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Abstract

We consider the size of circuits which perfectly hash an arbitrary subset S C {0,1}" of
cardinality 2* into {0,1}™. We observe that, in general, the size of such circuits is exponential
in 2k — m, and provide a matching upper bound.
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Introduction

We consider the problem of perfectly hashing an arbitrary subset S C{0,1}" of cardinality 2* into
{0,1}™, where & < m. That is, given an arbitrary subset S C {0,1}" of cardinality 2%, we seek
a function h:{0,1}" — {0,1}™ so that h(z) # h(y) for every two distinct  # y in 5. Clearly,
such a function always exists, the question is what is its complexity; that is, what is the size of the
smallest circuit computing h.

Although much work has been done on perfect hashing, it seems surprising that this question
was not addressed before (to the best of our knowledge). Two easy bounds are

1. Forevery §C{0, 1}, there is a circuit of size |5|-n which perfectly hashes S into {0, 1}M1e8=151T,
(The circuit is merely a look-up table for S.)

2. Forevery § C{0, 1}, there is a circuit of size poly(n) which perfectly hashes S into {0, 1}2Me8z 51T,
(The circuit implements a suitable function from a family of Universal, Hashing [2]. Such a
family always contains perfect hashing functions for S [4].)

We show that these bounds are the best possible. That is

Theorem 1 For every n,k and m < 2k, there exists a subset S C {0,1}" of cardinality 2% which
cannot be hashed into {0,1}* using a circuit of size Q(2%~m).

Interestingly, the lower bound is tight for all values of m € [k, 2k] (and not only for m = k, 2k).
That is,

Proposition 2 For every n,k and m > k, and every subset S C {0,1}" of cardinality 2* there
exists' a circuit of size 22¥=™ - poly(n) which hashes S into {0,1}*.

1 Proof of Theorem 1

The proof follows by a simple counting argument, combining an upper bound on the number of
circuits of given size with a lower bound on the size of a family of functions that can separate all
subsets of size 2%. The best lower bound for the latter appears in [3]. For completeness we prove a
weaker bound below, that is sufficient for our purposes, and present the argument in probabilistic
terms.

Suppose, in contrary to Theorem 1, that for every subset S C {0,1}" of cardinality K Lf gk
there exists a circuit of size o(22*=™) which hashes S into {0,1}*. We will show that each circuit
can serve as a perfect hashing for too few K-subsets and thus that there are too few circuits to

perfectly hash all possible K-subsets. The main observation follows:

Lemma 1.1 Let C': {0,1}* — {0,1}™ be an arbitrary circuit, and S C {0,1}" be a uniformly
selected subset of cardinality K = 2%. Then, the probability that C perfectly hashes S into {0,1}™

s bounded above by
9= ")

provided m < n — 1.

! We stress that such a circuit cannot, in general, be simply described; that is, this result is completely nonuniform.



Proof: Let N % 27 and M ¥ 2m, Clearly, we may assume that & < m (as otherwise the

probability is zero). Let ¢y, ...,cy denote the sizes of the preimages of the various m-bit strings
under C (i.e., ¢; = |[C7!(s;)|, where s; denotes the i*" (m-bit long) string by some order). Then,
the probability we are interested in is
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which for M < N/2 yields 2=%X*/M)_ The lemma follows. W

Adding up the contribution of all possible circuits, while applying Lemma 1.1 to each of them, we
conclude that if too few circuits are considered then not all K-subsets can be perfectly hashed.
Theorem 1 follows.

2 Proof of Proposition 2

We consider two cases. In case m < k 4+ log, n then the proposition follows by constructing an
obvious circuit which maps each string in S to its rank (in ) represented as an m-bit long string.
This circuit has size |S|-n = 2?=™ . p? and the proposition follows.

The less obvious case is when m > k 4 log,n. Here we use a family of n-wise independent
functions mapping {0,1}" onto {0,1}¢, where £ - log, n. Function in such a family can be
evaluated by a poly(n)-size circuits; cf., [1]. We consider the collisions caused by a uniformly chosen
function from this family applied to 5. Specifically,

Lemma 2.1 Let H be a family of functions {h:{0,1}" — {0,1}*} so that Probcp (A" h(a;) =
B;) = 27", for every n distinct ay, ..., a, €{0,1}" and for every B3y, ..., 5,€{0,1}*. Then, for every
S 40,1} of cardinalily 2% < 2°, there exists h € H so that

1. A=Y B)N S| < n, for every B € {0,1}-.
2. {Be{0,1}: |A=1(B)N 5| > 1} < 2%k-¢

Proof: Fixing an arbitrary 2*-subset, S, and uniformly selecting 4 € H, we consider the probability
that the two items (above) hold. Firstly, we consider the probability that 2~ maps n elements of §
to the same image. Using the n-wise independence of the family H, the probaility of this event is

bounded by
Qk —in an —kn
<7z>'2 < ¥ <

Thus, the probability that Item (1) does not hold is less than 1/2. Next, we consider the probability
that Item (2) does not hold. We start by using the pairwise independence of H to note that the

DN | —



collision probability is 27¢ (i.e., Probuey(h(ai) = h(as)) = 274, for any a; # ay, € {0,1}"). Tt
follows that the expected number of h-images which have more than a single preimage in S is
bounded above by the expected number of collisions; that is, by (2;) 2270 < 222780 Applying
Markov’s Inequality, we conclude that the probability that Item (2) does not hold is less than 1/2.
The lemma follows. I}

Using Lemma 2.1, we are now ready to present a circuit which perfectly hashes an arbitrary 2*-
subset, 5 C {0,1}", into {0,1}™. Our construction uses the double hashing paradigm (e.g., [4]).
Let h:{0,1}"+{0,1}F~1°82" be as guaranteed by the lemma. We define a perfect hashing function
f:{0,1}"—{0,1}* for S by letting

f(@) = h(a) o ranksan-1 (n(ay (@)

where rankp(a) is an log, n-bit long string representing the rank of a among the elements of P. A
circuit computing the function f is constructed as follows. For each § having more than a unique
h-preimage in S we maintain a table ranking these preimages in 5. By Item (1) of Lemma 2.1,
such a table need only contain n entries; whereas by Item (2) we only need 22*=¢ such tables. (We
stress that if a string, a, does not appear in any of the tables then f(a)= h(a)o 0'°82".) The size
of the circuit is 22¥7¢. n? = 2%5-™ . n3 and so Proposition 2 follows.
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