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On polynomial time approximation schemes
and approximation preserving reductions

Edmund Ihler*

Abstract

We show that a fully polynomial time approximation scheme given for an
optimization problem can always be simply modified to a polynomial time
algorithm solving the problem optimally if the computation model is the de-
terministic Turing Machine or the logarithmic cost RAM and if the range of
the error bound is the rational numbers or a subset (0,b).

Moreover, we prove that a P-reduction is not necessarily an A-reduction
for some suitable error bound transformation but we give a sufficient criteria.

keywords: approximation, combinatorial problems, computational complexity,
reductions

1 Introduction

Combinatorial optimization problems differ considerably with respect to their ap-
proximability. In the past years progress was made toward a unified theory of
approximation complexity. The successful theory of NP-completeness for decision
problems (see e.g. [5]) was a basis for this development. But reductions which
compare optimization problems with respect to their degree of approximability are
more complex than a Turing reduction. Much work has been done to find suitable
types of reductions to classify NP-hard optimization problems by their degree of
approximability (for a detailled overview, see e.g. [2], [3], [6], [7]). Alternativley, a
purely syntactical way to partition the class of combinatorial optimization problems
with respect to these degrees has been partially successful ([8], [9], [11], [12]). A
breakthrough came with a new technique to prove that several famous problems are
NP-hard to approximate (see overview [1]).

For an NP-hard optimization problem the best we can get is a fully polynomial
time approximation scheme (fptas). Such a scheme A computes for each extended
input (/,¢€) a solution which differs at most by an error of € from the optimum.
The runtime of A is polynomially bounded in both the encoding length || and
the magnitude of % It is convenient to formulate the whole framwork using the
notion of algorithm without any specific computation model. However, caution is
necessary in this approach because the range IE of the desired error bound e is
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critical. If the algorithm is not able to read each allowed e within the required time
bounds, the notion of fptas degenerates. In this case each fptas is able to compute an
optimal solution for each input. In Section 3, we prove this fact for the deterministic
Turing Machine and the logarithmic cost RAM computation model if the allowed
error bound range is the set of all rational numbers or any subset (0,5). We also
propose a reasonable error range for these computation models. Unit cost models are
interesting for approximation algorithms. But for the theory of the approximation
complexity of optimization problems this seems not to be the suitable computation
model.

Unfortunately, an fptas for an optimization problem is usually not achievable.
Sometimes a polynomial time approximation scheme (ptas) is available which is not
full, i.e. the runtime of the algorithm is only polynomially bounded in |I| for each
fixed error bound e. But in practice it is even hard to find a polynomial time approx-
imation algorithm (apz) which computes solutions which differ only by a constant
bounded relative error from the optimum. Obviously each fptas is a ptas and each
ptas is an apx for some arbitrary fixed e. These three degrees of approximabiliy
are well established today. The corresponding approximation preserving reductions
are the F-, P- and A-reduction. This means, e.g. an A-reduction between two op-
timization problems Il and II' carries over each apx for I’ to an apx for II. One
might conjecture that each P-reduction is automatically an A-reduction (see ([7],
Proposition 3.5)). But we will prove in Section 4 that this is not the case in general.
Nevertheless, we give a simple criteria when this conjecture is true.

Recently, a slightly extended version of the P-reduction was introduced in lit-
erature by [2]. This PTAS-reduction is also an A-reduction. Unfortunately, the
successful L-reduction introduced in [12] for MAX SNP-completeness is not a PTAS-
reduction. Nevertheless, an L-reduction is both a P-reduction and an A-reduction.
The problem with PTAS-reduction is that the error bound transformation implied
by L-reduction is not surjective relative to the error bound range (0,1) used for
PTAS-reductions. Moreover, the range (0, 1) is not suitable for apx as it does not
cover an apx with an error bound > 1.

2 Basic Definitions

In general an optimization problem is a tuple Il = (Z,C, cost, <>): T C ¥* is the set
of inputs over some alphabet ¥. For each input there is a set of (feasible) solutions
S (7). Each pair of input and solution (7, 5) is called configuration. C is the set of
configurations. Function cost : C — IR is called cost function (often called objective
function). The problem type <> defines whether II is a minimization problem, i.e.
<>=<, or a mazimization problem, i.e. <>=2>. For each input I a solution S is called
optimal solution, if for each configuration (7,S’) we have cost(1,S) < cost(1,5").
We denote the cost for an optimal solution of input I by optr (/). This definition of
an optimization problem is equivalent to the standard definition, e.g. in [5] or [13].
W.l.o.g. we assume that Sp(7) is always non empty and that there exists an optimal
solution for each input 7. This simplifies the following definitions but is not really
necessary (see [6]).

From the theoretical point of view so called NP-optimization problems are of



interest. These are combinatorial problems Il = (Z,C, cost,<>), where T and C are
recognizable in polynomial time, for each configuration (7, S) the encoding length | S|
is polynomially bounded by the encoding length ||, cost is computable in polynomial
time, and each cost(1, S) is in IN, the set of positive natural numbers. This definition
was originated in [14] and is equivalent to the definitions in e.g. [2], [4], [7], [8], [11].

The error of a solution is used to describe how far this solution is from the op-
timal solution. The most general definition of an error function &y requires only
that for a configuration (7,S) the error En(7,S) is zero if and only if S is an op-
timal solution of 1. We omit the subscript II in all of our notations if there is no
danger of confusion. The most common error function is the relative error £, For

minimization problems this error function is defined by £"¢(I,S) = % - 1.

Definition 1 : A fully polynomial time approzimation scheme (fptas) A for an
optimization problem Il = (Z,C, cost, <>) with error function £ and error bound
range IE computes for each extended input (/,¢) € T x IE a solution S € S(7), such
that £(7,5) < e. There exists a polynomial p bounding for each extended input
(I,¢) € T x IE the runtime t4(1, €) of A by ta(l,€) < p(|I],1/¢).

The explicit definition of an error bound range IE is not common in the approxima-
tion framework. But there is one important problem with respect to the underlying
computation model and the notion of fptas that we want to discuss in the following
section.

3 Error bound range and fptas

Consider the standard Turing machine model TM, where each natural number n is
encoded by its binary representation bin(n), or the logarithmic cost random access
machine model log-RAM, where reading a natural number n costs at least log(n)
time. For these computation models the range of error bound ¢ for an fptas is
critical: Tf TE is the set of positive rational numbers QF or even a subset (0,5) C QT,
then the notion of fptas degenerates. But this kind of error bound range typically
occurs in the literature. Let us have a closer look.

First, we want to ensure the lowest possible read complexity for the rationals
in the considered computation models: All non-negative rational numbers can be
represented by pairs (n,d) of natural numbers. We denote all these pairs where n
and d have no common divisor by @*. For the TM we assume that for an extended
input (I, ¢) where ¢ = %, the string bin(n)bin(d)enc(1) is on the tape and that the
head is located over the leftmost symbol, where enc(7) is the encoding of I and
(n,d) € QF. For the log-RAM we assume a sequence n,d,ay,...,a;, of natural

numbers in the RAM-registers, where ay,...,a;, encodes I and (n,d) € Qt.

Theorem 1 Let A be an fptas for an optimization problem (Z,C,cost,<>) with
error function £ and error bound range IE = QT or any interval (0,b) C Q*. Let
the underlying computation model be the TM or log-RAM model. Then A can be
modified to an algorithm with a time complexity polynomially bounded in |I| that
computes for each I € T an optimal solution.



Proof: We will show first that for each b there are rationals ¢ = % with ¢ € (0, )
and (n,d) € QF, where the time complexity of reading n does not allow to read n
completely.

To see this, fix an arbitrary I € Z. Let 1° be the string 11---1 consisting of s
times 1. Consider the series ¢, ; = m(::+1)7 where bin(n;) = 1*. There exist arbitray
large prime numbers m. This means that for each fixed ¢ € IN there exists an m such
that ¢,,; € (0,b) and (n;,m(n; + 1)) € @*. On the other hand the fully polynomial
time complexity guarantees constants ¢,k € IN such that the runtime t4(7,¢) for
each extended input is bounded by t4(f,¢) < ¢+ ()" for all ¢ € IE. The time
complexity of reading n; is logn; = ¢. Thus < c+ (%)k is a necessary condition for
reading n; completely. But for each fixed m, lim;_ ., ¢ = oo whereas lim;_ ., (c¢+ (%)k)
=c+m-lim;_, ﬂ‘n'*'—l = ¢+ m = const. Altogether this means that for each [ there
exists a prime number m; and a natural number i; such that €m.i; € (0,0) and
(ni,,mr(ni; +1)) € QF where n;, cannot be read completely by A. To construct
this €,,,,,, first choose any prime number m; > % and then choose i sufficiently big.

For the log-RAM model this means that A cannot read n;, at all. This means
that it is not possible for A to read any ¢, because it does not know about the read
complexity in advance. Thus A computes for each extended input (7, ¢€) an optimal
solution S completely independent of e. The modification of A for the log-RAM
model is to extend each input I by an arbitrary fixed error bound e.

For the TM model the existence of such an z; for each I € 7 means that A
can only read a prefix of n;,. But A does not know the magnitude of ¢,,,;, which
can be arbitrary close to 0. So in this case A has to compute the optimal solution.
The desired modification of A is as follows: Instead of reading the input bits of n
for some € = %, the modified A reads 1’s until it terminates. The termination is

ensured, because A terminates for n;,, too. Thus A acts as if there were an ¢,,, ;, in
the input and computes an optimal solution. a

The solution for this problem is an error bound range like IE = IN U 1/IN where
1/IN={1,%,1,%,...}. The simple restriction to rationals e < 1 (e.g. in [2], [4], [7],
[11]) does not prevent this degeneration of the fptas notion.

4 Approximation preserving reductions

The notion of A-reduction and P-reduction is common in the field of approximation
complexity of combinatorial optimization problems (see e.g. [4], [7], [10], [11]). An A-
reduction is able to transform an apx, a P-reduction is able to transform a ptas from
one optimization problem to another. By this means the approximation complexity
can be compared. It is an obvious consequence of the definition of apx and ptas
that each ptas for an optimization problem II immediately implies an apx for II:
Extend each input I by some arbitrary but constant ¢ € IE and use the ptas. The
resulting apx complies with the error bound e. It might be suggestive to think that
a similar result is true for A- and P-reduction ([7], Proposition 3.5). However, it is
not true that each P-reduction is also an A-reduction. We prove this negative result
by a counterexample but we also show which additional conditions are sufficient for
a positive answer. First we define both A- and P-reduction in their standard way
(see Figure 1 and Figure 2).



Figure 1: An A-reduction (f,g) with error bound transformation e.
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Definition 2 : An A-reduction from an optimization problem Il = (Z,C, cost, <)
to an optimization problem II' = (Z',C’, cost’, <>') with error function £ and error
bound range IE is a pair of transformations (f, g) and an error bound transformation

e, where

l. f[: T -1
2. for all ¢ € IE, for all I € Z and all S" € Sy(f(1)):

(a) g(1,5") € Sn([)
(b) &mw(f(1),5) < ¢ = &nl(l,9(1,5") < e(€)

3. the runtimes of both f and ¢ are polynomially bounded in their input lengths.

For a P-reduction the situation is a little bit more complicated. Transformation f
has to transform each extended input (/,¢). There are additional restrictions on f
and on the time complexity of f and g (see Figure 2).

Figure 2: A P-reduction (f,g).
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Definition 3 : A P-reduction from an optimization problem Il = (Z,C, cost, <>)
to an optimization problem II' = (Z',C’, cost’, <) with error function £ and error
bound range IE is a pair of transformations (f,¢), where

1. f = (finst; 6’]"7") with finst 7 — I/; fe?"r E— IE
2. for all (I,¢) € T x [E and all 5" € St ( finst(1)):

(a) g(1,5") € Sn(I)
() E(finst(1), ") < forn(€) = En(T,g(I, ") <



3. for each fixed € € IE the runtimes of both f and ¢ are polynomially bounded
in their input lengths.

It is easy to prove that A- and P-reduction compose and that they really transform
a whole apx resp. ptas (see e.g. [6], [10]). Note that our following results also hold
for an additional dependency of ¢ on ¢ as introduced in [2] and [6]. But this is not
essential for our results.

For the proof of Theorem 2, we use the following two minimization problems.

Definition 4 Let MINN be the optimization problem (IN,C, cost, <), where C :=
{(n,2) | n,s € IN A7 < n} and cost(n,i) = i. Let MINN' be the version where
2, ifi=1

3, else

cost(n,1) =4 .
These problems are trivial, clearly NP optimization problems, and not NP-hard.
The optimal solution is always the natural number 1. Theorem 2 shows the core of
our result. A corollary for two NP-hard NP minimization problems follows. Note
that for MINN the relative error for a non-optimal solution ¢, 1 < ¢ < n, of an input
n€Nist—1=4—1. Butfor MINN’ it is 2 — 1 = 1. Now we are able to state

1 2 2"
the announced theorem.

Theorem 2 There exist NP-optimization problems 11 = (Z,C,cost,<>) and
II' = (Z',C', cost’, <>") and a P-reduction ((finst, ferr),q) from (Z,C,cost, <>) to
(Z',C', cost', <>") for the relative error £ and an error bound range E, such that
there exists no function e for which (finst,g) s an A-reduction with error bound
transformation e.

Proof: The idea of the proof is as follows: Suppose an apx A’ for II' computes for
each fis(1) a solution S’ where the error bound ¢ holds. If there exists an ¢ with
Jerr(€) = € then (finst, g) yields an apx A for II which complies with the error bound
e. If there is no such e for ¢, the original € of any ¢ = ferr(€) > € serves the same
purpose. This means we have to construct a P-reduction (f,g) where both are not
possible.

Let IT =MINN and II" =MINN’. Consider the reduction ((id, f.,r),g) where id

is the identity and

forr 1€ 1 and g : (n,i') — 7"
This reduction is really a P-reduction because Ve € IE Vn,i' € IN with i/ < ud(n):

. : 1 . .
Entinn (1d(1),1") < forr(e) < 4 = Erinn(n, 9(n, 1)) = Eftn(n,i) =0 < e.

This holds because for each input ¢d(n) of MINN’ only the optimal solution i’ = 1
is able to comply with the error bound f.,.(¢) < i.

Now we want to construct a contradiction: Assume (id, ¢) is an A-reduction with
some error bound transformation e. Then this guarantees Ve’ € IE Vn,:" € IN with
i <id(n):

Exst e (id(n), ) < € = S (n, g, ) < () 1)

We show that especially for the error bound ¢ = % the existence of an error bound
transformation e for (id, ¢) leads to a contradiction. We define €1/ = [e(3)] + 2.
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This means e;/; is a natural number. Therefore €/, is an input for MINN
and a non-minimal solution of id(e;/;) for MINN’ and leads to a relative error
&t wilid(ers),e10) = 1. We can apply Implication 1 for n = ey; and ¢ = £,
and have

1
g}\n;i'nN(el/%g(el/% 61/2)) = gﬁinN(el/Zy 61/2) = €172 — 1< 6(5) (2)

But the definition for e/, yields

1 1
erp—1=Te(5)] +1>e(3) (3)
2 2
Inequality 3 is a contradiction to Inequality 2. a

Note that our proof only requires that the values i and % are in IE. Moreover, it can
be modified to use other values. One might criticize that the involved minimization
problems and the given ptas are trivial and that it is no problem to exclude these
degenerative cases by slightly modified definitions for P-reduction and ptas. But
the following corollary will show that we can give NP-hard minimization problems
and non trivial P-reductions, too.

To do this, we need the notion of product for minimization problems. Let A be
a new symbol with respect to the encoding alphabet ¥.

Definition 5 Let both (Z,C,cost, <) and (Z',C’, cost’, <) be minimization prob-
lems. We define the product (Z,C,cost, <) x (Z',C’,cost’, <) = (Z*,C*, cost™, <)
by

5 = {(I,N)|IeT}u{\I)|I'eT},
c* = (LA, (S ) [(T,8) e CRU{((A T, (A, 5) [ (T, 57) e €'},
)

7( 9
x . N e e cost(1,5), for (I,S)eC
COSt * ((I7I )7 (*57‘5 )) = { COSt/(II, S/), fOI' (1/75/) € C/

Corollary 1 Let both 11 = (Z,C, cost, <) and II' = (I',C’, cost', <) be NP-hard NP-
minimization problems, and let ((finst, ferr),g) be a P-reduction from Il to I for
the relative error £ and an error bound range IE. Then there exists a P-reduction
((firsts J25,),9%) from TIxMINN to TI'x MINN' such that there exists no function e
for which (fir.,9*) is an A-reduction with error bound transformation e.

Proof: First we construct the desired P-reduction ((f75, f2.),9%):

err

z'>7<zst : (]7 )‘) = finst(])a ()‘a TL) =n
1
e>:'r -oe min(fe’/""(e)? Z)

g° ((]’ /\)7(5/7 A)) = g(], S/)a (()‘7n)7()\’il)> S

To show that ((fiss, f%,),9%) is really a P-reduction we can consider both compo-
nents of the product problems independently. For the second component only the
minimal solution 1 of MINN’ complies with an error bound < i. For the first com-
ponent an error bound € is mapped to min(fe,(€), ;). Reduction ((fis, f2,),9%)
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differs from ((finst, ferr), g) only for extended inputs (7,¢) with f...(€) > i. But a
related solution S’ which complies with the error bound i also complies with the
error bound f,,(€) > %. Thus ((f,,, f,),9) is a P-reduction.

sty Jerr
Completely analogous to the proof of Theorem 2, we assume an error bound
transformation e and we define e/, = (e(%ﬂ + 2 which leads again to the contra-

diction:

1
Einrinn (N e12), 07 (N e12), (N e1y2)) = €12 — 1 < 6(5)- (4)
0

Note that both IIx MINN and II'x MINN’ of the previous proof are NP-hard NP-
minimization problems. For inputs (A, n) the optimal solution is always 1, but the
inputs (7, ) make the problem NP-hard. The contradiction results only from the

X x.),g”) is non

second component of the product problem. The P-reduction ((f;., f.,

trivial for non trival P-reductions ((finst, ferr), 9)-
Nevertheless, our idea for the proof of Theorem 2 leads to a positive version of
Theorem 2.

Corollary 2 Given two NP-optimization problems Il = (Z,C, cost, <>) and II' =
(Z',C  cost’, <>") and a P-reduction ((finst, ferr),g) from 11 to I for the relative
error £ and an error bound range IE. If there exists a function e : IE — IE such
that for each € € IE we have € < for(e(€)), then (finst,g) is an A-reduction with
error bound transformation e.

Proof: All we have to show is that Inequality 2b of Definition 2 holds. For each
¢ € IE with & (finst(1),S’) < € we have also ¢ < f..,.(e(e)). Together with
Inequality 2b of Definition 3 this completes the proof. O

Clearly, a P-reduction with invertible transformation f.,, satisfies the conditions of
Corollary 2 for e = f1. Also a surjective f,,, as required for the PTAS-reduction in
[2], suffices because for each ¢ € IE there exists an € where f.,.(€) = €, thus defining
the desired function e. But the criteria of Corollary 2 is even more general. The
L-reduction defined in [12] with f.,, : € — j, a, B > 0, 1s not surjective for an error
bound range IE = (0,1). But an error bound transformation e : ¢ — min(afe’, af3)

satisfies our criteria.
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