Comment 02 on

FTP: ftp.eccc.uni-trier.de:/pub/eccc/ WWW: http://www.eccc.uni-trier.de/eccc/

ECCC TR96-039

Email: ftpmail@ftp.eccc.uni-trier.de with subject 'help eccc'

The Complexity of Unary Knapsack with Signed Repetition

Holger Petersen *

March 7, 1997

Theorem 1 The problem Unary Knapsack with Signed Repetition (UKSR) is in AC^0 .

Proof. Note that UKSR is equivalent to the question whether a linear Diophantine equation in several variables has a solution in integers. A necessary and sufficient condition for a positive answer is that the greatest common divisor of all coefficients $(y_1, \ldots, y_n \text{ in UKSR})$ divides the constant (y in UKSR) [1, pp. 94–98].

Let the input be $0^{y}, 0^{y_1}, \ldots, 0^{y_n}$, where each 0-block is followed by a marker. We outline the construction of a constant-depth, polynomial size circuit deciding the property described above. Let the input length be m. For every input segment from position i to j, $2 \le i < j \le m$ and every $2 \le q \le m$ design a sub-circuit $c_{i,j,q}$ that returns true if and only if the segment does not encode one of the y_i (there is no marker at position i or j or some symbol at positions $i+1\ldots j-1$ does not equal 0) or q divides j-i-1. For every q form the and of all $c_{i,j,q}$ to obtain d_q . In a similar way construct circuits d'_q for the divisors of y. Form an and over all $\neg d_q \lor d'_q$ to obtain the output. \square

References

[1] Ivan Niven and Herbert S. Zuckerman. An Introduction to the Theory of Numbers, J. Wiley & Sons, New York - London, 1960.

^{*}Universität Stuttgart, Fakultät Informatik, Breitwiesenstraße 20-22, D-70565 Stuttgart, e-mail: petersen@informatik.uni-stuttgart.de