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Optimal Search in Trees *

Yosi Ben-Asher, Eitan Farchi, * Ilan Newman §

Abstract

It is well known that the optimal solution for searching in a finite total order set is binary
search. In binary search we divide the set into two “halves” by querying the middle element
and continue the search on the suitable half. What is the equivalent of binary search when the
set P is partially ordered? A query in this case is to a point x € P, with two possible answers:
'yes’, indicates that the required element is “below” z, or 'no’ if the element is not bellow . We
show that the problem of computing an optimal strategy for search in Posets that are tree-like
(or forests) is polynomial in the size of the tree, and requires at most O(n* log® n) steps.

Optimal solutions of such search problems are often needed in program testing and debug-
ging, where a given program is represented as a tree and a bug should be found using a minimal
set of queries. This type of search is also applicable in searching classified large tree-like data
bases (e.g. the Internet).

Keywords: Optimal search, Search in trees, Binary search, Search in graphs, Posets
AMS subject classifications. 68P10

1 Introduction

Binary search is a well known technique used for searching in total order sets. Let S = {s1,...,8,}
be a total ordered set such that s; < s;31 for all i € {1,...,n— 1}. Usually, a binary search is used
to find out whether a given element s is a member of 5. However, a different interpretation can be
used, namely, that, one of the elements in 5 is “buggy” and needs to be located. In a binary search,
we query the middle element 5. If the answer is ‘yes’, then the bug is in §" = {sq,.. .5%} and we
continue the search on S’, otherwise we search on the complement of S/, namely {8%+1, cesSp ) It
is well known that the binary search is optimal for this case.

In this work we consider the generalization of searching in partially ordered sets (Poset). A
query is to a point z in the Poset, with two possible answers: ’yes’, indicates that the required
element is “below” z (less than or equal to ), or 'no’ if the element is not bellow z. Equivalently,
P can be represented as a directed acyclic graph, G, a query is to a node z € GG, a 'yes’/’no’ answer
indicates that the answer is at a node y € GG reachable/not-reachable from z, correspondingly. We
are interested in the problem of computing the optimal search algorithm for a given input Poset.

*Preliminary version in SODA97.
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The complexity measure here is the number of queries needed for the worst case input (buggy
node). We concentrate on Posets that are “tree” (forest) -like (every element except one has one
element that covers it). In this case, the partial order set is represented as a rooted tree T', whose
nodes are the elements of S. A query can be made to any node u € T. A ’yes’/’no’ answer indicates
whether the buggy node is in the subtree rooted at u, or in its complement. Our results extend
naturally to 'forest’ like Posets too. Some comments are made for Cartesian product Posets.

An example of a (optimal) search on a tree of 5 nodes is shown in figure 1. The arrow points
to the next query node. The search takes 3 queries in the worst case.
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Figure 1: Searching in a tree.

One motivation for study search in trees (and Posets in general) is that it forms a generalization
of the search in linear orders to more complex sets: The known binary-search is optimal for the path
of length n with [logn| cost. Another extreme example is the search in a completely non-ordered
set of size n. This is equivalent to search in a star with n leaves. Here, as we must query each
leaf separately, the search takes n queries. Searching in Trees spans a spectrum between these two
examples in terms of the cost function as well as the the Poset type.

There is also a practical motivation; consider the situation where a large tree-like data structure
is being transfered between two agents. Such a situation occurs when a file system (data base) is sent
across a network, or a back/restore operation is done. In such cases, it is easy to verify the total
data in each subtree by checksum-like tests (or randomized communication complexity equality
testing). Namely, such equality test easily detects that there is a fault but gives no information
which node of the tree is corrupted. Using search on the tree (by querying correctness of subtrees)
allows us to find the buggy node and avoid retransmitting the whole data structure.

Software testing is another motivation for studying search problems in Posets (and in particular
in trees). In general, program testing can be viewed as a two person game, namely the tester and
its "adversary’. The adversary injects a fault into the program and the tester has to find the fault
while minimizing the number of tests. A typical scenario in software testing is that the user tests
his program by finding a “test bucket” (a set of inputs) that meets a certain coverage criteria, e.g.,
branch coverage or statement coverage [1, 2, 3]. It is plausible that in certain situations it might
be possible to embed such a set of tests (e.g., the union over all test buckets that meet branch
coverage) in a Poset or in a Tree such that the requirement for covering all tests can be replaced by
a requirement for searching in this Poset or Tree. Finding an optimal search can save a lot of tests
as the cost of a search might be considerably smaller than the size of the domain. For example
the syntactic structure of a program forms a tree, thus if suitable tests are available, statement
coverage might be replaced by a search in the syntactic tree of the program.



Finally, a possible motivation and direct application is in the area of Information retrieval:
Consider a "Yahoo’ search like scenario. The Yahoo contains an immense tree that classifies home
pages (right now - estimated as about 1 — 2% of the total number of WWW homepages). In a
typical search, a node is reached and it exposes the next level of the tree (or part of it). The user
chooses the appropriate branch, according to the query it has in mind. As it turns out, this tree is
quite deep which often results in a numerous amount of queries before reaching the target. Clearly,
such a top down search might be inefficient compared to the possibility of the optimal search of the
Yahoo tree (e.g., searching in a chain of n nodes (a tree of depth n) requires n queries if we search
top-down and only log n queries if we allow to query arbitrary nodes).

A different notion of searching in Posets was considered by Linial and Saks [5, 4]. They consider
the case where a set of real numbers that are “stored” in a Poset, so that their natural order is
consistent with the Poset order. A search in this case is to determine if a real z is stored in the
set. The possible queries in this case are, as in our case, the Poset elements. The two possible
answers for a query z is either ’yes’ (means z < e(z) where e(z) is the element stored in z), or 'no’
(z > e(z)). The first answer results in excluding all elements greater than z from the Poset and
the later excludes all elements below z. Note that the difference between the two models is the
resulting Poset after a ’yes’ answer. It turns out that, in spite of the similarity in definition, the
two models are quite different (e.g. the product of two path see sec. 5). Linial and Saks proved
lower and upper bounds for the number of queries needed to search in Posets in terms of some of
the Poset properties, however, they presented no algorithm to find the exact cost.

Our main result is a polynomial time algorithm (in the size of the tree) that finds the optimal
search strategy for any tree (forest). Let T'(v) be the sub tree of T rooted at v. The answer to
a query v € T results in a search on either the subtree rooted at v, or its complement T — T'(v).
Thus, the optimal complexity, w(T) of the search for T is defined by minimizing over all v € T the
expression 1+max {w(T(v)), w(T — T(v))}. Direct use of this formula to compute w(7T) would give
an exponential time algorithm. Another possible approach is trying to compute w(7) in a bottom-
up manner, however, it seems that this too needs exponential time. The reason is that knowing the
cost of the subtrees is not enough to compute the cost of the complete tree: A complement subtree
produced by querying a node results in a new subtree whose cost has to be computed all over. Our
approach is to “get rid” of this difficulty by using further relevant information on subtrees (rather
than just the cost of the optimal search for them). We use a somewhat non standard decomposition
of a tree into subtrees, so that the cost of a tree can be determined using the relevant information
of its subtrees. Next, we generalize the results for Forest, and draw some conclusions for cartesian
product Posets.

We note that for bounded degree trees, an approximation of the optimal strategy may be
obtained by finding a “splitting” vertex that splits the tree into two parts that are not too big.
However, such an approach totally fails for unbounded degree trees.

2 Basic definitions and preliminary Facts

Let us start with some notations: The sub-tree of 7' that is rooted at u is denoted by 7'(u). When
it is clear from the context, we identify T'(u) with u. Deleting all nodes of a subtree T} from a tree

T is denoted by T — Ty, in particular T —uv = T — T'(u).



Definition 2.1 A search algorithm Q1 for a tree T with root r is defined recursively as follows:
If |T| = 1 the search is trivial and gives as output the only node in T. For |T| > 2 a search
algorithm is a triplet (v, Qy, QT—y), where v € T —r (a 'first query’), Q, is a search algorithm for
T(v) (corresponds to a ‘yes’ answer), and Q—, is a search algorithm for T — v (‘no’ answer).

Graphically, we denote Q7 as follows:

Qr = v—=>  Qr—y
!
Qv

The cost of a search algorithm @), denoted by w(@)), is the number of queries needed to find
any buggy node in the worst case. The cost of an optimal search algorithm for T', w(T) is

w(T) = ming, w(Qr).

An optimal algorithm is any search algorithm @ such that w(Q7) = w(T). Note that the above
definition conforms with the convention that there is always a “buggy node”, thus in turn, the cost
of a single node is zero since this node must be buggy and no query is needed. The case of search
in which there is a possible “un-found” answer is easily obtained from the above definition (with
the expense of one additional query). See section 5 for more details.

The following is immediate from the definitions.

Fact 2.1 For a tree T, with |T| > 1, w(T) = 14 min,er max{w(v),w(T — v)}
A useful property of the cost is that it is monotone:

Observation 2.1 Let Ty be a subtree of Ty (namely Ty is obtained from Ty by deleting some nodes),
then w(Ty) < w(Ty).

Fact 2.1 suggests that we might as well start the search by querying a node w € T for which
w(u) < w(T) and w(T — ) is minimal. Applying this idea further on, lead us to the definition of
the ’sequence of complements’. We start by defining a lexicographic order on finite sequences:

Definition 2.2 Letu = [p1,p2,...px] and p = [p1, p2, . . .pn] be two sequences of natural numbers,
then p is lexicographically smaller than p (i <p, p) if there exists i such that p; < p; and for every

J <4, pi = pj

Definition 2.3 For a given tree T, the sequence of complements pu(T) = [po, pa, fio, - - -, 1] s
defined recursively as follows:

po = w(T)
If|IT| =1 then 1 =0 and p(T) = [0]
for |T| > 1,

[/L17H27 s '7:“1] = min {M(T - u)| ’UJ(T(U)) < w(T)}

where min is taken according to the lexicographic order.



For example p(L) of a path L with five nodes is [3,0] as its cost is 3 and the node u that achieves
the smallest p(L — u) is the son of the root for which w(7 — u) = 0. The reader can verify that
p of a star with n leaves is [n,n — 1,...,2,1,0]. The following properties are immediate from the
definition:

Let u(T') = [po, ft1,5- - - pu1] then

1o > 1 > ... > =0.
2. 1< w(T).

As the sequence of complements is always strictly decreasing, we restrict the order L to all strictly
decreasing finite sequences of non negative integers with last element being 0. The order L is a
discrete total order on this set of sequences. In particular, every sequence has a rank in this total
order, and every sequences has a successor. Thus, it also follows that p(7') is a unique, well defined
sequence for every tree 7.
Definition 2.4 For T with |T| > 2, Ay € T is any node in T for which u(T — Ar) is the smallest
and w(T(Ar)) < w(T'). Namely Ar is such that p(T) = [w(T), w(T — Ar)]. Note that for |T| =1,
A7 is not defined.

It is immediate from the definition that A7 is an optimal node, i.e., there exists an optimal search
algorithm whose first query is Ar. Fig 2 illustrates Az, p(7T) and an optimal search algorithm that

starts in Az for a particular example. In the above tree (left side) the cost of each subtree is marked
by its root. Here Ay = v since u(7 — v) = [2, 1, 0] compared (for example) to u(T — u) = [3,0].
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Figure 2:

3 The decomposition of 7" and the role of u(T)

As mentioned before it is not obvious how to efficiently compute the cost of T using the formula
of Fact 2.1 in a bottom-up manner. Our solution is to decompose T into subtrees, so that we can
characterize p(7T') as a function of the p’s of its sub-trees. We define the following operations:

T’ : "Re-rooting” operation, 7" is the tree obtained from T by adding a new node z whose only

child is the root of T.

T!+ ...+ T, : “grouping” operation, T = T{ + T4+ ...+ T} (also denoted by 5, T!) is obtained
from disjoint trees T1,T5, ..., T by attaching T1,7T3, ..., T; as the children of a new root z.
Note that we write it as an operation on the re-rooted trees Ty, ..., T] rather thanon Ty, ..., T}
as we will relate u(T') to wu(Ty),...,u(T{). In the grouping operation we will always order
T1, T2, ..., T so that p(T7) <g, ... <p w(T}).



Fact 3.1 FEvery rooted tree can be constructed from single nodes using the above operations.

In the following two sections we will show how p(7T') is determined by the p’s of the subtrees
used to decomposed T according to the operations defined above.

3.1 Properties of the re-rooting operation

We relate here the sequence of complements of any tree T to the sequence of complements of the
tree T’ that is obtained from 7 by re-rooting. As it will turn out this can simply be characterized
by the following Theorem.

Theorem 3.1 Let T be a rooted tree and let T' be the tree obtained from T by re-rooting, then
w(T") = suce(p(T)) where suce is the successor according to the order L on strictly decreasing non
negalive finite sequences, ending with 0.

The key ingredient in the proof of the theorem is based on the observation that a “jump” in the
coordinates of the sequence p(7') is a necessary and sufficient condition for the cost of 7’ to remain
the same. The term “jump” indicates that the difference between two consecutive coordinates of
w(T) is greater than 1. The intuition is that such a jump can “compensate” for the expected
increase in w(7T’) caused by the extra node added above the root of T. To demonstrate this on
an example, consider a path P with three nodes, for which u(P) = [2,0], namely, it contains a
jump. Indeed P’ is a path with 4 nodes and its cost remains 2. The reason why w(P’) did not
increased is that we can start a search in P’ by querying Ap. For a ’'yes’ answer we proceed as
we would have done in P and the cost will certainly won’t change. For a 'no’ answer we are left
with P' = Ap = (P — Ap)' but (P — Ap) is a single node with zero cost. Thus w(P' — Ap) =1
which increased comparing to P — Ap but not enough to increase w(P’). Another example is the
re-rooting T’ of the tree T in Figure 2, showing that the cost does increase if y(7) contains no
jump. For T of Figure 2 Ay = v and p(7T) = [3,2,1,0]. Indeed, the reader can verify the cost
increases, and w(7T") = 4.

We proceed now with the proof of Theorem 3.1.

Proposition 3.1 For a given tree T, w(T) < w(T') < w(T)+ 1

Proof: The left inequality is immediate from Observation 2.1. The right inequality follows from
the search that starts by querying the (old) root of . 1

Proposition 3.2 If w(T') = w(T)+ 1 then Api = root(T) and u(T") = [w(T"),0].

Proof: Querying v = root(T) leads to w(T' — v) = 0 and thus pu(T") > [w(T"), 0], but [w(T"),0] is
the smallest sequence [uo, . .., ] (according to <r,) for which ug = w(T’). |

Lemma 3.1 Let u(T) = [po,- .., ), then if there exists ¢ > 0 such that p; < w(T) — i, then
w(T") = w(T).

Proof: Note that the condition of the lemma just states that there is a “jump” between p; and
pi—1. Let o = w(T'), we will use induction on |T'| to show that there exist a search algorithm @ for
T', with w(Q) = a. The premise of the Lemma is possible only for a tree with cost greater than 1,



hence the induction base includes only a path P with three nodes or a star with two leaves. For
the latter, the sequence of complements y() is [2,1,0] and the premises of the Lemma is not met.
For the path P, the sequence of complements is [2, 0], and indeed w(P') = w(P) = 2.

Let T be a tree with w(7T) = e > 3, and consider the following search algorithm for 7":

Q= I— @
!
Q2
where @1 is an optimal search algorithm for 7/ — Ap and @5 is an optimal search algorithm for
T(Ar). Here, w(Q) < 14 max(w(Q2), w(T' — Ar)), but, by the definition of Ar, w(@Q2) < a —1
and thus w(Q) < max(a, 14+ w(T'— Ar)) = max(a, 14+ w((T — A7)")). Hence, it is enough to show
that w((T — Ar)") < a—1.
Let us first consider the case where the jump is for ¢ = 1 namely py; = w(T — Ar) < a — 2. By
proposition 3.2 for T — Ap we have that w((T = Ap)) < w(T—-Ar)+1< i +1<a—-1.
Consider the case where ¢+ > 1. Let T} = T — A then by the definition of p we get that
w(T) = [pa,..., ], with g1 = w(T — Ar) < a — 1. Thus, the premise of the Lemma holds for
Ty (with ¢/ = ¢ — 1), so by the induction hypothesis w(7]) = w(Ty) < a—1. |

The counter direction of Lemma 3.1 is also true:

Lemma 3.2 Let p(T) = [po, .-, ). If w(T') = w(T), then there exists i € {1,...,1} such that
wi < w(T) —1i.

Proof: Let w(T) = w. It is sufficient to show that if the condition is not met, i.e., Vi, p; > w — ¢,
then w(T') = w4+ 1. We prove this by induction on |T|. The base case is a single node whose
i = [0] and for which T is a path of length 1 with cost = 1.

For |T| > 1 the assumption above implies that u(7) = [w,w —1,w —2,...,1,0]. Let ) be an
optimal algorithm for T’ starting with a vertex x. We show that ¢ must spend w + 1 queries. If
w(T(z)) > w then on ’yes’ answer, we are left with 7'(z) on which additional w queries are needed
and we are done. Thus we may assume that w(7'(z)) < w— 1. Therefore by the definition of A7 we
get that u(T'—xz) >r, u(T — Ar). But this means that (7' —2z) = w(T - Ar) = [w—1,w—-2,... ,1,0]
as the successor of u(7T — Ar) has a first coordinate equal to w. Thus by the induction hypothesis
on T — z (whose p has no jump’) w(T' —z) > w(T' —z)+ 1 =w—-14+1= w. Hence w(Q) >
14wl -2z)=1+w. |

The above two Lemmas yields that

Theorem 3.2 Let u(T) = [uo,... ] then w(T") = w(T), iff there exists i > 0 such that
i < w(T)—1.

We now conclude with the proof of Theorem 3.1.
Proof: If for a tree T there is no ’jump’ namely u(7) = [w,w — 1,...,1,0] where w = w(T), then
by Theorem 3.2 w(T’) = w4 1. Moreover, by Proposition 3.2, u(T") = [w 4 1,0] which is the the
successor of [w,w —1,...,1,0] in the order L.

Assume then that there is a ’jump’in u(7"), and let ¢ be the largest index for which p;—1 > [—i42,
namely

Hi

= .
w(T) = [po, ps ooy prict, L= 00— = 1,...,2,1,0] .



Then we prove by induction on w(7T) that pu(T") = succ(pu(T)) and that Apr = Ar. By Theorem
3.2 w(T") = w(T) = po. Assume A\pv = x then u(T') = [po, u(T" — z)]. But T/ — 2 = (T — )’ and
by the induction hypothesis for (T — z)', w(T — )" = suce(pu(T — )). However by the definition
of Ar,

(T =) > (T = Ap) = [r, ooptia, L= 10— i— 1,..,1,0] .
however
suce([pry i, L — 8,0 —i—1,...,1,0)) = [p1, ..., [ — i + 1,0]

thus we get that pu(7'—2) = suce(p(T—2z) > [p1,...,I—i4+1,0]. On the other hand, by the definition
of the node z in 77 we have that p(T" — z) < w(T' = Ar) = p((T = Ar)') = suce(u(T = 1)) =
[t1, ..., — i+ 1,0]. Thus we conclude that

w(T") = [poy o1y ey L — 1+ 1,0] = suce([po, 1y -opriz1, L — 4,0 — 1 —1,...,1,0]) .

More over, as we get that u(7' — z) = p(T’ — Ar) this also proves that Ap = Apr. |}

3.2 Properties of the grouping operation

We now relate the sequence of complements of grouping k re-rooted trees T{ + T+ ...+ T}, to the
individual sequences. First a simpler operation is defined as follows:

Definition 3.1 The “Amalgamation” operation T + Ty on disjoint trees T|, Ty is the tree that is
obtained by amalgamating the roots of T| and Ty into one node.

Note that in the amalgamation operation it is required that one of the trees is a re-rooted tree.
The amalgamation operation exhibits a certain monotonicity:

Lemma 3.3 Let T1,T5, T be trees, then p(T{) <p p(T3) = w(T1+T) <w(Ti3+1T).

Proof: By induction on the sum n = |T'| + k where |T'| is the number of nodes in T and k is the
rank of u(77) defined by the total order <.

The induction base is for n = 2, and T that has one node. Since the amalgamation of one node
to any tree does not change the tree at all, then the base of the induction is trivially true.

First case w(T) < w(Ty): Let w = w(T}) and assume () is any search algorithm for 7'+ T3 with
cost w(Q)). We give an algorithm for 7"+ 7| with cost of at most w(Q). Indeed let u # root(T})
be the first query of Q. If u € T then obviously w(Q) > w+ 1, as w((T — u) + T3) > w(Ty) > w.
However, the algorithm that first queries the root of Ty, then proceeds optimally for T} if the answer

is 'yes’ and optimally for T if the answer is 'no’, also achieves w + 1 and we are done.

If w € Ty, then we may assume that w(7(u)) < w—1 (otherwise w(@) > w+ 1 and we are done
as before ). We also may assume that w(T3) = w, as if w(73) > w + 1, then w(Q) > w + 1, but as
we have shown, we can clearly search T+ T in w+ 1 queries. Thus p(75 — Ar,) > p(T] — Ary) (as
w(T3) > p(T]) and the first coordinate in both sequences is equal to w). In this case by querying
A, we get that w(T + T7) < 1+ max(w — 1,w(T 4 (T} — Ag,)" )). However, by our assumption
(T3 —w) > (15— Agy) > (1] — Aqy). Thus by induction w(T + (T35 —u)) > w(T+ (17 — Aqr)),
so that w(Q) > 1+ w(T + Ty —u) > 1+ w(T + T{ — Ar,). On the other hand as w(Q) > w, it
follows that w(Q) > 1 + max(w — 1, w(T + (T — Agy)) = w(T + T7).

8



Second case w(T) > w(T}):

Consider an optimal search algorithm @ for T 4 T5. We may assume that w(Q) < w(T),
otherwise, a search algorithm for 7'+ 7] that starts by querying the root of Ty, will use at most
w(T)+ 1 queries (as w(T) > w(T1)), so that w(T + T7) < w(T + T3) and the Lemma follows.

Let y be the first query of @, it follows then that y € T. Consider a search algorithm @’ for
T' + T that also starts by querying y. We are left with two trees (T — y) + 77 and (T — y) + T5.
Here, |T —y| < |T| so that we can use the induction assumption and obtain that w((T —y)+T}) <
w((T — y)+ T3) and the Lemma follows. |

We now consider grouping of several trees.

Proposition 3.3 Let T = Y5 T! (i.e., T =T/ +...+T}) and assume that u(T]) < ... < u(T}),
then w(T]) < w(T) < w(T})+ k—1.

Proof: The left inequality is immediate from Fact 3.1. The other inequality is obvious by the
following search algorithm for T

Start by querying root(Ty), root(Ts),...root(Tx—1). If the answer is ’yes’ on, say, the i —th query
then proceed by an optimal search on T;. Otherwise proceed by an optimal search in Tk. Clearly
this search takes at most w(T]) + k — 1 queries. |

The criterion for determining the exact cost of the grouping operation is given by the following
Lemma:

Lemma 3.4 Let T =T{+ ...+ T} then
(a) w(T) = w(Ty) ff wTi+...+Ti+ (T} = Agy)) <w (Tk) -1
(b) For any o > w(T}), we have that w(T) < a iff w(Tl’ 4T ) <a-1.

Proof: The "if’ direction for (a) is trivial since, if w(T] 4+ ...+ Tk 1+ (T = Ary)) < w(Ty) then
by querying Az; we are done. Similarly querying root(Ty) if ( +...4+T/_;) < a—1 proves the
’if” direction for (b).

For the other direction of (a) assume by negation that w(T{+ ...+ T}_, + (T} — )‘T,g)) > w=
w(T}) we show that w(T{ + ...+ T}) > w+ 1. Let @ be a search algorithm for 7] + ... + T}
that starts by querying z. If 2 ¢ T] then clearly w(Q) > 14 w. Assume that 2 € T} and
w(T(z)) < w — 1 (otherwise, for a ’yes’ answer w(@)) > 1 + w(T(z)) > w + 1). Then, by the
definition of p, w(T) —z) > (T} — Aty).

Now, let T = T{ 4 ...+ T/ _,, then by Lemma 3.3 we get that w((Tx — )’ + T) > w((Tx —
Ary) + T) > w, hence

w(@Q)= 14+ w(Ty—a) +T)) > 14 w(Tx - AT:Q)/-I_ T)> 14 w.

For (b) let @ > w(T}) and assume that w(T{+ ...+ T]_;) > a. Let @ be a search algorithm for 7T,
that first queries «. If & € T} then w(Q) > 1+w(T{+.. . +Tj_+T—Ar) > 1t w(Ti+.. 4+T;_4) >
a+ 1. If 2 € T! where i # k, then let T = T/ +...+T_, + T+1 + ...+ T/_,. By Lemma 3.3
w(Ti+...4T,_,) = w(T+T}) < w(T+T)). Thls 1mphes that (by considering the o’ answer
after query ) w(Q) > 1+ w(T+T) > 14+w(T+TH)>1+a. 1

Finally we relate now the sequences of complements:



Lemma 3.5 Let T =T+ ...+ T} then

(a) if w(T) = w(T}) then Ar = Ay, w(T) = [po, ..., ] where po = w(Ty) and [, ..., ] =
WTL ot TL 4 (TL — )

(b) if w(T) > w(T]) then Ay = root(T}), (T) = [po, ..., )] where po = w(T) and [p1, ..., ] =
/L(Tll +...+ Tlg—l)'

Proof: Immediately follows from the proof of Lemma 3.4 ||

4  Constructing the optimal search algorithm

In this section we show that computing p(7T") (and in fact A7) for a given tree T, can be done
in polynomial time (in the size of 7). The algorithm constructs u(7), Ar bottom up using the
re-rooting and grouping operations.

We need the following notation: for a given tree T let w(T) = [po, 1, .., ], we denote
op = [p1,...,pu) = u(T — Ar). Note that du is computed from p just by drooping out the first
entry (although formally it depends on A7, one does not need to know it explicitly). Depending on
the current operation in the decomposition the algorithm performs the following computations:

Re-rooting operation: Let T = T.

1. Compute p(T) = suce(p(T1)) (Theorem 3.1).

2. f w(T) = w(Ty)+ 1 then Ay = root(Ty), otherwise (if w(T) = w(Ty)) then Ay = A7,.
This can be done in O(w(T)) steps.

Grouping operation Let T =T + ...+ T}

1. The p sequences of Ty, ..., T} are sorted so that u(77) <r, ... <p, u(7T}). Each sequence is of
length at most w(7T') and each entry is bounded by w(7"). Thus sorting can be done (treating
each sequence as a number) by min(w?(T)logw(T), |T|log|T|).

2. For any a it can be determined whether w(7{+...47T}) < a. This is done using the following
recursive test as suggested by Lemma 3.4. The test is applied to the vectors of complement of
sub-trees T, ..., T}, such that test(u(T7),. .., u(T}), @) returns true iff w(7{+ ...+ T]) <

a) For a > puo(T)) + k test(p(T))y ..., u(T}), @) = true.
b) For w < puo(7}) -1 test(p(TY), ..., 1(T}), @) = false.
) For o = o(T}) test(U(TL) ., 1(TL), 0) = test(u(TL), .o (T ), D(TL), 1),
ie, test(T{ + ...+ T}, o) =test(T{ + ...+ T_, + T} — AT,QO‘ -1).
4) For po(T}) < w < uo(TY + k1 test(u(T)),..., i(TL) ) = test(u(T}), .., i(Th_y),a— 1),

ie, test(T{+ ...+ T}, o) =test(T{ + ...+ T]_;,a — 1).

The validity of ) and b) is due to Proposition 3.3, and that of ¢) and d) is due to Lemma
3.5.

After every application of test it might be required to sort the remaining sequences of com-
plements. The worst case is if the first coordinate of p(7}) is deleted for which the correct
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place of p(T]) amongst the k sequences can be found in w(T")logw(T) comparisons. The
time needed to compute test(T{ + ...+ T}, a) is therefore O(w?(T)logw(T)).

We compute the cost w(T{ + ...+ T]) by binary searching for the correct a in the range
w(TY}),...,w(T}) + k — 1. This may require log k& applications of test(), Hence the maximal
number of steps needed to compute the exact a is O(w?(T)log® w(T)) (not including the
sorting of phase 1).

Note that the computation of w(T]+.. .+Tlg) also determines A7 at the same time (as implied
by Lemma 3.5).

3. After determining the exact cost a = w(T') = puo(T'), we proceed to find the next component
of u(T) according to the two cases of Lemma 3.5:
(a) if w(T) = w(Ty) then Ap = Agy and p(T)r = w(Ti + ...+ Tj_; + (T; = Ary))
(b) if w(T) > w(T}) then Ay = root(T}) and u(T), = (T1 + ...+ T}_;) In this way we
find each entry of p(T'). Note that re-sorting p(77), ..., u(T}, — Ary) is done in w(T')log w(T)
steps, hence the whole process takes O(w?(T)log® w(T)) steps.

Theorem 4.1 Let T be a tree with n nodes, then p(T) and At can be computed
in O(n - w3(T)logw3(T)) = O(n*log®n) steps.

Proof: We compute u(7") by constructing 7" from subtrees working bottom up, starting from the
leaves to the root. At each intermediate step we compute u(77 ) for a subtree Ty in O(w?(T)log® w(T))
steps using the above algorithm. Thus the whole process for a tree T with |T| = n takes at
most O(n - w?(T)log® w(T)) steps. For bounded degree trees where w(7T) = O(logn) this gives
O(nlog*n). For general trees this might be O(n*log®n). Note, that each time we compute w(T?)
of a sub-tree T*, we also determine Agi. Thus A7 is computed in the same time bound, and an
optimal search algorithm can be constructed. |

An example of the main stages of the algorithm is given in the appendix.

5 Search in Forests and Cartesian products Posets

Forests:

Our results hold for forests as well. Recall that in our model we assumed that one of the nodes in
the given tree must be buggy. Let @(T1,Ts, ..., k) denote the cost of searching in a forest with k&
trees, where we do not assume that one of the nodes in Ti,..., T} is buggy. It is easy to see that
w(Ty, Tz, ..., Tr) = w(T{+ T3+ ...+ T)), where T{ + T3+ ...+ T} is just the grouping operation
defined in section 3. The reason is that if none of the nodes in the forest is buggy, then an optimal
search algorithm will identify the root of (T{ 4+ T3+ ...+ 1)) as the buggy node. On the other hand
T{ + T35+ ...+ T} can be searched by applying a search algorithm for the forest Ty, T5,. .., Ty; if
this search gives as a result “no buggy element” then the answer for T] + T35 + ...+ T} is its root.
Rooted Cartesian products:

A rooted Poset is a Poset with unique greatest element.

Claim 5.1 Let Py, P, be two rooted Posets and let P = Py x Py be the (rooted) product Poset of
Py and Py, then w(P) < w(Py) + w(P).
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Proof: One may search P by first querying (@, z) where « is the greatest element of P; and « is
optimal first query for P,. This results in either searching in Py X Py(z) or Py X (P> — Pa(z)), where
Py(z) is the Poset of all elements below z in P,. Going on in this way by following the optimal
strategy for P, for at most w(P;) queries we are left with a sub Poset that is isomorphic to Py for
which additional w(Py) queries is enough.

As it is clear that w(P) > maz(w(Py), w(P;)), the above observation gives w(P) up to a factor
of two.

An interesting example (the simplest non trivial) of rooted product is a product of two chains
which is a rectangular lattice.

Claim 5.2 Let Py, P, be disjoint chains and let P = Py X Py, then w(Py) 4+ w(P) — 2 < w(P) <

Proof: The upper bound follows from Claim 5.1. The lower bound follows from the fact that
w(L) > [log|P|]. If one or both length of P, P; is a power of 2 then in fact [log|P|] is the exact
answer.

It is interesting to confront the above with the result of [5] for Cartesian product of chains
for their model. Let P, be the n element chain. In both models w(P,) = [logn]. However, in
Linial-Saks model w(P, X P,) = 2n — 1 while in our model w(P, x P,) = 2[logn].

6 Conclusions

We have presented a polynomial time algorithm for computing the optimal search strategy for
forest’ like Posets. The crux of the proof, and the algorithm, is the observation that the structure
of a given tree T' can be represented by a sequence of numbers p(7). As an example, the cost of
an optimal search of a complete binary tree (7') with n nodes is logn + log*n + 6(1). We do not
know any direct method for proving this result rather than computing u(7") recursively (following
our algorithm). !

Some problems are left open:

1. The main open problem is to give an algorithm that determines the cost (optimal strategy)
for general Posets (namely, searching in directed acyclic graphs).

2. The randomized complexity is quite interesting too: For a given tree T and any buggy node
can one do better on the average using a randomized search algorithm? (a randomized search
algorithm can be viewed as a probability distribution on a set of deterministic search algo-
rithms). For example, let T be a rooted star with n leaves, then it easy to see that any
randomized search algorithm will pay on the average n queries. The reason is that an adver-
sary will put the “bug” in the root of the star, using the fact that any deterministic algorithm
must query all the leaves first (this corresponds to the fact that the non-deterministic com-
plexity of the star of n leaves is n). Randomization can help for some trees, e.g., for d regular

tree of hight h, w(T) = h - d while its randomized complexity is < ﬂ@. Our conjuncture
is that for every tree, T', its randomized complexity is at least %w(T)

!Further details are left to the reader.
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3. While our algorithm gives the exact cost for any tree, it would be interesting to prove tight
upper and lower bounds as a function of some natural property of the tree. For example,
log size(T') and d are lower bounds, where d is the maximal degree of T. However, none
of these is tight in general. Another example is that for trees with maximum degree d,
logd% size(T) is an upper bound, simply by querying a node that “splits” the tree into two

parts of size < %size(T) each.

4. For product of rooted Posets we have seen that the cost is at most the sum of the costs. Is
this tight (up to an additive O(1) term) for every rooted product?
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APPENDIX

A A detailed example of the algorithm

Figure 3:

This section contains a detailed example showing the main phases of the algorithm combing three
subtrees T = T4+ T4 + Ty as described in figure 3. In early stages, the algorithm have computed
w(TH), Apr i =1,2,3, such that:

:u’(Tll) = [37 170] >‘T1’ =" :u’(TQI) = [37 170] >‘T2’ =' g/ /I’(Té) = [170] >‘T3f ="z
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We proceed according to the three stages of the grouping operation in the algorithm to compute
w(T). After sorting the vectors of complements we get that in our case (the number of subtrees is
k = 3) the possible cost of w(T)is 3 < w(T) <342 =5. Next, test(T5 4+ Ty + 1], «) is applied
for @ = 4 and is computed as follows ( the label on the arrow ), denotes one of the four cases of
test() as described in section 4):

[ test(Ty+ T34 T1,4) | o H(T! 4 T ‘
Iu/(Tll) — [37 17 0] test(TB ‘|‘ TQ, 3) tebt(TB ‘I‘ T2 )\TZI7 2)

w(T2) = [3,1,0) — | M) =
u(TY) = [1,0] )=

We continue to check if w = 3 using:

0] | <% | au(Ty) =1,0] . TRUE

1,
;0] u(T3) = [1,0]

[ test(TL + TH+T1,3) | test(Th + Ty 4+ T{ — Ay, 2)
w(T7) = [3,1,0] o, | 9u(T]) =1,0] b,
FALSE
u(T;) = [3,1,0] p(T3) = [3,1,0]
N(TP/)) = [170] ] M(Té) = 170]

Hence, we have computed the first component in the vector of complements namely, (7)), = 4.

The second coordinate p(T'); is obtained by computing w(7T4 + T4) since Ay = root(T}) and
the complement is T4 + T5. The possible range for p(7); is 3 < u(7T)1 <342 —1 =4, however
‘true’ is obtained for the minimal value p(7); = 3:

test(T4 + T3,3) test(Ts + T, — Mgy, 2)
w(T3) = 13,1,0) | <L | au(1s) =11, 0] . TRUE
H(Té) = [1,0] /L(Té) = [1,0]

we get that p(7T); = 3. The third coordinate is computed in a similar way, namely, 1 < p(7); <
1+2-1=2, yet

ou(T3) = [1,0]
u(T3) = [1,0]
hence p(T) = 2.

The set of nodes that where used in the different stages of test(T§ + T4 + T{,4) forms the
back-bone of the optimal search algorithm, i.e.,

?

/ " Ny
sl Bt e Aap U\ e o) 10 0 ap
u(T4) = [1,0

QT = T — g = z =2 Y LN r
| | | |
Qn Qry = y
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