A note on $\text{FewP} \subseteq \text{EP}$

Richard Beigel*

Yale University and University of Maryland

October 17, 1996

We give a simple proof of Borchert, Hemaspaandra, and Rothe’s result that $\text{FewP} \subseteq \text{EP}$. For definitions and a list of important problems in EP the reader is referred to Borchert et al [1].

Proof. Let $L \in \text{FewP}$ via an NTM M that runs in time $p(n)$ and has no more than $q(n)$ accepting paths on any input of length n. Let M' behave as follows on input x: guess an odd number k between 1 and $q(|x|)$; guess a set S consisting of k strings of length $p(|x|)$ or less; accept if every string in S is an accepting computation of M on input x. If M has 0 accepting paths on input x, then clearly M' has 0 accepting paths on input x. If M has m accepting paths on input x, where $m > 0$, then M' has $\sum_{1 \leq k \leq m, k \text{odd}} \binom{m}{k} = 2^{m-1}$ accepting paths on input x. Thus M' witnesses that $L \in \text{EP}$.

Note 1. Observe the similarity between our proof that $\text{FewP} \subseteq \text{EP}$ and Schöning’s proof [2] that $\text{FewP} \subseteq \text{⊕P}$, in which M' guesses any nonempty set of accepting paths.

Note 2. Our technique can be seen as a simple extension of Borchert et al’s general technique. Whereas they apply a positive weight to each nonempty set of accepting paths, we apply a positive weight to singleton sets of accepting paths and *nonnegative* weights to larger sets of accepting paths.

Note 3. Although Borchert et al’s general method clearly allows us to convert FewP machines to NP machines that accept with a number of accepting paths that is a power of b for any fixed integer $b \geq 2$, it is interesting to obtain a closed form. Let M' behave as follows on input x: guess an integer k between 1 and $q(|x|)$; guess an integer between 1 and $\frac{1}{b} \left((b-1)^k - (-1)^k \right)$; guess a set S consisting of k strings of length $p(|x|)$ or less; accept if every string in S is an accepting computation of M on input x. If M has m accepting paths on input x, where $m > 0$, then M' has $\sum_{1 \leq k \leq m} \frac{1}{b} \left((b-1)^k - (-1)^k \right) \binom{m}{k} = b^{m-1}$ accepting paths on input x.

References

*Dept. of Computer Science, University of Maryland at College Park, College Park, MD 20742. Email: beigel@cs.umd.edu. Research supported in part by the National Science Foundation under grants CCR-8958528 and CCR-9415410.