2/(s+1)\} - 1}/2$.

### 2.2. Lower bounds for explicit codes

**Reed-Muller codes.** Recall that the $r$-th order binary Reed-Muller code $R(r, \ell)$ of length $n = 2^\ell$ is the set of graphs of all polynomials in $\ell$ variables over $GF(2)$ of degree at most $r$. This code is linear and has minimal distance $2^{\ell-r}$.

**Theorem 2.5.** Let $n = 2^\ell$, $0 \leq s \leq n$ and $r = \lceil \frac{1}{2}(\ell + \log_2(s+1)) \rceil$. Then every $(1, +s)$-branching program computing the characteristic function of the Reed-Muller code $R(r, \ell)$ has size at least $\exp\left(\Omega\left(\frac{n}{s+1}\right)^{1/2}\right)$.

**Proof.** It is known (see, e.g. [9, p. 375]) that the dual of $R(r, \ell)$ is $R(\ell - r - 1, \ell)$. Hence in the notation of Corollary 2.4 we have $d_1 = 2^{\ell-r} \geq \Omega\left(\sqrt{\frac{n}{s+1}}\right)$ and $d_2 = 2^{\ell+1} \geq \Omega\left(\sqrt{n(s+1)}\right)$. The desired bound follows. ■

**Bose-Chaudhuri-Hocquenghem codes.** Let $n = 2^\ell - 1$, and let $C \subseteq \{0, 1\}^n$ be a BCH-code with designed distance $\delta = 2t + 1$, where $t \leq \sqrt{n}/4$. Let $d_2$ be the minimal distance of its dual $C^\perp$. The Carlitz-Uchiyama bound (see, e.g., [9, p. 280]) says that $d_2 \geq 2^{\ell-t} - (t-1)2^{\ell/2}$ which is $\Omega(n)$ due to our assumption on $t$. Since the minimal distance $d_1$ of a BCH-code is always at least its designed distance $\delta$, we get from Corollary 2.4

**Theorem 2.6.** Let $n = 2^\ell - 1$, and let $C$ be a BCH-code with designed distance $\delta = 2t + 1$, where $t \leq \sqrt{n}/4$. Then every $(1, +s)$-branching program computing the characteristic function of $C$ has size $\exp(\Omega(\min\{t, n/s\}))$. In particular, if $t \geq \omega(\log n)$ then every such program must have super-polynomial size as long as $s \leq o(n/\log n)$.

### 3. Semantic branching programs

The uniform model corresponding to $k$-b.p. are so-called eraser machines, and a similar definition capturing the $(1, +s)$-case can be given in a straightforward way. It is not clear, however, to which extent the very name “eraser” is justified; perhaps, something like poisoning machines would be more natural. Indeed, these machines model the situation when after reaching the quota on the amount of readings, input bits get “poisoned” so that any extra attempt to read them leads to something really
bad (short circuit, for example). Accordingly, programs for such machines should be designed in such a way that they avoid this unpleasant situation by any means.

Apparently, “truly” eraser machines should rather erase the input bit and put in its place a question mark to be observed during subsequent readings. Unfortunately, this model does not behave well in combination with sub-linear space limitations, and the reason is that these question marks can be (at least, in principle) used for storing information on the input tape. For example, it is clear how to model read-twice by read-twice: duplicate every reading. But we don’t know if eraser (in the sense of this paragraph) read-twice machines can be simulated by read-thrice: the duplicating trick does not seem to work any longer since we can not distinguish bits read once from those not read yet at all.

We propose corrupting machines as an intermediate model between poisoning and eraser machines which is (apparently) free of these disadvantages. Namely, when such a machine attempts an illegal reading (that is, in excess of its quota), nothing bad happens (as with poisoning machines) except that the machine gets a possibly corrupted value. Our machine (unlike “truly” eraser machines) does not know whether the reading was legal or not, and it is required to output the correct answer at the end of the computation no matter which corruption took place during illegal readings (adversary model).

In the definition of a corrupting machine we put the main accent on acceptance/rejectance conditions rather than on the way the machine is allowed to perform. For that reason we call the corresponding non-uniform model semantic branching programs and immediately proceed to this setting for precise definitions. The interested reader should have no difficulties in adopting them to the uniform version.

### 3.1. Deterministic case

Let $Q \subseteq \mathbb{N}^n$ be an anti-monotone non-trivial predicate which in the sequel will be called the quota predicate. Here $\mathbb{N}$ is the set of positive integers including zero, $n$ is the number of variables, and the anti-monotonicity means that $Q(k_1, \ldots, k_n)$ along with $k'_1 \leq k_1, \ldots, k'_n \leq k_n$ implies $Q(k'_1, \ldots, k'_n)$. The predicate $Q$ expresses the quota on the amount of legal readings, and the following examples are the most important for us:

- $Q_k(k_1, \ldots, k_n) \equiv \forall i \in [n](k_i \leq k)$ (every variable is read at most $k$ times);
- $Q_{s}(s)(k_1, \ldots, k_n) \equiv |\{i \in [n] : k_i \geq 2\}| \leq s$ (at most $s$ variables are read more than once).

**Definition 3.1.** For a path $p$ in a b.p. $P$ and a quota predicate $Q$, we define a vector $k^{p,Q} = (k^p_1, \ldots, k^p_n) \in \mathbb{N}^n$ such that $Q(k^{p,Q})$ by induction on the number of edges in $p$. 

7
1. If $p$ is empty then $k^{p,Q} = (0, \ldots, 0)$.

2. Let $p = (q,e)$, and suppose that the head node of $e$ is marked by $x_i$.

   (a) If $Q(k_1^{q,Q}, \ldots, k_{i-1}^{q,Q}, k_i^{q,Q} + 1, k_{i+1}^{q,Q}, \ldots, k_n^{q,Q})$ then we let

   \[ k^{p,Q} = (k_1^{q,Q}, \ldots, k_{i-1}^{q,Q}, k_i^{q,Q} + 1, k_{i+1}^{q,Q}, \ldots, k_n^{q,Q}) \]

   In that case we say that the reading of $x_i$ at $w$ along the path $p$ is legal.

   (b) If $\neg Q(k_1^{q,Q}, \ldots, k_{i-1}^{q,Q}, k_i^{q,Q} + 1, k_{i+1}^{q,Q}, \ldots, k_n^{q,Q})$ then we let $k^{p,Q} = k^{q,Q}$ and say that $x_i$ is read illegally.

Notice that illegal readings do not increment the counter $k^{p,Q}$. This allows our machine/b.p. to function properly between different attempts to read illegally.

Given a b.p. $P$, a quota predicate $Q$ and a totally defined input $a \in \{0,1\}^n$, we let $\text{Comp}^Q(a)$ denote the set of all possible I/O paths such that all legal readings along these paths are consistent with $a$. Obviously, $\text{comp}(a) \in \text{Comp}^Q(a)$, but $\text{Comp}^Q(a)$ may also contain other paths (typically inconsistent). We say that $P$ is **semantic w.r.t. $Q$** if for every $a \in \{0,1\}^n$ all paths in $\text{Comp}^Q(a)$ lead to a sink of the same type (accepting or rejecting) as $\text{comp}(a)$. A **semantic read-$k$-times branching program** is a b.p. semantic with respect to $Q_k$. A **semantic $(1,+s)$-b.p.** is a b.p. that is semantic w.r.t. $Q_{(1,+s)}$.

**Remark 3.2.** Notice that every (ordinary) $k$-b.p. or $(1,+s)$-b.p. is also semantic simply for the reason that there can be no illegal readings, and $\text{Comp}^Q(a)$ consists of the single path $\text{comp}(a)$. In fact, it is easy to see that the condition $\forall a \in \{0,1\}^n (\text{Comp}^Q(a) = \{\text{comp}(a)\})$ characterizes ordinary programs in the class of semantic.

Now we show how to extend Theorem 2.1 to the semantic case.

**Theorem 3.3.** Let $0 \leq d, m, s \leq n$ be arbitrary integers. Every semantic $(1,+s)$-branching program computing a $d$-rare and $m$-dense function must have size at least \(2^{\min\{d, m/(2s+1)\}-1}/2\).

In particular, both our bounds for explicit codes (Theorems 2.5, 2.6) are still valid in the same form for the more general case of semantic $(1,+s)$-b.p.

**Proof.** We begin as in the proof of Theorem 2.1 but with the assumption $|P| < 2^{\min\{d, m/(2s+1)\}-1}/2$, and construct $I_1, \ldots, I_{2s+1}, a_1, \ldots, a_{2s+1}, b_1, \ldots, b_{2s+1}$ satisfying Proposition 2.3 (with $s := 2s + 1$) and a total extension $a$ of $[a_1, \ldots, a_{2s+1}]$ such that $f(a) = 1$. The rest of that proof basically says that every $D(a_j, b_j) \subseteq I_j$ contains at least one variable tested for the second time along $\text{comp}(a)$, meaning that $P$ is not a $(1,+2s)$-b.p. In our case, however, we have to derive a contradiction from the fact that $P$ is a semantic $(1,+s)$-b.p., which requires some extra work.
Let $c_j$ be the input obtained from $a$ when we replace $a_j$ with $b_j$, and let $p_j, p'_j$ be the sub-paths of $\text{comp}(a)$, $\text{comp}(c_j)$ respectively ending at the node $w_j$ fulfilling Definition 2.2 for the forgetting pair $[a_1, \ldots, a_j], [a_1, \ldots, a_{j-1}, b_j]$. Let also $q_j$ be the remaining part of $\text{comp}(a)$ so that $\text{comp}(a) = (p_j, q_j)$. As in the proof of Theorem 2.1 we are going to force $P$ to accept at least one of the inputs $c_j$ which, together with $f(a) = 1$, would contradict $d$-rareness of $f$. For doing this, it suffices to show that $(p'_j, q_j) \in \text{Comp}^{Q(1, +s)}(c_j)$ for some $1 \leq j \leq 2s + 1$. Consider two cases.

**Case 1. At least $s$ variables are tested more than once along $p_{2s}$.** We claim that in this case $(p'_{2s+1}, q_{2s+1}) \in \text{Comp}^{Q(1, +s)}(c_{2s+1})$. Indeed, $p'_{2s+1}$ is OK since all readings along this path (legal or not) are consistent with $c_{2s+1}$. Moreover, since $w_{2s+1}$ appears on $\text{comp}(a)$ after $w_{2s}$ (by property 2) from Proposition 2.3), $p'_{2s+1}$ extends $p_{2s}$ which implies that $k^{p'_{2s+1}, Q(1, +s)}$ already contains (exactly) $s$ components that are greater or equal than 2. Thus, every repetitive reading along $(p'_{2s+1}, q_{2s+1})$ that occurs on $q_{2s+1}$ is illegal. This, in particular, applies to all bits from $D(a_{2s+1}, b_{2s+1})$, and all other readings along $q_{2s+1}$ are consistent with $a$ and, hence, with $c_{2s+1}$.

**Case 2. Less than $s$ variables are tested more than once along $p_{2s}$.** For $1 \leq j \leq 2s$ denote by $w'_j$ the earliest node along $\text{comp}(a)$ where the second test of a bit from $D(a_j, b_j)$ is made. The assumption of Case 2 implies that at least $(s + 1)$ nodes among $w'_1, w'_2, \ldots, w'_s$ must belong to $q_{2s}$. Let $w'_j$ be the latest (along $\text{comp}(a)$) of these nodes. Note that $q_j$ contains the segment $\tilde{q}_j$ of $\text{comp}(a)$ bounded by $w_j$ and $w'_j$, and this segment is consistent with $c_j$. Moreover, at least $s$ variables are already tested more than once along $p'_j, \tilde{q}_j$ (namely, at nodes from the list $\{w'_1, w'_2, \ldots, w'_s\}$ belonging to $q_{2s}$ and other than $w'_j$). Now, the same argument as in Case 1 shows that $(p'_j, q_j) \in \text{Comp}^{Q(1, +s)}(c_j)$.

This completes the proof of Theorem 3.3.

### 3.2. Nondeterministic case

We introduce nondeterminism into branching programs simply by additionally allowing guessing nodes of out-degree 2 that are not marked by any variable and have an obvious computational meaning. A nondeterministic branching program (n.b.p.) is read-k-times or $(1, +s)$ when this restriction is satisfied by all consistent paths beginning at the source node [13]. Notice that every consistent path in a n.b.p. can always be extended to a consistent path terminating at a sink node, so we could equally well consider in this definition only such I/O paths.

We extend Definition 3.1 to nondeterministic b.p. in an obvious way. Namely, if $p = (q, e)$ and $e$ goes out of a guessing node, we let $k^{p, Q} = k^q, Q$.

In order to define acceptance/rejection conditions for a n.b.p. $P$ on a string $a$ with respect to some quota predicate $Q$ we introduce a game of two players, $B$ (brancher) and $C$ (corrupter). This game, which we denote by $G^{Q}(a)$, develops along

---

\(^4\)One natural modification of this definition will be discussed in the next section.
a path in $P$, and it begins at the source node. At a guessing node, $B$ simply chooses one of the two alternatives for the game to proceed. Suppose $G^Q(a)$ arrives at a computational node $w$ along some path $q$, and let $e$ be the outgoing edge consistent with $a$. If the reading at $w$ is legal (along the joint path $(q, e)$), $G^Q(a)$ follows $e$. Otherwise $C$ chooses one of the two continuations. The game terminates when it arrives at a sink node.

The goal of the brancher is to reach one of the accepting sink nodes, and we say that in this case he wins. The goals of the corrupter are defined less clearly: in general, she is interested in creating as much damage by corrupting the computation as possible. This leads us to the following definition:

**Definition 3.4.** A n.b.p. $P$ is **semantic with respect to a quota predicate $Q$** if for every string $a \in \{0,1\}^n$ either $B$ has a winning strategy against $C$ in the game $G^Q(a)$ ($a$ is accepted) or $B$ loses in the cooperative version of this game, that is even when $C$ helps him to win ($a$ is rejected).

A semantic k-n.b.p. $[(1, +s)$-n.b.p.] is a n.b.p. semantic with respect to $Q_k$ $[Q_{(1, +s)}$, respectively].

Semantic b.p. make a subclass of semantic n.b.p. (with respect to the same quota predicate $Q$). In this case there is no brancher, and $C$ is doomed to fail in the solitaire game $G^Q(a)$, both for accepted and rejected inputs.

Ordinary (read-k-times or (1, +s)) n.b.p. also make a subclass of semantic n.b.p. (cf. Remark 3.2). This is because $C$ never has a chance to participate in the game, due to the structure of the program, and the game itself proceeds only along consistent paths.

Finally, note that if a semantic program accepts or rejects according to Definition 3.4, it also accepts (or rejects) in the usual sense. Indeed, it is easy to see that acceptance/rejectance conditions from Definition 3.4 turn into ordinary ones in the partial case when the corrupter is passive, i.e. refrains from corrupting the computation by always choosing the continuation consistent with $a$.

For a Boolean function $f$ and an integer $d$ we denote by $\text{cov}(f, d)$ the minimal $h$ for which there exist monomials $u_1, \ldots, u_h$, of $d$ literals each, such that $f \leq u_1 \lor \ldots \lor u_h$. Our general bound for semantic 1-n.b.p. looks as follows:

**Theorem 3.5.** Let $f$ be a $d$-rare function, $d \geq 1$. Then every semantic read-once nondeterministic branching program computing $f$ has size at least $\text{cov}(f, d - 1)$.

**Proof.** We can assume w.l.o.g. that $d \geq 2$ (otherwise the bound becomes trivial). Let $P$ be a semantic 1-n.b.p. computing some $d$-rare function $f$. Fix arbitrarily one consistent$^5$ accepting path $p_a$ for every accepted input $a$. Since $d \geq 2$, $p_a$ must read

---

$^5$Such path exists since the brancher must have a winning strategy on $a$ also in the case when the corrupter plays passively.
all variables at least once. Let \( p_a = (p_a', p_a'') \), where \( p_a' \) is a segment of \( p_a \) along which exactly \((d-1)\) variables are tested (at least once), and let \( w_a \) be the terminal node of \( p_a' \). For each node \( w \) in \( W := \{ w_a : f(a) = 1 \} \) select arbitrarily one path from all the paths \( p_a' \) with \( w_a = w \), and denote this path by \( p_w \). Let \( u_w \) be the monomial of \((d-1)\) literals corresponding to that path \( p_w \). We are going to finish the proof by showing that \( f \leq \bigvee_{w \in W} u_w \).

For this we will exploit one particular property of semantic read-once n.b.p. (not shared already by \((1, +1)\)-n.b.p.). Namely, in the cooperative mode of the game \( G^{Q_1}(a) \), \( B \) and \( C \) can follow every path \( p \) (consistent or not) for some input \( a_p \in \{0, 1\}^n \). This input \( a_p \) is simply constructed by letting \( a_p(i) \) be the result of the first reading of \( x_i \) along \( p \). The input \( a_p \) is in general partial, but when \( p \) leads to an accepting sink, and the function \( f \) computed by the program is known to be \( 2 \)-rare, \( a_p \) must be a totally defined accepted input.

Suppose now that \( f(b) = 1 \), and \( w \) is the terminal node of \( p_b' \). We claim that \( u_w(b) = 1 \).

Indeed, otherwise the input \( a_p \) corresponding to the path \( p = (p_w p_b'') \) would be an accepted input different from \( b \) (since readings along \( p_w \) have priority in defining \( a_p \)). On the other hand, all bits from \( D(b, a_p) \) must be tested along \( p_w \). To show this, notice that every bit \( i \) not tested along \( p_w \) is tested for the first time only on \( p_b'' \). Let \( \epsilon \) be the result of the earliest reading of \( x_i \) along \( p_b'' \). Then \( b(i) = \epsilon \) since \( p_b'' \) is consistent with \( b \), and \( a_p(i) = \epsilon \) by construction of \( a_p \). Hence, \( i \not\in D(b, a_p) \).

Thus, \( u_w(b) = 0 \) could happen only if \( P \) would accept two different inputs \( a_p \) and \( b \) with \(|D(b, a_p)| < d \), which is impossible by \( d \)-rarity of \( f \). This completes the proof of the fact \( u_w(b) = 1 \), and the proof of Theorem 3.5.

The following easy lemma provides a lower bound on \( \text{cov}(f, d) \) in terms of density.

**Lemma 3.6.** For an \( m \)-dense function \( f \) in \( n \) variables, \( \text{cov}(f, d) \geq \exp \left( \Omega \left( \frac{md}{n} \right) \right) \).

**Proof.** Let \( f \leq \bigvee_{i=1}^{h} u_i \), where \( u_i \) are monomials of \( d \) literals and \( h = \text{cov}(f, d) \). Hit this inequality with a restriction \( \rho \) assigning random \((0, 1)\) values to randomly chosen \((m-1)\) variables. Then

\[
P[u_i|\rho \neq 0] \leq P \left[ |S(u_i) \cap S(\rho)| < \frac{md}{2n} \right] + P \left[ u_i|\rho \neq 0 \left| |S(u_i) \cap S(\rho)| \geq \frac{md}{2n} \right| \right]
\]

\[
\leq \exp \left( -\Omega \left( \frac{md}{n} \right) \right)
\]

and \( P[f|\rho \neq 0] = 1 \) since \( f \) is \( m \)-dense. On the other hand,

\[
P[f|\rho \neq 0] \leq \sum_{i=1}^{h} P[u_i|\rho \neq 0].
\]

The statement follows.
Theorem 3.5 and Lemma 3.6 imply the lower bound \(\exp\left(\Omega\left(\frac{m^2}{n}\right)\right)\) on the size of semantic 1-n.b.p. computing a \(d\)-rare and \(m\)-dense function. In particular, this gives an \(\exp(\Omega(\sqrt{n}))\) bound for BCH-codes:

**Theorem 3.7.** Let \(n = 2^t - 1\), and let \(C\) be a BCH-code with designed distance \(d = 2t + 1\), where \(t \leq \sqrt{n}/4\). Then every semantic read-once nondeterministic branching program computing the characteristic function of \(C\) has size \(\exp(\Omega(t))\).

The following theorem extends the lower bound argument used in [4, 2] (for ordinary 1-n.b.p.) to semantic 1-n.b.p., and works for Boolean functions which are not sufficiently rare.

For a set of inputs \(A \subseteq \{0, 1\}^n\) and an integer \(0 \leq k \leq n\), we define the \(k\)-th degree \(d_k(A)\) as the maximum number of inputs in \(A\), all of which have 1’s on some fixed set of \(k\) coordinates. An input \(a\) is a lower one of a Boolean function \(f\) if \(f(a) = 1\) and \(f(b) = 0\) for all inputs \(b \neq a\) such that \(b \leq a\). We say that \(f\) is \(r\)-uniform if \(|a| = r\) for every lower one \(a\) of \(f\).

**Theorem 3.8.** Let \(f\) be a \(r\)-uniform function and \(A\) be the set of all lower ones of \(f\). Then, for every \(0 \leq k \leq r\), every semantic read-once nondeterministic branching program computing \(f\) has size at least \(\frac{|A|}{d_k(A)d_{r-k}(A)}\).

**Proof.** Let \(P\) be a semantic 1-n.b.p. computing \(f\), and \(A\) be the set of lower ones of \(f\). Given an input \(a \in A\), let \(p_a\) be any accepting path which is followed by the game \(G^Q_1(a)\) when the corrupter always chooses to continue along the edge marked by 0, totally disregarding real values of bits. \(p_a\) may be inconsistent but it has one nice property: for each bit \(i\), the variable \(x_i\) appears positively on \(p_a\) exactly \(a(i)\) times. Let \(p_a = (p'_a p''_a)\), where \(p'_a\) is a segment of \(p_a\) with exactly \(k\) positive readings. We denote the corresponding set of bits by \(I_a\), and let \(J_a\) denote the set of remaining \(r - k\) bits in \(a^{-1}(1)\). For a node \(w\) of \(P\), let \(A_w\) denote the set of all inputs \(a \in A\) such that \(w\) is the terminal node of \(p'_a\). We are going to finish the proof by showing that \(|A_w| \leq d_k(A)d_{r-k}(A)\) for every node \(w\).

Fix some node \(w\) of \(P\), and let \(\mathcal{I} = \{I_a : a \in A_w\}\), \(\mathcal{J} = \{J_b : b \in A_w\}\). Consider an arbitrary pair \(I \in \mathcal{I}\), \(J \in \mathcal{J}\), and denote by \((I \lor J)\) the input defined by \((I \lor J)(i) = 1\) iff \(i \in I \cup J\). Choose some \(a, b \in A_w\) such that \(I = I_a\), \(J = J_b\), and let the input \(a_p \in A\) correspond to the path \(p = (p'_a p''_b)\) as in the proof of Theorem 3.5. Then, clearly, \(a_p \leq (I \lor J)\). But since \(|I| + |J| = r\) and \(f\) is \(r\)-uniform, this is possible only when \(I \cap J = \emptyset\) and \((I \lor J) = a_p \in A\). Let us emphasis that this conclusion holds for every pair \(I \in \mathcal{I}\), \(J \in \mathcal{J}\).

With this observation in mind, we fix an arbitrary \(J \in \mathcal{J}\) and notice that \(\{(I \lor J) : I \in \mathcal{I}\}\) is a set of different inputs from \(A\), all of which have 1’s on \(J\). Hence, \(|\mathcal{I}| \leq d_{r-k}(A)\) (provided \(\mathcal{J} \neq \emptyset\)). Similarly, \(|\mathcal{J}| \leq d_k(A)\) which implies \(|\mathcal{I}| \cdot |\mathcal{J}| \leq d_k(A)d_{r-k}(A)\). Finally, every \(a \in A_w\) is uniquely determined by the pair \((I_a, J_a)\),
therefore $|A_w| \leq |Z| : |J|$. This completes the proof of the desired inequality $|A_w| \leq d_k(A) d_{n-k}(A)$, and of Theorem 3.8.

We demonstrate the theorem by a lower bound for an explicit function in $AC^0$. The exact-perfect-matching function is a Boolean function $EPM_n$ in $n^2$ variables, which, given an $n \times n$ matrix $X$ with entries in $\{0, 1\}$, computes 1 iff there is a permutation $\sigma : [n] \rightarrow [n]$ such that $X_{i,j} = 1 \iff \sigma(i) = j$. The perfect-matching function $PM_n$ is a monotone Boolean function, the set of lower ones of which coincides with $EPM_n^{-1}(1)$. It is clear that $EPM_n$ is in $AC^0$. Moreover, it is known that $EPM_n$ has 1-s.r.n. of size $O(n^3)$ but cannot be computed by a 1-n.b.p. of polynomial size [4]. Note also that neither of these two functions is 5-rare, so Theorem 3.5 cannot give any super-polynomial lower bounds for them.

Since, for every $1 \leq k \leq n$, the $k$-th degree of $EPM_n^{-1}(1)$ is exactly $(n - k)!$, we get by Theorem 3.8 that this function, as well as its monotone version $PM_n$, are hard for semantic 1-n.b.p.: 

**Theorem 3.9.** Neither $EPM_n$ nor $PM_n$ can be computed by a semantic read-once nondeterministic branching program of size smaller than $\left(\begin{array}{c} n \\ \lceil n/2 \rceil \end{array}\right)$.

4. **Conclusion and open problems**

In this paper we have further (after [14]) simplified the original lower bound argument of [20] and applied it to explicit linear codes. The most interesting open question certainly consists in modifying that argument in order to make some variable be read for the third time, i.e. in trying to prove super-polynomial lower bounds for the read-twice case.

Our knowledge about the power of n.b.p. is even more depressing: for this model the $(1, +1)$ case is still open. In fact, there are no non-trivial lower bounds even for a weaker model of read-once switching-and-rectifier networks (1-s.r.n.)

Moreover, the example from [5] somehow suggests that methods previously known for 1-n.b.p. (including our Theorems 3.5 and 3.8) seem to be inherently too weak to deal with 1-s.r.n., and the latter model probably requires some new machinery.

We have introduced semantic branching programs and proved in this framework exponential lower bounds for $(1, +s)$-b.p. (when $s = o(n/\log n)$) and 1-n.b.p. These are exactly at the border of our knowledge about ordinary branching programs. In this connection, it would be interesting to prove (or disprove) that semantic b.p. are strictly stronger than their ordinary counterparts. This could be done, say, by exhibiting a function that can be computed by a poly-size semantic 1-b.p. or 1-n.b.p. but requires super-polynomial size in the corresponding ordinary model.

In [13] these were defined in such a way that they are equivalent to 1-n.b.p. Here we adopt stronger and more meaningful definition: a s.r.n. is read-once if every variable is tested at most once along every consistent path beginning at the source node.
One more natural class of nondeterministic models (both in ordinary and semantic settings) is obtained when we relax the rejectance condition. More specifically, for ordinary programs we only require that for every accepted input there exists at least one accepting path obeying the quota on the amount of reading (but paths violating this quota are also allowed, both accepting and rejecting). For semantic n.b.p. we simply relax the rejectance condition to its ordinary form ($B$ looses in cooperation with the passive corrupter). Let us call these nondeterministic models strong. We remark that we do not know of any lower bounds for strong 1-n.b.p. (even ordinary), and that in fact strong 1-n.b.p. can be easily shown to include 1-s.r.n.

The overall conclusion is that 1-s.r.n. seems to be the “minimal” nondeterministic model for which no non-trivial lower bounds are known, and it is also remarkable that at the same time it is the weakest non-syntactic model. Thus, proving exponential lower bounds for 1-s.r.n. (along with proving such bounds for 2-b.p.) is the next logical challenge in the area.

References


