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Abstract

We consider the Traveling Salesperson Problem (TSP) restricted to Euclidean spaces of
dimension at most k(n), where n is the number of cities. We are interested in the relation
between the asymptotic growth of k(n) and the approximability of the problem. We show
that the problem is Max SNP-hard when k(n) = n — 1. Thus, for a certain constant €¢; > 0, the
(n—1)-dimensional Euclidean TSP cannot be approximated within a factor (1+¢;) in polynomial
time, unless P = NP. Using a previous result about embedding of Euclidean metrics in low-
dimensional spaces, we can also prove that constants ¢ and €5 exist such that approximating the
clog n-dimensional Euclidean TSP within (14 €3) is NP-hard under randomized reductions (and
thus not solvable in P, unless RP = NP). This contrasts with the recent result by Arora [Aro96)
who presented a polynomial time approximation scheme for the bidimensional Euclidean TSP.
Additionally, we note extensions of our result to other geometric metrics.

1 Introduction

The Traveling Salesperson Problem (TSP) is defined as follows: given a set of “cities” U =
{u1,...,u,} and a “distance function” d : U x U — R, find a permutation 7 of {1,...,n}
(also called “tour”) that minimizes the “total length” (or “cost”) m((U,d),n) = d(uz[n], urn]) +
2?2—11 d(uw[i]a u7r['i+1])'

Interest in such problem started during the 1930’s. In 1966, the (already) long-standing failure
of developing an efficient algorithm for the TSP led Edmonds [Edm66] to conjecture that the
problem is not in P: this is sometimes referred to as the first statement of the P # NP conjecture.
Indeed, the general version of the TSP was proved NP-hard in the original Karp paper [Kar72].
More recently it was proved that the TSP remains NP-complete even if the cities are restricted to
lie in the bidimensional plane and the distances are computed according to the Euclidean metric!
[GGJ76, Pap77]. Due to those negative results, research concentrated on developing good heuristics.
There is an extensive literature on this field, we will only review the results that are relevant for
the present paper (see the book of Lawler et al. [LLKS85] for a very complete survey). Recall that
an r-approximate algorithm (r > 1) is a polynomial-time heuristic that is guaranteed to deliver a
tour whose cost is at most r times the optimum cost. Assuming P # NP, in the general case, for
any 7 > 1 there cannot be an r-approximate algorithm [SG76], however if the distance function
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satisfies the triangle inequality, then it possible to achieve a 3/2-approximation in polynomial time
[Chr76]. In twenty years of research no improvement of this bound has been found, even in the
restricted case of geometric metrics. In the late 1980’s, the emergence of the theory of Max SNP-
hardness [PY91] gave a means of possibly understanding this lack of results. Indeed, Papadimitriou
and Yannakakis [PY93] proved that the TSP problem is Max SNP-hard even when restricted to
metric spaces (as we shall see later, the result also holds for a particularly restricted class of metric
spaces), and thus a constant € > 0 exists such that metric TSP cannot be approximated within
a factor (1 + €) in polynomial time, unless P = NP. The current estimation of such a constant is
not very good (of the order of 1076), however such a result gives at least some qualitative insigth
into the approximability properties of the problem. The complexity of approximating TSP in the
case of geometric metrics remained open. In his PhD thesis, Arora noted that proving the Max
SNP-hardness of 2ETSP should be very difficult, but that the k(n)ETSP for sufficiently large k(n)
could perhaps be proved Max SNP-hard with relatively simple reductions ([Aro94, Chapter 9]). In
[GKP95], Grigni et al. proved that the restriction of the TSP to shortest paths metrics of planar
graphs can be approximated within (1 + ¢) in time n?(1/€). Such an approximation algorithm is
called a Polynomial Time Approzimation Scheme (PTAS). This result led Grigni et al. [GKP95]
to conjecture that 2ETSP has a PTAS. In a very recent breakthrough, Arora [Aro96] developed
a PTAS for the 2ETSP. Such an algorithm can be adapted to work in higher dimensional spaces
and, in particular, it runs in time nOQog" ™M ™2n)[F=1 g1 instances of k(n)ETSP. Note that the
dependence of the running time on k(n) is doubly exponential. In a preliminary version of [Aro96]
Arora asked if it was possible to develop a PTAS for k(n)ETSP for arbitrary k, or if, at least, it
was possible to have the running time being singly exponential in k, e.g. n@*k(m)/e),

In this paper we essentially answer negatively to both questions. We prove that (n —1)ETSP is
Max SNP-hard (thus, unless P = NP, there cannot be a PTAS for (n — 1)ETSP). Furthermore, we
show that (14e2)-approximating (clogn)ETSP is NP-hard under randomized reductions, for proper
constants ¢ and ey. The latter result implies that there cannot be an algorithm that finds (1 + €)-
approximate solutions for k(n)ETSP running in time n®®*()/¢) for any e > 0, unless NP C RQP,
where RQP is the class of problems solvable by randomized algorithms with one-sided error and
running time nC{°8")

The Max SNP-hardness of the general case is proved by means of a reduction from the version
of the metric TSP that was shown to be Max SNP-hard in [PY93]. The reduction uses a mapping of
the metric spaces of [PY93] into Hamming spaces. Our result extends to other geometric metrics.

2 Preliminaries

We denote by R the set of real numbers. Given an instance z = (U, d) of the TSP, we will denote
by opt(z) the cost of an optimum solution for z.

In this paper we will use the notions of L-reduction and Max SNP-hardness; we refer the reader
to [PY91] for definitions.

Recall that a function d : U x U — R is a metric if it is non-negative, if d(u,v) = 0 iff u = v, if
it is symmetric (i.e. d(u,v) = d(v,u) for any u,v € U), and it satisfies the triangle inequality (i.e.
d(u,v) < d(u, z) + d(z,v) for any u,v,z € U).

Definition 1 ((1,2) — B metrics) A metricd: U x U — R is a (1,2) — B metric if it satisfies
the following properties:

1. For any u,v € U, u # v, d(u,v) € {1,2}.



2. For any u, at most B elements of U are at distance 1 from u.

Papadimitriou and Yannakakis [PY93] have shown that a constant By > 0 exists such that the
TSP problem is Max SNP-hard even when restricted to (1,2) — By metrics.

For any positive integer n, we denote by d% the Hamming metric in {0,1}" and by d} the
Euclidean metric in R". We will usually omit the superscripts. We will make use of the following
well known fact.

Proposition 2 Let u,v € {0,1}" CR". Then dg(u,v) = \/du(u,v).

3 The Reductions

Let us begin with a lemma relating (1,2) — B metrics and Hamming metrics. The lemma gives a
“distance preserving” embedding of (1,2) — B metric spaces into Hamming spaces.

Lemma 3 Let U be a finite set and d be a (1,2) — B metric over U. Then there ezists an embedding
f:U = {0,1}3BIV1/2 sych that for any u,v € U,

1. dy(f(u), f(v)) =2B if d(u,v) =2, and
2. d(f(w), [(v)) = 2(B — 1) if d(u,v) = 1.

Such an embedding is computable in time polynomial in |U]|.

PrROOF: Let U = {ui,...,un}. Recall that a (1,2) — B metric (U,d) can be represented as an
undirected graph G = (U, E), where {u,v} € E iff d(u,v) =1 (see [PY93]). Let E = {e1,...,em}-
An edge e is said to be incident on a vertex w if u is one of the endpoints of e. The degree of a
vertex u (denoted by deg(u)) is the number of edges incident on u. Note that any vertex in G
has degree at most B, and thus m < Bn/2. The embedding f of U into {0,1}3P"/2 is defined as
follows: for any i =1,...,n, for any j = 1,...,3Bn/2, the j-th coordinate of f(u;) is

1 if(i—1)B+1<j<iB—deg(u),
flu)j]=< 1 ifnB+1<j<m+nB and ej_,p is incident on u;, and
0 otherwise.

We first note that, by construction, f(u;) has B — deg(u;) nonzero coordinates among the first
nB ones, and deg(u;) nonzero coordinates among those between the (nB+ 1)-th and the (nB +m)-
th. All of the other coordinates are zero. It follows that for any u € U, f(u) has ezactly B
nonzero coordinates, and thus, the Hamming distance between any two different points in f(U) is
at most 2B. More specifically, the Hamming distance between f(u;) and f(u;) (i # j) is equal
to 2(B — a;j), where a;; is the number of indices of coordinates such that both f(u;) and f(u;)
are equal to one. Since f(u;) and f(u;) cannot have a one in the same position in any of the first
nB coordinates, it follows that a;; is equal to the number of indices h, 1 < h < m, such that
f(ui)[nB + h] = f(uj)[nB + h] = 1. It is not hard to see that f(u;)[nB + h] = f(u;)[nB+h] =1
if and only if {u;,u;} = ey, and thus, a;; can only be either 0 or 1, and it can be 1 if and only if
d(u;,uj) = 1. Clearly the embedding can be computed in time O(B|U|?): since B is constant, this
is polynomial in |U]. O

The following corollary is required in the proof of our main theorem.



Corollary 4 Let U be a finite set and d be a (1,2)— B metric over U. Then there exist a constant ¢
(depending on B) and an embedding f : U — RIYI=Y such that for any u,v € U, dg(f(u), f(v)) =1
if d(u,v) =1 and dg(f(u), f(v)) =146 if d(u,v) = 2. Such an embedding is computable in time
polynomial in |U|.

PrROOF: Map U = {u1,...,un} into a set U' = {uf,...,u,,} as in Lemma 3. From Propo-
sition 2 we have that for any i and j, if d(uj,u;) = 1 then dg(uj,u;) = /2(B—1), and if
d(u;,uj) = 2 then dg(u;,u;) = V2B. If we divide each coordinate of the points u! by /2(B — 1),
we obtain a set of points in R3#"/2? whose distances satisfy the hypothesis of the corollary, with
§ = (vV2B/\/2(B — 1)) — 1. Now, note that those n points lie in some (n — 1)-dimensional affine
subspace and therefore can be mapped in polynomial time into R"! preserving the Euclidean

distance. The entire process can be done in time polynomial in |U]|. O

We are now ready to prove our main result.
Theorem 5 (n — 1)ETSP is Max SNP-hard.

PROOF: For some constant By, the TSP is Max SNP-hard when restricted to (1,2) — By metrics
[PY93]. We shall now describe an L-reduction from the (1,2) — By metric TSP to the (n —1)ETSP.
Let z = (U, d) be an instance of the TSP, where U = {u,...,u,} and d is a (1,2) — By metric.
We map the cities into R"! as in Corollary 4, thus obtaining an instance =’ of (n — 1)ETSP. It is
easy to see that, for any tour ,

m(z’, ) = n+ d(m(z,m) —n) =n(1l—0) + om(z,) .
This implies
opt(z') = n(1 — §) + dopt(z) < opt(z)
(since 0 < § < 1, and opt(z) > n) and that
1
m(z,m) — opt(z) = g(m(:v',ﬂ) — opt(z'))
Thus, we have an L-reduction with & =1 and g = 1/4. O

Combining the above theorem with the results of Arora et al. [ALM192], we have the following
non-approximability result for the Euclidean TSP.

Corollary 6 There ezists a constant e > 0 such that approzimating the (n — 1)ETSP within
(1+ €1) is NP-hard.

By straightforward modifications of the proofs of Corollary 4 and Theorem 5, obtain the fol-
lowing result.

Theorem 7 Let {dk}kzl be a family of metrics over R* such that the distance between two points
in {0,1}* is a monotone increasing function of their Hamming distance (and is independent of k).

Then the TSP in (R3B"/2 d3Bn/2) js Max SNP-hard.

Examples of such kinds of metrics are the metrics based on £, norms for any fixed p > 1.
The following lemma, which was stated in [LLR94, Theorem 3.4] and was implicit in [JL84]?,
will be used to give a non-approximability result for O(log n)ETSP.

Reference [JL84] is not easy to collect. The results of [JL84] are also presented in [JLS87], and an alternative
(and simpler) proof is given in [FM88]



Lemma 8 ([JL84]) There ezists a constant p > 0 such that the following holds. Let U be a set

of n points into R™ and let v > 0. Then there exists an embedding f of U into R#108™/7 gyeh
that for any u,v € U, (1 —v)dg(u,v) < dg(f(u), f(v)) < (1 +v)dg(u,v). Such an embedding is
computable by a randomized polynomial time algorithm.

We can now prove the non-approximability result for O(logn)ETSP.

Theorem 9 There ezist constants ex and c such that (1 + e2)-approzimating the (clogn)ETSP is
NP-hard under randomized reductions (and thus infeasible, unless RP = NP ).

PROOF: Let €1 be the constant of Corollary 6. Fix constants ¢, v and e such that

0<e<er, (I1+e)l+7)/1—-7) <146, andc=pu/y2

Assume we have an r-approximate algorithm for (clog n)ETSP. Given an instance z of nETSP, we
can map it into an instance z’ of (clogn)ETSP using Lemma 8 with parameter . Since the cost
of a solution is the sum of the distances between certain pairs of cities, it immediately follows that
for any tour m we have

(1 = y)m(z,m) < m(z',m) < (1+v)m(z,7)
and thus

opt(z) < opt(z’) /(1 — 1) .
If a tour 7 is (1 4 e2)-approximate for z’, then

opt(x) _ opt(a)/(1-7) _ 1+

m(z,m) = m(e’,m)/(1+7y) T 1—7
and so 7 is (1 + €;1)-approximate for z. Since finding (1 + €;)-approximate solutions for nETSP is
NP-hard, the above randomized reduction yields the NP-hardness (under randomized reductions)
of (1 + e2)-approximating the (clogn)ETSP. O

(1—|—€2)§1+€1

Remark 10 In all proofs of this section we implicitly made the (unrealistic) assumption that ar-
bitrary real numbers can appear in an instance and that arithmetic operations (including squared
roots) can be computed over them in constant time. However, our results still hold if we instead
assume that numbers are rounded and stored in a floating point notation using O(logn) bits. This
fact follows from a minor modification of the argument used in [Aro96] to reduce a general instance
of Euclidean TSP to an instance where coordinates are positive integers whose value is O(n?).

4 Open Questions

A deterministic version of Lemma 8 (besides being a per se interesting result) would imply the NP-
hardness of (1+4e€3)-approximating clog nETSP (we can only prove infeasibility under the hypothesis
that RP # NP). Proving an analogous of Lemma 8 for any ¢, norm would imply the hardness of
approximating the TSP problem in O(logn) dimensional £, spaces.

The Steiner Tree problem is Max SNP-hard when restricted to metric spaces where all distance
are 1 or 2 [BP89] (but the reduction of [BP89] does not give (1,2) — B metrics). In the case
of Euclidean spaces, Arora [Aro96] gives approximation schemes with the same efficiency of the
approximation schemes for Euclidean TSP. We conjecture that the n-dimensional Euclidean Steiner
Tree problem is Max SNP-hard.
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