Electronic Colloquium on Computational Complexity - Reports Series 1996 - available via:

E(:(:(: FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW:

http://www.eccc.uni-trier.de/eccc/
T R96- 040 Email: ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

The Isomorphism Problem for
One-Time-Only Branching Programs

Thomas Thierauf *

Abt. Theoretische Informatik
Universitat Ulm
89069 Ulm, Germany

thierauf@informatik.uni-ulm.de

May 21, 1996

Abstract

We investigate the computational complexity of the isomorphism problem for one-time-
only branching programs (BP1-Iso): on input of two one-time-only branching programs By
and By, decide whether there exists a permutation of the variables of By such that it becomes
equivalent to Bp.

Our main result is a two-round interactive proof for BP1-Iso, the complement of BP1-Iso.
The protocol is based on the Schwartz-Zippel Theorem to probabilistically check polynomial
idendities. As a consequence, BP1-Iso cannot be NP hard unless the polynomial hierarchy
collapses.

We extend the protocol to get an interactive proof to decide the non-isomorphism of
multivariate polynomials over an arbitrary field.

Finally, we show that BP1-Iso has a zero-knowledge interactive proof.

1 Introduction

An interesting computational issue is to decide the equivalence of two given programs with
respect to some computational model as, for example, Boolean circuits, branching programs,
or Boolean formulas. A more general problem is to decide the isomorphism of two given, say
circuits. That is, whether the circuits become equivalent after permuting the input variables of
one of the circuits.

The isomorphism problem for Boolean formulas is in fact a very old one dating back to
the last century (see [BRS95] for background and early references on this problem). More
recently, the problem has been reconsidered in a series of papers with respect toits computational
complexity [AT96, BR93, BRS95, CK91].

The equivalence problems for Boolean circuits, branching programs, and Boolean formulas
are known to be coNP complete. Asking for isomorphism, puts, roughly speaking, an existential
quantifier in front of the problem. Therefore, the corresponding isomorphism problems are in the
second level of the polynomial hierarchy, ¥5. An obvious question is whether these isomorphism
problems are complete for X5. This question was solved by Agrawal and Thierauf [AT96] who
showed that none of these isomorphism problems is complete for X5, unless the polynomial

*Supported in part by DAAD, Acciones Integradas 1995, 322-Al-e-dr.

hierarchy collapses. Thus, loosely speaking, the existential quantifier we get by seeking for an
isomorphism doesn’t seem to add full NP power to the equivalence problem.

There are more examples for the latter observation: the equivalence problem for graphs,
which is in fact an equality problem, is trivially solvable in polynomial time. The graph is-
morphism problem is therefore in NP, but is not NP complete, unless the polynomial hierarchy
collapses [BHZ87] (see also [Sch89], (comprehensive studies on the graph ismorphism problem
can be found in [Hof82, KST93]). The equivalence of two deterministic finite automatas (DFA)
can be decided in polynomial time. It is not hard to see that the isomorphism problem for
DFA’s, where one can permute the states of a DFA, is still solvable in polynomial time.

For a subclass of the branching programs, the one-time-only branching programs, where, on
each path, each variable is tested at most once (see next section for precise definitions), the
equivalence problem is easier then for general ones: it can be efficiently solved by a randomized
Las Vegas type algorithm [BCWS80], it is in the complexity class coRP. Therefore, putting an
existential quantifier in front, the corresponding isomorphism problem is in NP-coRP. Motivated
by the examples above, we ask for some better bound on its complexity. In this paper we show
that the isomorphism problem for one-time-only branching programs, BP1-Iso, is also in the
class BP - coNP. As a consequence, it is not NP hard, unless the polynomial hierarchy collapses.

Our proof is based on a two-round interactive proof for complement of the BP1-Iso. In fact,
we solve a more general problem: our interactive proof can decide the non-isomorphism problem
for multivariate polynomials over an arbitrary field.

Using these ideas, we also obtain a zero-knowledge interactive proof for BP1-Iso.

2 Preliminaries

We first define some general notions used in the paper. In Section 2.2, we provide definitions
and some background on branching programs.

2.1 Basic Definitions

We will use fairly standard notions of complexity theory. We refer the reader to [BDGSS,
BDGI1, HU79] for definitions of complexity classes like P, NP, RP or BPP. X} are the levels of
the polynomial hierarchy. For any class C, we denote the complement class by co C.

BP - NP is the class of sets L such that there exists a set A € NP and a polynomial p such
that for every x

rel = Pr[z,y)e A =1,
pd L = Prls,y)ed] < 1/2,
where y is chosen uniformly at random from %U<,

NP - coRP is the class of sets L such that there exists a set A € coRP and a polynomial p
such that for every x, we have

zel < Iyexrlh. (z,4)e A,

Interactive proofs were defined in [GMR89]. An inleractive proof system for a set L consists
of a prover P and verifier V. The verifier is a randomized polynomial-time algorithm that can
communicate with the prover. The prover can make arbitrary computations. After following
some communication protocol, the verifier finally has to accept or reject a given input such that

re€l = IJprover P: Pr[(V,P)(z)accepts] = 1,
t¢ L = VY prover P: Pr[(V,P)(x)accepts] < 1/2,

where the probability is taken over the random choices of the verifier.

IP denotes the class of sets that have an interactive proof system. IP[k] is the subclass of IP
where the verifier and the prover exchange at most k£ messages.

Arthur-Merlin games were introduced in [Bab85]. They are similar to interactive proofs with
Arthur corresponding to the verifier and Merlin to the prover. The only difference is that Arthur
has to make his random bits available to Merlin, while the prover doesn’t know the random bits
of the verifier. The classes AM and AM[k| are defined analogously.

In this paper, we are interested in constant round interactive proof systems. It is known
that for both, interactive proof systems and Arthur-Merlin games, constantly many rounds are
the same as one round: for any k& > 2, IP[k] = AM[k] = AM]2] [Bab85, GS89]. Moreover, it is
easy to see that AM[2] = BP - NP.

2.2 Branching Programs

A branching program B in n Boolean variables zy,...,z, is a directed acyclic graph with the
following type of nodes. There is a single node of indegree zero, the initial node of B. All nodes
have outdegree two or zero. A node with outdegree two is an internal node of B. One of its
edges is labelled with x;, the other with Z;, for some 7 € {1,...,n}. A node with outdegree zero
is a final node of B. The final nodes are labelled either by accept or reject.

We call a branching program one-time-only, if, on each path from the initial node to a final
node, every variable or its complement occurs at most once as an edge label.

A one-time-only branching program is called ordered, if the order of occurance of the variables
on each path is consistent with some ordering on the set of variables.

Branching programs are also called binary decision diagrams (BDD). Correspondingly, a
one-time-only branching program and an ordered branching program is also called free binary
decision diagram (FBDD) and ordered binary decision diagram (OBDD), respectively.

A branching program B defines an n-ary Boolean function from {0,1}" to {0, 1} as follows.
For an assignment a = (ay,...,a,) € {0,1}", we walk through B, starting at the initial node,
always following the (unique) edge that evaluates to one under a, until we reach a final node. If
the final node is an accepting node, we define B(a) = 1, and B(a) = 0 otherwise.

Two branching programs B and B’ in n variables are equivalent, B = B’ for short, if they
define the same Boolean function. By BP-Equ we denote the problem to decide whether two
given branching programs are equivalent. That is,

BP-Equ = {(B,B')| B= B'}.

It is not hard to see that branching programs can compute CNF Boolean formulas. Therefore,
the satisfiability problem for branching programs is NP complete, and hence, BP-Equ is coNP
complete.

The equivalence problem for one-time-only branching programs, BP1-Equ, is easier because
one can arithmetize them. That is, one can convert them into an algebraic formula. Note first
that a branching program B can be viewed as a compact way of denoting a DNF formula Fpg:
each path of B can be written as a monom, the conjunction of the literals occuring along that
path. Then the function computed by B is simply the disjunction of all monoms coming from
accepting paths of B.

We convert Fg into a polynomial pg over the rational numbers Q as follows. A variable z; is
kept as z;. A negated variable Z; is replaced by 1—z;. A conjunction is replaced by multiplication
and a disjunction is replaced by addition. For each assignment a € {0, 1}", exactly one path of

B evaluates to true under a. Therefore, at most one product term in pg will be one on input a.
Hence, B and pp agree on {0,1}". That is,

B(a) = pg(a) for all a € {0,1}".

Note that pp can consist of exponentially many terms even though B has small size. So in
general, one cannot write down pp in polynomial time in | B|. However, one can anyway evaluate
pB at a given point in Q™ in polynomial time by using B.

Since B is one-time-only, pg is a multilinear polynomial. The following theorem is a special
case of the Schwartz-Zippel Theorem [S80, Zip79] for multilinear polynomials. It bounds the
number of points where two such polynomials can have the same value without being the same
function.

Theorem 2.1 Let p(x1,...,x,) be a mullilinear polynomial over Q that is not the zero-
polynomial. Let T C Q with |T| > 1. Then there are at least (|T| — 1)™ points (z1,...,2,) € T
such that p(xy,...,x,) # 0.

Setting T = {0,1}, we get that if two one-time-only branching programs B and B’ are
equivalent, then the corresponding polynomials pg and pg: are the same function on {0,1}",
and hence, by Theorem 2.1, on Q. However, the equivalence of the polynomials can be tested by
a randomized algorithm that simply picks a random point r € {1,...,2n}" and checks whether
pe(r) = ppi(r). Again by Theorem 2.1 (applied to p = ps — pp!), if pp and pg/ are not
equivalent, then they will disagree on a fraction of at least ((2n —1)/2n)" > 1/2 of all points in
{1,...,2n}". Thus, the algorithm will detect an inequivalence with probability more than 1/2.
It follows that BP1-Equ € coRP.

The equivalence problem for ordered branching programs is solvable in polynomial
time [MS94, SW92, Bry86]. There are two points to note for this. Let B and B’ be orde-
red branching programs. First, one can transform, say B’, in an equivalent ordered branching
program that has the same ordering on the variables as B [MS94]. Second, for a fixed ordering,
an ordered branching program can be considered as a (nonuniform) finite automaton [GG95].
Hence, there is a unique minimal ordered branching program for any Boolean function [Bry86],
that is computable even in linear time [SW92]. Thus, via this process, we get a normal form for
ordered branching programs for any given ordering that can now be used to decide equivalence.

Two branching programs B and B’ are isomorphic, denoted by B = B’ if there exists
a permutation ¢ on {z1,...,2,}, such that B becomes equivalent to B’ when permuting the
variables of B’ according to ¢. That is B = B’ o . In this case, we call ¢ an isomorphism
between B and B'.

The isomorphism problem for branching programs is BP-Iso = {(B,B’) | B = B'}. The
isomorphism problem for one-time-only branching programs, BP1-Iso, is defined analogously.
It follows directly from the definition that BP-Iso € X, the second level of the polynomial
hierarchy. Agrawal and Thierauf [AT96] showed that BP-Iso, the complement of BP-Iso, is in
BP - X5, By a result of Schoning [Sch89], it follows that BP-Iso cannot be complete for b,
unless the polynomial hierarchy collapses to its third level, ¥%.

For one-time-only branching programs, we have BP1-Iso € NP-coRP. In this paper, we show
that BP1-Iso, the complement of BP1-Iso, is in BP - NP. By the result of Boppana, Hastad,
and Zachos [BHZ87] (see also Schéning [Sch89]), it follows that BP1-Iso cannot be hard for NP,
unless the polynomial hierarchy collapses to its second level, 3.

This result covers also the case of ordered branching programs. Note however that here, the
isomorphism problem is still in NP.

3 An Interactive Proof for the Complement of BP1-Iso

We show that there is a two round interactive proof for the complement of the one-time-only
branching program isomorphismn problem, BP1-Iso.

We start by recalling the idea of the interactive proof for the complement of the graph
isomorphism problem [GMRS89] (see also [Sch88]). There, on input of two graphs G and Gy,
the verifier randomly picks ¢ € {0, 1} and a permutation ¢, and sends H = ¢(G;) to the prover.
Now the prover is asked to find out what the value of ¢ is. The verifier will accept only if the
prover gives the right answer.

When the input graphs are not isomorphic, then the Prover can find out easily i. However,
when the graphs are isomorphic, both could be used by the verifier to compute H, so that no
prover can find 7. Therefore, the answer of any prover is correct with probability at most 1/2.

First of all note that we cannot directly adapt this protocol to branching programs. The
reason for this is that simply the syntactic structure might tell the prover which of two given
branching programs was selected by the verifier.

A way out of this would be a normal form for one-time-only branching programs, that is
easy to compute. However, such a normal form is not known. At this point, Agrawal and
Thierauf [AT96] used a result from learning theorie by Bshouty et. al. [BCGKT95]: there is a
randomized algorithm that uses an NP oracle and outputs branching programs equivalent to
a given one. The important point is that although the algorithm might output (syntactically)
different branching programs depending on its random choices, the output does not depend on
the syntactic structure of its input. However, in our case, the verifier doesn’t have an NP oracle
available and there is no analog learning result for one-time-only branching programs without
an NP oracle.

The idea to get around this problem is as follows. On input of two given omne-time-only
branching programs By and By with n variables, the verifier randomly chooses one of them and
permutes it with a random permutation to obtain a branching program B. Instead of trying to
manipulate whole B, the verifier evaluates B at a randomly choosen point r € T™, where T is
some appropriate test domain. The prover is now asked to tell which of By, B; was used to obtain
the point (r, B(r)). If By and B; are isomorphic, then the prover cannot detect and has to guess.
So she will fail with probability 1/2. On the other hand, If By and By are not isomorphic, then
the prover has a good chance of detecting the origin of (r, B(r)). This is because, by Theorem 2.1,
different multilinear polynomials can agree only on a fraction (|7|" — (|T| — 1)"))/|T|" < n/|T|
of domain T'. By choosing T large enough, the origin of (r, B(r)) is unique with high probability.
With an additional round of communication the prover can always convince the verifier from
the non-isomorphism of By and B;. We give the details below.

Theorem 3.1 BP1-Iso € IP[4].

Proof. The following IP-protocol accepts BP1-Iso. The input are two one-time-only branching
programs By and By, both over n variables x1,...,z,. Let T = {1,...,2n}.

V: the verifier randomly picks ¢ € {0,1}, a permutation ¢, and points ry,...,r; € T, where
k = [nlogn]+2. Then the verifier permutes the variables of B; according to ¢, computes
y1 = pB,; o p(ry), for l =1,...,k, and sends the set of pairs R = {(r,y) | =1,...,k} to
the prover.

P: the prover is expected to send j € {0,1} and a permutation ¢’ to the verifier.

V: if i = j, then the verifier accepts. If i # j, the verifier checks whether pg; o ¢’ matches
the set R, that is, whether pp, o ¢'(r;) =y, for [= 1,... k. If the test fails, the verifier
rejects. Otherwise, he sends ¢ to the prover.

P: the prover is expected to send a point r' € T™ to the verifier.

V: finally, the verifier accepts if and only if pp, o (') # pg, o ¢'(r').

We show that the above protocol works correctly.

Case 1: Bg ? By. We show that there is a prover such that the verifier always accepts.

The prover can cycle through all permutations and check for both, pg, and pg,, whether it
matches with the set R sent by the verifier. Say that polynomial pg, o ¢’ does so. Then the
prover sends j = 0 and ¢’ to the verifier.

If no permutation of polynomial pg, matches R as well, then ¢ must have been 0 and therefore
the verifier will accept in the first round.

On the other hand, if some permutation of polynomial pp, matches R, then the prover
cannot tell which one was used by the verifier. If the prover is lucky, ¢ has anyway been zero
and the verifier accepts. On the other hand, if ¢ # j, then the verifier will send ¢ to the prover
because pp, o ¢’ matches R. Since PB; © ¢’ # pB, o p, these polynomials can agree on at most
n|T|"~! points on T™ by Theorem 2.1. Note that n|T|"~! < |T|*. Therefore, the prover can find
a point r’ € T™ such that pp; o ¢'(r') # pp, o ¢(r'), and send it to the verifier who will accept.
In summary, the verifier accepts with probability one.

Case 2: By = By. We show that for any prover, the verifier accepts with probability at most
3/4. By executing the protocol several times in parallel, the acceptance probability can be made
exponentially small.

The prover will always find permutations of pg, and pp, that match the set R sent by the
verifier. Therefore, with respect to the test + = j made by the verifier, the best the prover can
do is to guess j randomly. This will make the verifier accept with probability 1/2. However, the
prover can improve her chances by the condition checked in the second round by the verifier:
fix 7 and ¢ chosen by the verifier, say ¢ = 0. Then there might exist a permutation ¢’ such that
pB, © ¢’ matches R, but pg, o ¢ # pp, o ¢'. Now the prover can choose a point r’ such that
PB, © p(r') # pp, 0 ¢'(r'), and make the verifier accept by sending j = 1, ¢/, and r'. We will
give an upper bound on the probability of this event.

By Theorem 2.1, for any ¢’ such that pg, o ¢ # pB, o ¢’ we have

Pr[pp, o p(r) = pp, 0 ¢'(r)] < = 2 (1)

for a randomly chosen r € T™. Since points ry,...,rz € T™ are chosen independently and
uniformly at random from 7", we have

Pripp, o ¢ matches R] < 27k

Therefore, considering all such ¢, we get that

-

Pr[3¢’ (pp, o ¢ # pB, 0 ¢’ and pp, o ¢’ matches R] < n!27%F <

by our choice of k. We conclude that the probability that any of the conditions tested by the
verifier is satisfied is bounded by 1/2+ 1/4 = 3/4. That is, the verifier accepts with probability
at most 3/4, irrespective of the prover. O

We can directly come down to a one round interactive proof by choosing T large, for example
T ={1,...,2nn!}. Then, in case By % By, the prover can always find point r’ without knowing
@, and hence can already send it in the first round to the verifier, who can then make all his
tests. However, then we get another difficulty: when T has exponential size, the values of the
poynomials might be up to double exponential. Then the polynomial time verifier can no longer
deal with such numbers. We will show in the next section how the verifier can still manage his
task.

As already mentioned in Section 2.1, the class of sets that can be decided by a constant
round interactive proof system coincides with the Arthur-Merlin class AM[2] which, in turn, is
the same as BP - NP [Bab85, GS89].

Corollary 3.2 BP1-Iso € BP - NP.

Schéning [Sch88] gives a direct proof that the graph isomorphism problem is in AM by using
hash functions. By combining the technique from Theorem 3.1 and that in [Sch88], we can as
well obtain Corollary 3.2 directly.

Note that both classes, BP - NP and NP - coRP can be loosly considered as some, more or
less, slight extensions of NP. In this sense, we have shown that BP1-Iso is in a slight extension

of NP N coNP.
Corollary 3.3 BP1-Iso € NP - coRP N BP - coNP.

Boppana, Hastad, and Zachos [BHZ87] (see also Schéning [Sch89]) have shown that a coNP
complete set cannot be in BP - NP unless the polynomial hierarchy collapses to the second level,
in fact, even to BP - NP. Hence we get the main result of this section.

Corollary 3.4 If BP1-Iso is NP hard then PH = X0,

4 Extension to Multivariate Polynomials Over an Arbitrary
Field

The interactive proof in the previous section decided on the isomorphism of two one-time-only
branching programs. However, the important point to make the protocol work was that these
branching programs in fact represent multilinear polynomials over an infinite field, say Q: the
branching programs are just a compact way of describing them that are easy to evaluate at a
given point by the verifier.

We first show how to extend the above protocol to an interactive proof to decide the iso-
morphism of two multivariate polynomials of higher degree over an infinite field, say Q. For
this we need the general version of the Schwartz-Zippel Theorem. For a multivariate polyno-
mial p(zq,...,z,), the degree of any term is the sum of the exponents of the variables, and the
total degree of p is the maximum of the degrees of its terms.

Theorem 4.1 [S80, Zip79] Let p(z1,...,z,) be a polynomial over some field F of total de-
gree d that is nol the zero-polynomial. Let T C ¥ be a finite set, and let ry,...,r, be chosen
independently and uniformly at random from T. Then

d
Pr[p(rla"'arn) O]S |T|

In a multilinear polynomial, the total degree is bounded by 7, the number of variables. In the
above protocol, we therefore need only to adapt our test domain T to the total degree d of the
given polynomials (which must be the same for isomorphic ones). That is, welet T = {1,...,2d}.
Then we can bound the probability in equation (1) by d/|T| = 1/2, so that the verifier accepts
again with probability at most 3/4 for any prover.

Since the verifier has to evaluate the polynomials, the numbers obtained shouldn’t get too
large. The value of a polynomial on T is bounded by C(2d)%d? = 20(dlogd) " where C is the
largest coeflicient of the polynomial. Thus, if d is some polynomial in n, then the length of all
occuring values is polynomially bounded.

However, the verifier can in fact deal with larger degrees. Let N be the length of the encoding
of our input polynomials and assume that the total degree d is bounded by 2°(V). Note that
this is always the case as long as the degrees occur as binary numbers in the encoding, so that
this is a very weak restriction. Now the polynomials can take on values up to 22 on T, for
some constant ¢ > 0, so that the polynomial-time verifier can no longer evaluate them at certain
points. Instead, the verifier, does now all computations modulo some prime number p.

Let py, pa, ... denote an enumeration of all prime numbers. By the Prime Number Theorem,
p; is close to i/ Ini. Therefore, the product of the first 2°V primes exceeds QQCN, and their length
is still polynomially bounded. By the Chinese Remainder Theorem, any number a < 22" as
a unique sequence of remainders when taken modulo p; for i = 1,...,2°N. Let us even extend
the sequence by a factor of 16, i.e., up to length 2°N+4, Consider two numbers a # b < 22"
For a randomly chosen prime p;, where ¢ < 2°N+4 the probability that ¢ and b will be different
modulo p; is large: Prla = b (mod p;)] < 15.

The verifier can use this as follows. He starts by picking uniformly at random numbers
q1, - qp < 2°NT for some b we will determine below. Seeking for a prime, the verifier can now
either check himself the ¢;’s using the ZPP algorithm by Adleman and Huang [AH92], or ask the
prover to send him a proof whether ¢; is prime or not. (Recall that primality is in NP N coNP.)
With the latter method, we add one round of communication to the above protocol. If all ¢;’s
where non-prime, the verifier stops and accepts immediately. Otherwise, the verifier takes a
prime and does all the forthcoming computations modulo that prime.

We can bound the probability that the verifier doesn’t find a prime as follows. Let ¢’ be some
constant such that In2°V+4 < ¢/N. Then ¢; is prime with probabilty at least ﬁ Therefore,
the probability that none of the ¢;’s is prime is bounded by

1 1
(1- ’N)b < o for b > 4¢'N.
c

By the above discussion, the extra error introduced by computing modulo a prime is less

than % + 11—6 = %. In total, the verifier will accept two isomorphic polynomials with probability

at most 3/4 4+ 1/8 = 7/8. Two non-isomorphic polynomials are still accepted with probability
one.

Theorem 4.2 The non-isomorphism problem for multivariate polynomials over Q of exponen-
tially bounded degree is in BP - NP.

If the polynomials are over a finite field, say GF(q), where ¢ is some prime power, we run
into the problem that there are not enough elements for our set T in order to make the above
protocol work. Instead of GF(g), we take the extension field GF(q"), where ¢ is the smallest
integer such that ¢* > dn, so that ¢ = [log, dn]. Then we can set T = GF(¢"). Note that two
polynomials over GF(¢) are isomorphic if and only if they are isomorphic over any extension
field (see for example [vdWae70] for background).

The verifier must be able to evaluate a polynomial at a given point in the extension field.
For this, the verifier needs an irreducible polynomial ¢(z) € GF(¢)[z] of degree ¢. Note that the
degree d of the polynomials in GF(¢) is bounded by ¢ — 1 and can therefore be considered as
constant. Thus ¢ = O(logn) and the verifier can cycle through all polynomials in GF(¢)[z] of
degree ¢ and check irreducibility in polynomial time using the Berlekamp algorithm [Ber70]. So
the verifier will find an irreducible polynomial ¢(z). Then GF(¢") is isomorphic to GF(¢)[z]/¢().
Therefore, knowing ¢(x), the verifier can do all computation needed in polynomial time. Now,
the protocol can proceed as above.

Theorem 4.3 The non-isomorphism problem for multivariate polynomials over a finite field is
in BP - NP.

5 A Zero-Knowledge Interactive Proof for BP1-Iso

An TP protocol for a set L is a zero-knowledge protocol [GMRS9], if it decides L correctly in
the usual way and, in addition, there is a prover such that for any & € L the communication
between the prover and the verifier on input z looks random to the verifier in the sense that
there is a probabilistic polynomial-time algorithm that outputs some communication sequence
of the interactive proof with the same probability as it occurs there.

Using the idea for the interactive proof for the complement of BP1-Iso, we give a zero-
knowledge interactive proof for BP1-Iso in this section. The input are two one-time-only bran-
ching programs By and By, both over n variables xq,...,2,. Let T = {1,...,2n}.

V: the verifier randomly picks points ry,...,ry € T", where k = [nlogn] + 2 and sends them
to the prover.

P: the prover randomly chooses ¢ € {0,1}, a permutation ¢, and sends y; = pp, o ¢(r1), for
[=1,...,k, to the verifier.

V: the verifier randomly picks j € {0,1} and sends it to the prover.

"

: the prover sends a permutation 7 to the verifier such that pg, o 7(r;) =y, for [=1,... k.

V: finally, the verifier accepts if and only if this latter condition about 7 in fact holds.

If By = By and the prover behaves as described in the protocol, then the verifier will
always accept. Furthermore, consider the following algorithm A that randomly picks j € {0,1},
ri,...,ry € T", and a permutation ¢ and outputs r; and pp, o ¢(r;), for [= 1,...,k, and
furthermore j and .

Then any output of A is a possible communication in the above protocol. Moreover, any
output of A has the same occurence probability as in the protocol. Therefore, we have the
zero-knowledge property.

If By By, then, by arguments similar to those in Section 3, the verifier will accept with
probability at most 3/4, no matter what the prover does.

Similar as explained in Section 4, we can derive a zero-knowledge interactive proof from the
above one for multivariate polynomials over some field.

Acknowledgements

I want to thank Manindra Agrawal and Uwe Schoning for many helpful discussions. Bernd
Borchert gave me some useful pointers to the OBDD-literature.

References

[AH92] L. Adleman and M.-D. Huang. Primality Testeing and Abelian Varieties over Finite
Fields. Lecture Notes in Mathematics 1512, Springer Verlag, 1992.

[AT96] M. Agrawal and T. Thierauf. The Boolean Isomorphism Problem. ECCC TR96-032,
1996. Available at http://www.eccc.uni-trier.de/eccc/.

[Bab85] L. Babai. Trading group theory for randomness. In 17th ACM Symposium on Theory
of Computing, 421-429, 1985.

[BDGS88] J. Balcdzar, J. Diaz, and J. Gabarré. Structural Complexity I. EATCS Monographs
on Theoretical Computer Science, Springer-Verlag, 1988.

[BDGI1] J. Balcazar, J. Diaz, and J. Gabarrd. Structural Complexity II. EATCS Monographs
on Theoretical Computer Science, Springer-Verlag, 1991.

[Ber70] E. Berlekamp. Factoring Polynomials over Large Finite Fields. Mathematics of Com-
putation 24(111), 713-735, 1970.

[BCGKT95] N. Bshouty, R. Cleve, R. Gavalda, S. Kannan, C. Tamon. Oracles and que-
ries that are sufficient for exact learning. ECCC TR95-015, 1995. Available at
http://www.eccc.uni-trier.de/eccc/.

[BHZ87] R. Boppana, J. Hastad, and S. Zachos. Does co-NP have short interactive proofs?
Information Processing Letters 25, 27-32, 1987.

[BR93] B. Borchert, D. Ranjan. The Subfunction Relations are X—complete, Technical Report
MPI-1-93-121, MPI Saarbricken, 1993.

[BRS95] B. Borchert, D. Ranjan, F. Stephan. On the Computational Complexity of some Clas-
sical Equivalence Relations on Boolean Functions. Forschungsberichte Mathematische
Logik, Universitat Heidelberg, Bericht Nr. 18, Dezember 1995. Also as ECCC TR96-
033, 1996. Available at http://www.eccc.uni-trier.de/eccc/.

10

[BCWS80] M. Blum, A. Chandra, M. Wegman. Equivalence of free Boolean graphs can be decided
probabilistically in polynomial time. Information Processing Letters 10(2), 80-82, 1980.

[Bry86] R. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE Trans.
Comput. C 35(6), 677-691, 1986.

[CK91] P. Clote, E. Kranakis. Boolean functions, invariance groups, and parallel complexity.
SIAM Journal on Computing 20(3), 553-590, 1991.

[GGY5] R. Gavalda and D. Guijarro. Learning Ordered Binary Decision Diagrams. Manuscript,
1995. Available at http://www-Isi.upc.es/ gavalda.

[GMR8Y] S. Goldwasser, S. Micali, C. Rackoff. The knowledge complexity of interactive proof
systems. STAM Journal on Computing 18, 186-208, 1989.

[GS89] S. Goldwasser, M. Sipser. Privat coins versus public coins in interactive proof systems.
Advances in Computing Research. Vol. 5: Randomness and Computation, S. Micali

(Ed.), JAT Press, 73-90, 1989

[Hof82] C. Hoffmann. Group-theoretic algorithms and graph isomorphism. Lecture Notes in
Computer Sience 136, Springer Verlag, 1982.

[HU79] J. Hopcroft, J. Ullman. Introduction to Automata Theory, Languages, and Computa-
tion. Addison-Wesley, 1979.

[KST93] J. Kobler, U. Schoning, J. Toran. The Graph Isomorphism Problem: Its Structural
Complexity. Birkhduser Verlag, 1993.

[MS94] C. Meinel and A. Slobodova. On the Complexity of Constructing Optimal Ordered
Binary Decision Diagrams. Proceedings of MFCS ’94, Springer Verlag, Lecture Notes
in Computer Sience 841, 515-524, 1994.

[Sch88] U. Schéning. Graph isomorphism is in the low hierarchy. Journal of Computer and
System Sciences 37, 312-323, 1988.

[Sch89] U. Schoning. Probabilistic complexity classes and lowness. Journal of Computer and
System Sciences 39, 84-100, 1989.

[S80] J. Schwartz. Fast Probabilistic Algorithms for Verification of Polynomial Idendities.
Journal of the ACM 27(4), 701-717, 1980.

[SW92] D. Sieling and I. Wegener. Reductions of BDDs in Linear Time. Manuscript, 1992.
[vdWae70] B. van der Waerden. Algebra 1. Heidelberger Taschenbiicher 1970.

[Zip79] R. Zippel. Probabilistic Algorithms for Sparse Polynomials. In Proceedings of EURO-
SAM 79, Springer Verlag, Lecture Notes in Computer Sience 72, 1979.

11

