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Abstract

We study EP, the subclass of NP consisting of those languages accepted by NP machines
that when they accept always have a number of accepting paths that is a power of two.
We show that the negation equivalence problem for OBDDs (ordered binary decision
diagrams [FHS78,Bry92]) and the interchange equivalence problem for 2-dags are in EP.
We also show that for boolean negation [Har71] the equivalence problem is in EPNF | thus
tightening the existing NPNF upper bound. We show that FewP [All86,AR88], bounded
ambiguity polynomial time, is contained in EP, a result that seems incomparable with the
previous SPP upper bound. Finally, we show that EP can be viewed as the promise-class

analog of C_P.



1 Introduction

NP languages can be defined via machines that reject by having zero accepting paths,
and that accept by having their number of accepting paths belong to the set {1,2,3,---}.
A number of researchers have sought to refine the class NP by shrinking the path-
cardinality set signifying acceptance, while retaining the requirement that rejection be
associated with having zero accepting paths. Valiant’s class UP [Val76], which is known
to differ from P if and only if one-way functions exist [GS88,Ko85], has the acceptance
set {1}. Acceptance sets of the forms {1,2,3,---,2°M} and {1,2}, {1,2,3}, --- define,
respectively, the class FewP [AlI86,AR88] and the classes UP<,, UP<3, --- [Wat88,Bei89]
(note: UP C UP<y C UP«3 C -+ C FewP C NP). These classes are also connected to the
existence of one-way functions and have been studied in a wide variety of contexts, such as
in terms of class containments, complete sets, reducibilities, boolean hierarchy equivalences,
and upward separations (see, e.g., [KSTT92,HJV93 FFK94,HH94,HR,RRW94 Rot95]). Of
course, the litmus test of NP refinements such as UP, UP<y, and FewP is the exlent to which
they allow us to refine the upper bounds on the complexily of natural NP problems. Of these
classes, UP has been most successful in this regard. UP is known to provide an upper bound
on the complexity of (a language version of) the discrete logarithm problem [GS88], and
UP (indeed UPNcoUP) is known to provide an upper bound on the complexity of primality
testing [FK92].

However, there are certain NP problems whose richness of structure has to date defied
attempts to put them in UP or even FewP, yet that nonetheless intuitively seem to use less
than the full generality of NP’s acceptance mechanism. To try to categorize these problems,
we introduce the class EP, which is intermediate between FewP and NP: FewP C EP C NP.
In particular, EP is the NP subclass whose acceptance set is {2° ‘z e N},N=140,1,2,3,---}.

In Section 2, we provide improved upper bounds on the complexity of OBDD (Ordered
Binary Decision Diagram) Negation Equivalence, 2-Dag Interchange Equivalence, and
Boolean Negation Equivalence. These three problems are trivially in, respectively, NP,
NP, and NPNF.| We provide, respectively, EP, EP, and EP™Y upper bounds. The problems
are not known to belong to (and do not seem to obviously belong to), respectively, FewP,
FewP, and FewPNF. In Section 3, we prove that EP contains FewP, and we discuss the
location of the class EP with respect to other complexity classes. In Section 4, we discuss
the “non-promise” analog of EP: the class having EP’s acceptance set ({2°|i € N}) but
having the rejection set N — {2¢ | i € N}. We show that this change boosts EP’s power to



exactly that of C2P, where C_P [Sim75,Wag86] is the class of all sets L such that there is
a polynomial-time function f and a nondeterministic polynomial-time Turing machine N
such that for each z, z € L if and only if N(z) has exactly f(z) accepting paths. This
provides a motivation for EP—namely that EP is a promise analog of C_P—that differs

from the motivation implicitly provided by the upper-bound examples of Section 2.

2 Concrete Problems and EP

In this section, we provide concrete problems known to be in NP (or NPNP), and we
prove they are in fact in EP (or EPNP). We now introduce the class EP (mnemonic: the

number of paths is restricted to being either 0 or some power (some exponention) of 2).

Definition 2.1 EP denotes the class of all languages L for which there is a

nondeterministic polynomial-time Turing machine N such that, for each input x € ¥*,

t¢ L = #acey(z) =0, and
el = #acey(z) € {2 | i e N}

The natural operator analog of EP is defined as follows. For any class K, let E - K
denote the class of all languages L for which there exist a set A in K and a polynomial p
such that, for each x € ¥*,

v ¢L = |Hy|lyl=p(zl) A (s,9) € A}l =0, and
rel = |{yllyl=p(z) A (z,y) € A}|| € {2']i € N}.

Clearly, E - P = EP. Consider the following problem.

Problem: Boolean Negation Equivalence (BNE) (see the survey by Harrison [Har71] and
the bibliography provided after the references in the paper by Borchert, Ranjan, and
Stephan [BRS95])

Input: Two boolean functions (input as Boolean formulas using variable names and the
symbols {A,V, =, (,)}), f(#1,- - ,2,) and g(z1,- -+, x,), over the same n boolean variables.!
Question: Are f and g negation equivalent? That is, can one negate some of the inputs
of g such that f and the modified function g’ are the same. For concreteness as a language

problem, BNE = {(f, ¢) ‘ f and g are negation equivalent}.

'The operator set {A,V, =} is specified for concreteness. Any other complete set of operations would do,

e.g., {nxor}.



For example, the two boolean functions described by the formulas z; V 22 V 23 and
x1 V —xg V a3 are negation equivalent by negating z, and x3. Regarding lower bounds,
Borchert, Ranjan, and Stephan [BRS95] have shown that BNE is US-hard [BG&82], and
thus in particular is coNP-hard. Regarding upper bounds, BNE ¢ NPNF [BRS95] and
BNE € coAMNF (combining [BRS95] and [AT96]). Tt follows from the latter that BNE is
not NPN_complete unless the polynomial hierarchy collapses ([AT96], in light of [BRS95,
Sch89]). Interestingly, these two upper bounds—NPNF and coAMNP—seem incomparable.
We now prove BNE € EPNF, which is probably incomparable with the coAMN upper
bound but which improves the NPNF upper bound, as clearly EPNY € NPNF,

Theorem 2.2 BNE € EPNP (indeed, BNE € E - coNP).

Proof. It is obvious that negation equivalence is an equivalence relation on boolean
functions. However, negation equivalence has much stronger properties that will be helpful
in this proof. First, we remind the reader of some basic definitions from linear algebra (see,
e.g., [Smi84]). Let V be a vector space over some field F. A nonempty subset U of V is
called a linear subspace of V if both (i) if @ € U and b € U then @+ b € U, and (i) if @ € U
and ¢ € F then cd € U. If V is a vector space and U is a linear subspace of V and @ € V,
then the set {a@ + g‘ be U} is called an affine subspace of V.

Suppose a given instance of BNE consists of f and g, each over the variables zq,-- -, 2.
A negation of some of the input variables of g as in the definition of BNE can be represented
by a vector ¢ = (¢1,...,¢,) in the vector space GF(2)", where each ¢; is either 0 or 1 and
¢; = 1 means that the variable z; will be negated. Let gz be the boolean function resulting
from g after the application of the negations described by ¥, i.e., gz(@) = g(¥+ @). Now
it is easy to see (double negation equals identity) that, for each fixed boolean function g,
the set of negation vectors ¢ such that ¢ equals gy is a linear subspace V, of GF(2)". It is
not hard to see that if @ is any negation vector such that f = gz, then the affine subspace
w4V, is the set of all negation vectors witnessing the negation equivalence of f and g¢.
Why? It is clear that each element of @ + V} is @ negation vector witnessing the negation
equivalence of f and g. Suppose there is some negation vector, 2, such that 2 ¢ @+ V, and
yet Z is a negation vector witnessing the negation equivalence of f and g. Since @ and 2
are both negation vectors witnessing the negation equivalence of f and g, we have f = gz
and f = gz. So g3 = gz. But we are working in GF(2)", so this says that, for any ,
g(@ + @) = g(Z+ @), so setting @ = @ + u/ and substituting, we have g(u/) = gz42(u’). So
W+ Z €V, and thus 2" € @ 4V}, contradicting our assumption that ¢ @+ V,. (This type



of argument is familiar from the graph analog; once one knows the automorphism group ¢
of a graph and one isomorphism # from some other graph to that graph, then the set of all
isomorphisms is well-known to be given by G o1.)

Of course, @ + V, will be of the same cardinality as the subspace V, (as addition by @
induces a bijection between GF(2)” and itself), and as an /-dimensional vector space over
the field GF(2) has exactly 2° vectors, @ + V, will contain exactly 2™ vectors, where m is
the dimension of V.

So the following nondeterministic program shows that BNE is in EP with an NP oracle:
Read the two input functions f and ¢ (checking that they are both over the same number
of variables and that the variables have the same naming scheme), guess a negation vector
¥ and accept if and only if the oracle confirms that f is equal to g altered by the negation
vector . This shows that BNE is in EPNP| since if f and ¢ are not negation equivalent,
then there is no accepting path, and otherwise there are exactly 2™ accepting paths, where

m is the dimension of the affine subspace discussed above.
In fact, this shows BNE € E - coNP. |

We remark that the parenthetical part of Theorem 2.2 is not superfluous in any obvious
way. That is, even though in the NP analog it would be superfluous as NPNF = 3. coNP,
it is not at all clear that EPNY = E - coNP. However, clearly E - coNP C EPNPU C EPNF,
so the parenthetical remark is stronger, perhaps strictly, as it is not at all clear that NP is
in E - coNP.

There are ways of describing boolean functions such that the equivalence problem is in P.
The most prominent such way is by ordered binary decision diagrams (OBDDs). (Fortune,
Hopcroft, and Schmidt [FHS78] were the ones who proved that equivalence for OBDDs is
in P. For complete background on OBDDs see, for example, the survey by Bryant [Bry92].)
Thus, essentially by the discussion in the previous paragraph, the following computational
problem, OBDD Negation Equivalence, is in (non-relativized) EP: Given a pair (e, f) of
OBDDs, are the boolean functions described by e and f negation equivalent?

If we consider the special case that for the two OBDDs (e, f) above the order of the
variables is required to be the same, we see that the following graph-theoretic problem is in
(non-relativized) EP. Let a 2-dag be a directed acyclic graph (without labels) with a unique
root and either 0 or 2 ordered successors for each node. For a 2-dag each node is assigned a
depth, namely the distance to the root. Now consider the following computational problem
(2-Dag Interchange Equivalence): Given two 2-dags F' and G, is there a set of natural

numbers (i1, ...,¢,) such that, if in G for each node of depth iy,...,1%, its two successors



(if they exist) are interchanged, then the modified 2-dag G’ equals F? This problem can be
shown to be in EP (similarly to the argument above). Moreover, the problem can easily be
reduced to the Graph Isomorphism problem. The authors know of no P algorithm for the
general case of 2-Dag Interchange Equivalence, though the special case of this problem with

binary trees instead of general 2-dags has an easy deterministic polynomial-time algorithm.

3 Location of EP

It is immediate from its definition that EP C NP. It is also clear that the quantum-
computation-related class (a definition is included later) C——P[half] of Berthiaume and

Brassard [BB92] is also contained in EP. We now prove that FewP C EP.
Theorem 3.1 FewP C EP.

Proof. Our proof technique builds on that used by Cai and Hemaspaandra (then
Hemachandra) [CH90] to prove FewP C &P, where @P [GP86,PZ83] is the class of languages
L such that for some nondeterministic polynomial-time Turing machine machine N, on
each z it holds that 2 € L <= #aceny(z) = 1 (mod 2). Koébler, Schéning, Toda, and
Tordn [KSTT92] also built on that technique in their proof that FewP C C_P.

By definition, UP is in EP, and UP<3 is in EP.

UP<3 is in EP as follows. Given a UP<3 machine M, define an EP machine N as follows.
We will choose positive constants ¢y, ¢q, and c3 such that, for each z: (a) for each accepting
path of M(z), our new machine N will have ¢; accepting paths on input z; (b) for each
pair of accepting paths of M (z), N(z) will have ¢y additional accepting paths; and (c) for
each triple of accepting paths of M (z), N(z) will have ¢35 additional accepting paths. So
for instance, if M (z) has three accepting paths, then

et = (oot (Dot (s

So now let us choose ¢q, ¢3, and c3. Set ¢; to 1, which is a power of two. Set ¢; to be as
small as possible consistent with ensuring that (?)cl + ¢ is a power of two, i.e., set ¢y = 2.
Now set ¢3 to be as small as possible consistent with ensuring (i’) 1+ (g’) ¢y + c3 is a power
of two, i.e., set ¢3 = 7. It follows that UP<3 is in EP.

To prove that UP<4 is in EP, we have to ensure that the number of accepting paths of

our EP machine N satisfies the new equation

H#acey (z) = G) 1+ (;1) ez + (i) e+ (i) cy
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for suitable constants c¢1,...,¢4. Choose ¢, ¢3, and c3 as before. Set ¢4 to be as small
as possible consistent with ensuring (‘11) 1+ (;) cy + (;) c3+ ¢4 is a power of two. This is
achieved by choosing c4 = 20. It follows that UP<y4 is in EP.
It is clear that we can continue in this way, and this shows that UP<p(y) is in EP.
However, note that we can go beyond constants. In fact, we can go as far as we can
get while ensuring that cy(,) is at most exponential. To prove that FewP is in EP, we must

estimate ¢;. We claim that for each j,

(3.1) UELIER (F8 P

2
Why? The factor 2 gets us to the next power of two, since from any integer there is always
a power of two that is no more than double that integer. The factor 5 is the number of

terms in the equation

(3.2) #Hacey(z) = G)clJr@)cﬁr(g)c3+---+(jzl)cj_ﬁr(;)cj.

The coefficient (é.') is the biggest binomial coefficient of any term in Equation 3.2.
Furthermore, c;_; is the largest constant among the ¢;, 1 < ¢ < j — 1, when we are
seeking to determine ¢;. Thus, Equation 3.1 gives a valid bound for ¢;. Hence, if we can
show that cpely is in O(2P°Y), we have shown that FewP is in EP.

From Equation 3.1 above and the fact that for every large enough j,

ERCHE ([Jw) < (@)’

and the fact that ¢4 = 1, we can unwind the recurrence relation that is implicit in

c; < H 4%,

1<i<;

Equation 3.1, and we obtain

So, adding the exponents,
cj < 4Zasiz ¥,

+1 .
Thus, ¢; < 4207 This implies ¢; < 406), Hence, cpoly is at most exponential. Of course,
all the ¢, ¢a, ..., cpoly are easy to compute in polynomial time. This completes the proof

that FewP is contained in EP. |

An immediate question is how Theorem 3.1 relates to known results about FewP.

Clearly, Theorem 3.1 represents an improvement on the trivial inclusion FewP C NP.



However, how does it compare with the nontrivial result of Koébler et al. [KSTT92] and
Fenner, Fortnow, and Kurtz [FFK94] that FewP C Few C SPP C &P N C_P?? There
are a number of related aspects to this question. First, is SPP C EP, which would make
Theorem 3.1 a trivial consequence of the known result FewP C SPP? This seems unlikely, as
if SPP C EP, then SPP C NP, and SPP C NP is considered unlikely (see [FFK94,T092]).
Second, is EP C SPP, which would make Theorem 3.1 a strengthening of the known result
that FewP C SPP? We do not know. Third, notice that we proved FewP C EP but that
the Kobler et al. [KSTT92] and Fenner, Fortnow, and Kurtz [FFK94] work shows that
Few C SPP. Can our result be extended to show Few C EP? The reason we mention this
is that often it is the case that when one can prove something about FewP, then one can
also prove it about the slightly bigger class Few. For example, Cai and Hemaspaandra,
after showing that FewP is in P, then easily applied their technique to show that even
Few is in &P [CH90]. Similarly, it is immediately clear that FewP has Turing-complete sets
if and only if Few has Turing-complete sets, and so the proof that there is a relativized
world in which FewP lacks Turing-complete sets [HJV93] implicitly proves that there is a
world in which Few lacks Turing-complete sets (see also [Ver94]). However, in the case of
Theorem 3.1, it is unlikely that by modifying the technique in a way similar to that done
by Cai and Hemaspaandra one could hope to establish the slightly stronger result that EP
even contains Few. Why? Clearly coUP C Few and EP C NP, so the assumption Few C EP
would imply (along with other even more unlikely things) coUP C NP.

Fourth, one might wonder directly, since FewP C @P is known, about the relationship
between EP and @P. That is, how is EP (powers-of-two acceptance) related to @GP
(multiples-of-two acceptance).? We note the following. By a diagonalization so routine as
to not be worth including here, one can show (FA) [coUP# ¢ EP4]. It follows immediately
that (3A) [FewPA ¢ EP4] and (34) [®P# ¢ EP#]. Similarly, if one looks at the test
language inside the proof of Proposition 12 of Beigel’s 1991 “mod classes” paper [Bei91],

one can see that for his case “k = 2” the test language is in (relativized) C__P[half],*

?Informally stated, Few [CH90] is what a P machine can do given one call to a #P function that obeys
the promise that its value is always at most polynomial. Immediately from the definitions, FewP C Few.
SPP [OH93,FFK94] is the class of sets L such that for some nondeterministic polynomial-time Turing
machine N it holds that if z ¢ L then N(z) has one fewer accepting path than it has rejecting paths, and
if z € L then the numbers of accepting and rejecting paths of N(z) are equal. Curiously, note that the
nontrivial result that FewP C SPP itself seems incomparable with the trivial result FewP C NP.

However, one should keep in mind the contrasting rejection sets of these two classes.

*C__P[half] [BB92] is the class of languages L such that there is some nondeterministic Turing machine
such that if the input is in L exactly half of the paths are accepting paths and if the input is not in L none
of the paths are accepting paths.

-~



and thus as a corollary to his proof one can claim (JA) [CL_P[half]* ¢ @P4]. Tt follows
immediately that (3A) [EP?4 ¢ @PA4]. Since these are standard diagonalizations that can
easily be interleaved, it is easy to see that there is a relativized world in which EP and &P

are incomparable.’

4 The Power of Removing EP’s Promise

As hinted in footnote 3, EP and @P are different sorts of classes. In particular,
EP is what is called a promise class. The term “promise class,” which was introduced
by Hemaspaandra and Rubinstein ([HR92], see also [Rot95,Bor94] for formalizations) to
capture a behavior that was shared by a number of extant classes, refers to those classes for
which some nontrivial promise—usually regarding number of paths of complementarity of
machines—must hold for all inputs. (This notion should not be confused with the different
notion of a promise problem [EY80], a notion in which the promise is optional and merely
inputs on which the promise holds triggers some secondary requirement.) One particularly
central subtype of promise class, which includes those promise classes that we are most
concerned with here, is the set of classes that are not currently known to be definable via
acceptance and rejection sets that partition N. (For example, though NP can be defined
via the rejection set {0} and the acceptance set {2,4,6,---}, and these do not partition N,
NP does have a scheme, its natural one, that does partition N, and so it is not said to be a
promise class.)

Promise classes other than EP include UP, UP<, FewP, Few, NPNcoNP, R, and BPP.
Behaviors that are taken for granted for “nice” classes such as NP are often not even
known to hold for many promise classes. Among such standard behaviors that promise
sets may lack are possession of complete sets (equivalently, “constructive programming
systems” [Reg89]) (see, e.g., [Sip82,Gur83,HJV9I3]), possession of upward separation results
([HJ95], but see [RRW94]), and possession of positive relativization results [HR92]. (See
Borchert and Rothe [Rot95,Bor94] for recent thesis-length treatments of promise classes.)

As noted above, EP is a promise class. However, it has a natural non-promise analog.

“Concerning Mod,P classes for values q > 2 [CH90,BGH90], it follows easily from the known relations
among such classes [BGH90] and the obvious fact that powers of 2 are never congruent to zero modulo j,
where 7 is any number greater than 2 that is not a power of two, that EP is contained in Mod,P for all ¢ > 2
such that g is not a power of two. (q values that are powers of two give just ®P and thus as noted above
are incomparable to EP in some relativized world.) So it also follows from this, in light of Beigel’s [Bei91]
result that for any distinct primes ¢; and g» there are oracles relative to which Modg, P and Mod,,P are
incomparable, that for every ¢ > 1 there is an oracle such that ModyP is not contained in EP.



We will call this analog ES. ES is the class that shares EP’s acceptance set but that removes
its promise (that is, its promise never to have 3 accepting paths or 5 accepting paths or

etc.).

Definition 4.1 ES denotes the class of all languages L for which there is a
nondeterministic polynomial-time Turing machine N such that, for each input x € X,

z €L < #accy(z) € {2|ie N}

In the case of the promise class UP, removing that class’s promise is known to boost
the class from being a subset of NP to being hard for UP U coNP. Theorem 4.2 shows
that removing EP’s promise also yields a jump in power. ES coincides with the powerful

counting class C_P.
Theorem 4.2 ES = C_P.

Proof. ES C {L‘ L g{; (C_P} is immediately clear from the definitions, where SZ is
polynomial-time disjunctive reducibility [LLS75]. So ES C C_P, as it is known that C_LP =
{L |L < C_P} (this result is implicit in the technique of [GNW90], as noted and generalized
in [Rot93]; the result also has been obtained in [BCO93]). To show C_P C ES, consider
a C_P machine and the function f giving the number of paths on which it would accept.
Let w(z) be the smallest integer such that 2“(*) > f(z). Consider the EP machine that
on input z has 2'+%(*) — f(z) paths that immediately accept, and that also has paths that
simulate the C_P machine. Note that this machine accepts the C_P language. |

As C_P is quite powerful—PH C BP-C_P [T092] and coNP C C_LP—ES is also powerful.
For example, it is clear that ES C NP collapses the polynomial hierarchy to NP N coNP.

So, in light of Theorem 4.2, we can say that EP is a promise analog of C_P. The
reason we say “a promise analog” is that if one builds a promise version of C_P by simply
altering the definition of C_P directly via adding the natural promise, one would get ListP;
(formally, ListPy), 1}), in the notation of the forthcoming Definition 5.1. Though clearly
UP C ListPy, it is far from clear whether EP = ListPy; that is, these two promise analogs
of C_P may differ. In fact, they may differ pairwise not only with each other but with a
third promise analog. Namely, C__P[half] is another class that can be viewed as a promise
analog of C_P, due to the well-known fact that C_P has, as one of its normal forms, the
class all sets L such that for some nondeterministic polynomial-time Turing machine N it
holds that L is the set of inputs on which exactly half of N’s computation paths accept.
Clearly C__P[half] C EP N ListPy, but it is an open question whether C__P[half] equals
either EP or ListP;.



5 Open Questions

Does EP equal NP? It would be nice to give evidence that such an equality would, for
example, collapse the polynomial hierarchy. However, UP C EP C NP, and at the present
time, it is open whether even the stronger assumption UP = NP implies any startling
collapses. Also regarding the placement of EP, can one show that EP is contained in SPP,
or can one show that EP is contained in the larger counting classes WPP or LWPP [FFK94]?
Also, does EP, in contrast to most promise classes, have complete sets? We conjecture that
EP lacks complete sets (of course, if EP equals NP then EP has complete sets).

It is clear that EP is closed under conjunctive reductions and under disjoint union, and
(thus) under intersection. Is EP closed under disjunctive reductions or union?

Finally, define:

Definition 5.1 ListPr is the class of all sets L such that (3f € FP, f:¥* — 2Y) (3h € F)

(3 nondeterministic polynomial-time Turing machine N) (Vz)

[1f @)l < h(lz]) A #acey(z) € f(2)U{0} A (z € L <= #acey(z) > 1)],
where FP denotes the class of (total) polynomial-time functions.

Let ListPpoy, = ListP, where poly is the set of all polynomials. That is, ListP is very
similar to EP, except the list of potential numbers of accepting paths on an input, rather
than being {0,1,2,4,8,---}, is instead some polynomial-time computable polynomial-sized
list (of numbers written in binary) that may depend on the input. Clearly, EP C ListP,
and in fact the EP analogs based not on powers of 2 but on powers of k£ are also in ListP.
Is SAT € ListP? We do not know. However, note that ListP is a language cousin of the
“function” notion of enumerative counting introduced by Cai and Hemaspaandra [CH89].
It follows immediately from a (later) result of Cai and Hemaspaandra [CH91] and,
independently, Amir, Beigel, Gasarch, and Toda (as cited in [ABG90]) that SAT is in
ListP via a machine M that uses the canonical witness scheme for SAT (or any witness
scheme whose numbers of witnesses are 1-Turing interreducible with those of the canonical
witness scheme in the context of the input) if and only if P = P#P . So if we knew that all
witness schemes for SAT were closely related to the canonical one, then we would know that
SAT was in ListP if and only if P = P#F. However, can SAT thwart this by having some
bizarre witness scheme deeply unrelated to its canonical witness scheme? In fact, Fischer,

Hemaspaandra, and Torenvliet have recently provided sufficient conditions for such schemes
to exist [FHT95].

10



Similar comments apply to Graph Automorphism (GA). Is GA € ListP? We do not
know. However, it follows immediately from a result of Chang, Gasarch, and Toran [CGT95]
that GA is in ListP via a machine M that uses the canonical witness scheme for GA (or
any witness scheme whose numbers of witnesses are 1-Turing interreducible with those of
the canonical witness scheme in the context of the input) if and only if Graph Isomorphism

is in R, random polynomial time [Gil77].
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