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Abstract

We prove that the Traveling Salesperson Problem (MIN TSP), the Minimum Steiner Tree
Problem (MIN ST), the Minimum k-Steiner Tree problem (MIN k-ST) and the k-Center Prob-
lem (MIN k-CENTER) are Max SNP-hard (and thus NP-hard to approximate within some con-
stant » > 1) even if all cities (respectively, points) lie in the geometric space R™ (n is the
number of cities/points) and distances are computed with respect to the l; (rectilinear) metric.
The MiN TSP and MIN k-CENTER hardness results also hold for any I, metric, including the
Euclidean {5 metric, and (under randomized reductions) also in R'°8™ for the Euclidean metric.

. . . . . . A d—2 Ny, d—1
Arora’s approximation scheme for Euclidean MIN TSP in R? runs in time n©1o8" " n)/¢"™" and

achieves approximation (1 + ¢€); our result implies that this running time cannot be improved to
n%¢ unless NP has subexponential randomized algorithms. We also prove, as an intermediate
step, the hardness of approximating the above problems in Hamming spaces. The only previous
hardness results involved metrics where all distances are 1 or 2.

1 Introduction

Given a metric space and a set U of points into it, the Traveling Salesperson Problem (Min TSP)
is to find a closed tour of shortest total length visiting each point exactly once, while the Minimum
Steiner Tree Problem (MIN ST) is to find the minimum cost tree connecting all the points of U;
the tree can possibly contain points not in U, that are called “Steiner points”.

Both problems are among the most classical and most widely studied ones in Combinatorial
Optimization, Operations Research and Computer Science during the past few decades, and before.
Important special cases arise when the metric space is R and the distance is computed according
to the ¢; norm (the rectilinear case) or the {3 norm (the Fuclidean case).

We establish the first non-approximability results for this class of problems. As an intermediate
step, we prove that they are hard to approximate also in Hamming spaces. The Hamming versions
of MIN TSP and MiN ST seem to have never been considered before. Our main contributions are:
(i) the identification of this class of metric spaces as the “right” one to prove hardness in more
natural geometric spaces, and (ii) the derivation of combinatorial results that could have some
independent interest.

Our techniques prove hardness of approximation for other problems, including the Minimum
k-Center Problem studied by Hochbaum and Shmoys [HS85], and all the problems mentioned in
Arora’s paper [Aro96] on approximation schemes for geometric problems.

We now state and discuss our results for MiN TSP and Min ST.
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The Traveling Salesperson Problem

Interest in the MIN TSP started during the 1930’s. In 1966, the (already) long-standing failure of
developing an efficient algorithm for the MiN TSP led Edmonds [Edm66] to conjecture that the
problem is not in P: this is sometimes referred to as the first statement of the P # NP conjecture.
See the book of Lawler et al. [LLKS85] for a very complete survey on MIN TSP. Here we will only
review the results that are relevant for the present paper. The MIN TSP is NP-hard even if the cities
are restricted to lie in R? and the distances are computed according to the 5 norm [GGJ76, Pap77].
Due to such a negative result, research concentrated on developing good heuristics. Recall that an
r-approximate algorithm (r > 1) is a polynomial-time heuristic that is guaranteed to deliver a tour
whose cost is at most r times the optimum cost. A 3/2-approximation algorithm that works for
any metric space is due to Christofides [Chr76]. In twenty years of research no improvement of this
bound had been found, even in the restricted case of geometric metrics.

In the late 1980’s, the emergence of the theory of Max SNP-hardness [PY91] gave a means of
possibly understanding this lack of results. Indeed, Papadimitriou and Yannakakis [PY93] proved
that the MIN TSP is Max SNP-hard even when restricted to metric spaces (as we shall see later,
the result also holds for a particularly restricted class of metric spaces), and thus a constant € > 0
exists such that metric MiN TSP cannot be approximated within a factor (1 + €) in polynomial
time, unless P = NP. The complexity of approximating MIN TSP in the case of geometric metrics
remained a major open question. In his PhD thesis, Arora noted that proving the Max SNP-
hardness of Euclidean MIN TSP in R? should be very difficult, but that this could perhaps be
done in R*™ for sufficiently large k(n) ([Aro94, Chapter 9]). The relevance of non-approximability
results for geometric MIN TSP was also stated in the open questions section of a survey by Arora
and Lund [AL96]. In [GKP95], Grigni, Koutsopias and Papadimitriou proved that the restriction
of the MIN TSP to shortest paths metrics of planar graphs can be approximated within (1 + €)
in time n®(1/9). Such an approximation algorithm is called a Polynomial Time Approxzimation
Scheme (PTAS). This result led Grigni et al. [GKP95] to conjecture that Euclidean MIN TSP has
a PTAS in R?. They again posed the question of determining the approximability of the problem
for higher dimensions. In a very recent breakthrough, Arora [Aro96] developed a PTAS for the
Mix TSP in R? under any £, metric. Such an algorithm also works in higher dimensional spaces
and, in particular, it runs in time pOUog ™M =2 n) (M1 4y pk(n)  Note that the dependence of the
running time on k(n) is doubly exponential. In a preliminary version of [Aro96] Arora asked if it
was possible to develop a PTAS for Euclidean MIN TSP in R” or if, at least, it was possible to
have the running time being singly exponential in k(n), e.g. nOk(n)/e),

Our Results. In this paper we essentially answer negatively to both questions. We prove that
MiNn TSP in R™ is Max SNP-hard using any ¢, metric (thus, unless P = NP, there cannot be a
PTAS for these problems). Furthermore, we show that (1+ €;)-approximating Euclidean MiN TSP
in R1°6™ is NP-hard under randomized reductions, for a proper constant ;. The latter result implies
that there cannot be an algorithm that finds (14 ¢)-approximate solutions for Euclidean MiN TSP
in R* running in time n°*/9 for any € > 0, unless NP C RQP, where RQP is the class of problems
solvable by randomized algorithms with one-sided error and running time n°1°8™) The Max SNP-
hardness of the n-dimensional case is proved by means of a reduction from the version of the
metric MIN TSP that was shown to be Max SNP-hard in [PY93]. The reduction uses a mapping
(see Lemma 5) of the metric spaces of [PY93] into Hamming spaces and the observation (see
Proposition 3) that, for elements of {0, 1}" a “gap” in the Hamming distance is preserved if distances
are computed according to a £, metric. Our mapping of the metric spaces of [PY91] into Hamming



spaces is not an approximate isomelry, that is, it does nol preserve distances up to negligible
distorsion. We also suspect that such kind of mapping would be provably impossible. Instead, our
mapping introduces a fairly high (yet constant) distorsion, but satisfies an additional condition that
makes the mapping be an L-reduction [PY91]. Our mapping, combined with a reduction by Kariv
and Hakimi [KH76], gives also non-approximability results for the Minimum k-Center Problem. The
Minimum k-Cities Traveling Salesman Problem (MIN k-TSP) and the Minimum Degree-Restricted
Steiner Tree Problem (two problems mentioned in Arora’s paper [Aro96] on approximation schemes
for geometric problems) are generalizations of the MIN T'SP. The hardness results that we prove
for MIN TSP clearly extend to them.

The Minimum Steiner Tree Problem

The origins of the MIN ST problem seem to be even more remote than the MIN TSP’s ones:
the case when |U| = 3 and the metric space is R? with the £, norm has been studied by the
Italian mathematician Torricelli (a student of Galilei’s) in 17th century. Reportedly, Gauss had
an interest to this problem as well. Recent results about this problem are similar to the ones for
Mix TSP: exact optimization is NP-hard in R* both in the Rectilinear (1) case [GJ77] and in
the Euclidean ({3) case [GGJ77]. Constant-factor approximation is achievable in any metric space
(the best factor should be 1.644 due to Karpinski and Zelikovsky [KZ95]), in general metric spaces
the problem is Max SNP-hard [BP89], Arora’s algorithm achieves approximation (1 + ¢) in R* in
time 000" ™2 n)/m =1
problem.

. No non-approximability result was known for geometric versions of the

Our Results. We prove the Max SNP-hardness of the problem in R™ under the {; norm. As a
preliminary step, we prove the hardness of the problem restricted to Hamming spaces. The latter
hardness is proved via a reduction from the Minimum Vertex Cover problem (MIN VC) restricted to
triangle-free graphs of maximum degree 3. The Max SNP-hardness of this very restricted version of
MiN VC is proved in this paper and could be used as a starting point for other non-approximability
results. The reduction from MIN VC to Hamming MIN ST uses a combinatorial result (Claim 17)
stating that for an instance where all points have weight! 2 or 0, if a technical condition is satisfied,
there exists an optimum solution where all Steiner points have weight 1. We remark that there
exists an instance of Hamming Steiner Tree where all the points have weight 3 or 0 and such that
an optimum solution must contain a Steiner point of weight at least 4. Thus, our combinatorial
result cannot be generalized too much. Reducing from Hamming Steiner Tree to Rectilinear Steiner
Tree requires another combinatorial result (Theorem 19): for an instance where all the points are
in {0,1}" C R", there exists an optimum solution where all the Steiner points lie in {0,1}". We
prove this fact using the integrality property of Min-CUT linear programming relaxations. Our
non-approximability result extends to MIN k-ST, the variation where one is also given an integer k
and the goal is to find a minimum Steiner tree among the ones involving at most k& Steiner points.

Discussion

We give the first non-approximability results for geometric versions of network optimization prob-
lems. For Euclidean MIN TSP, there is little room for improvement of our results, as well as there

'For a vector u € {0,1}", its weight is defined as the number of non-zero coefficients, e.g. the weight of (0,1,1,0,1)
is three.



is little room for improving Arora’s algorithm. If we believe that NP has not sub-exponential algo-
rithms, then the best possible running time for an approximation scheme for Euclidean MiNn TSP
is of the form 22d/5p01y(n); alternatively, our non-approximability result could be extended to
Rlog/loglogn - \Much more consistent improvements are possible for MIN ST, however our results
at least state very clearly that the number of dimensions does matler in the running time of an
approximation scheme for these geometric problems.

We feel that one important contribution of this paper is the recognition of Hamiming spaces as a
class of metric spaces that seem to retain most of the hardness of general metrics while having a nice
combinatorial structure. We believe that other non-approximability results could be established
using Hamming spaces as intermediate steps. We also think that it should be worth trying to
improve Christofides algorithm in Hamming spaces. While the well-behaved structure of Hamming
spaces should not make this task impossible, it is likely that such an improved algorithm could give
useful ideas for more general cases.

2 Preliminaries

We denote by R the set of real numbers. For an integer n we denote by [n] the set {1,...,n}. For
a vector @ € R”™ and an index ¢ € [n], we denote by @[] the i-th coordinate of @, Given an instance
z of an optimization problem A, we will denote by opt,(z) the cost of an optimum solution for
x, we will also typically omit the subscript. For a feasible solution y (usually a tour or a tree) of
an instance x of an optimization problem A, we denote its cost by cost4(z,y) or, more often, as
cost(y). In this paper we will use the notions of L-reduction and Max SNP-hardness. Max SNP is
a class of constant-factor approximable optimization problems that includes MAX 3SAT, we refer
the reader to [PY91] for the formal definition.

Definition 1 (L-reduction) An optimization problem A us said to be L-reducible to an optimiza-
tion problem B if two constants o and 3 and two polynomial-time computable functions f and g
exist such that

1. For an instance z of A, z' = f(z) is an instance of B, and it holds optg(z') < aopt 4(z).

2. For an instance z of A, and a solution y' feasible for z' = f(z), y = ¢g(z,y’) is a feasible
solution for x and it holds |opt 4(z) — cost4(z,y)| < Bloptg(z') — costg(z’, y')|.

We say that an optimization problem is Max SNP-hard if all Max SNP-problems are L-reducible to
it. From [ALM'92] it follows that if a problem A is Max SNP-hard, then a constant ¢ > 0 exists
such that (1 + ¢)-approximating A is NP-hard.

A function d : U x U — R is a metric if it is non-negative, if d(u,v) = 0 iff v = v, if it is
symmetric (i.e. d(u,v) = d(v,u) for any u,v € U), and it satisfies the triangle inequality (i.e.
d(u,v) < d(u,z)+ d(z,v) for any u,v,z € U).

Definition 2 ((1,2) — B metrics) A metricd : U X U — R is a (1,2) — B metric if il satisfies
the following properties:

1. Forany u,v € U, u # v, d(u,v) € {1,2}.

2. For any u, at most B elements of U are at distance 1 from u.



Papadimitriou and Yannakakis [PY93] have shown that a constant By > 0 exists such that the
Min TSP is Max SNP-hard even when restricted to (1,2) — By metrics.

For an integer p > 1, the £, norm in R" is defined as ||(u1,...,u,)|[, = (O-rey |us|P)H/P). The
distance induced by the ¢, norm is defined as d,(@, ) = ||& — ¥]|,. For a positive integer n, we
denote by d% the Hamming metric in {0, 1}" (we will usually omit the superscripts). We will make
some use of the following fact.

Proposition 3 Let i, % € {0,1}* C R". Then d,(i,7) = du(i,s)/".
Before starting with the presentation of our results, we make the following important caveat.

Remark 4 In some of the proofs of this paper we implicitly make the (unrealistic) assumption that
arbitrary real numbers can appear in an instance and that arithmetic operations (including squared
roots) can be computed over them in constant time. However, our results still hold if we instead
assume that numbers are rounded and stored in a floating point notation using O(logn) bits. This
fact follows from a minor modification of the argument used in [Aro96] to reduce a general instance

of Fuclidean TSP or Steiner Tree into an instance where coordinales are positive integers whose
value is O(n?).

3 MiNn TSP and MIN k-CENTER

Let us begin with a lemma relating (1,2) — B metrics and Hamming metrics. The lemma gives a
“distance preserving” embedding of (1,2) — B metric spaces into Hamming spaces.

Lemma 5 Let U be a finite set and d be a (1,2)— B metric over U. Then there exists an embedding
f:U = {0, 1}BB|U|/2 such that for any u,v € U,

L du(f(u), f(v))=2B if d(u,v) = 2, and
2. dg(f(u), f(v))=2(B-1) if d(u,v) = 1.

Such an embedding is compulable in time polynomial in |U].

Proor: Let U = {uy,...,u,}. Recall that a (1,2) — B metric (U,d) can be represented as an
undirected graph G = (U, E), where {u,v} € E iff d(u,v) =1 (see [PY93]). Let E = {e1,...,en}.
An edge e is said to be incident on a vertex u if u is one of the endpoints of e. The degree of a
vertex u (denoted by deg(w)) is the number of edges incident on w. Note that any vertex in G
has degree at most B, and thus m < Bn/2. The embedding f of U into {0,1}387/2 is defined as
follows: for any ¢ = 1,...,n, for any j = 1,...,3Bn/2, the j-th coordinate of f(u;) is

1 if(i—1)B+1<j<iB—deg(u),
fluj)ijl=< 1 ifnB+1<j<m+nB and ¢;_,p is incident on u;, and
0 otherwise.

We first note that, by construction, f(u;) has B — deg(u;) nonzero coordinates among the first
nB ones, and deg(u;) nonzero coordinates among those between the (nB +1)-th and the (nB +m)-
th. All of the other coordinates are zero. It follows that for any w € U, f(u) has ewactly B
nonzero coordinates, and thus, the Hamming distance between any two different points in f(U) is
at most 2B. More specifically, the Hamming distance between f(u;) and f(u;) (¢ # j) is equal



to 2(B — a;;), where a;; is the number of indices of coordinates such that both f(u;) and f(u;)
are equal to one. Since f(w;) and f(u;) cannot have a one in the same position in any of the first
nB coordinates, it follows that a;; is equal to the number of indices A, 1 < h < m, such that
f(u;)[nB + h] = f(u;)[nB + h] = 1. It is not hard to see that f(u;)[nB + h] = f(u;)[nB + h] =1
if and only if {u;,u;} = e, and thus, a;; can only be either 0 or 1, and it can be 1 if and only if
d(u;,u;) = 1. Clearly the embedding can be computed in time O(B|U|?): since B is constant, this
is polynomial in |U|. O

The following simple corollary is required in the proof of our hardness result.

Corollary 6 Let p > 1 be fized. Let U be a finite set and d be a (1,2) — B metric over U. Then
there exist a constant § (depending on B) and an embedding f : U — R3BIUI2 such that for any
w,v € U, dp(f(u), f(v)) =1 if d(u,v) = 1 and d,(f(u), f(v)) = 1+ 6 if d(u,v) = 2. Such an

embedding is computable in time polynomial in |U].

Proor: Map U = {uy,...,u,} into a set U’ = {@},...,d,} as in Lemma 5. From Proposition 3
we have that for any ¢ and j, if d(u;,u;) = 1 then dy(a}, @) = (2(B — INY?, and if d(u;,u;) = 2
then d (i}, ) = (2B)'/?. If we divide each coordinate of the points @’ by (2(B — 1))1/?, we
obtain a set of points in R3B7/? whose distances satisfy the hypothesis of the corollary, with
§ = (2B/2(B — 1))}/? — 1. The entire process can be done in time polynomial in |U]|. m|

The main result of this section is now only a matter of standard calculations.

Theorem 7 For any fived p > 1, the MIN TSP is Max SNP-hard when restricted to the £, metric
in RO (n is the number of cities).

Proor: For some constant By, the MIN TSP is Max SNP-hard when restricted to (1,2) — By
metrics [PY93]. We shall now describe an L-reduction from the (1,2) — By metric TSP to the
TSP in RO, Let ¢ = (U,d) be an instance of the MiN TSP, where U = {u1,...,u,} and d is a

(1,2) — By metric. We map the cities into R3Bon/2 a5 in Corollary 6, thus obtaining an instance 2/
of MIN TSP in R3Po™/2_ Tt is easy to see that, for any tour r,

cost(z’,m) = n + §(cost(z, ) — n) = n(1 — §) + dcost(z,7) .

This implies
opt(z') = n(1 — §) + opt(z) < opt(x)

(since 0 < 6 <1, and opt(x) > n) and that
1
cost(z, ) — opt(z) = g(cost(avl7 T) — opt(a’))
Thus, we have an L-reduction with & = 1 and 3 = 1/é. O

Remark 8 Given an instance of MIN TSP with n points, if one adds n® more points, all of
them being at distance 1/O(n°t1) from some point of the instance, this perturbs the optimum in a
negligible way. We can use this simple observation to scale down our hardness resull to R™ (adding
3Bgn/2 — 1 points), or even to R’ for fired § > 0 (adding O(n'/*) points).

Combining the above theorem and the above observation with the results of Arora et
al. [ALM192], we have the following non-approximability result for the geometric Min TSP.



Corollary 9 For any positive integer p > 1, a constant €?) > 0 such that approzimating the
MIN TSP in R™ within (1 + ¢®)) is NP-hard.

The following lemma, which was stated in [LLR95, Theorem 3.1] and was implicit in [JT.84]2,
will be used to give a non-approximability result for Euclidean MIN TSP in R°8",

Lemma 10 ([JL84]) There exists a constant p > 0 such that the following holds. Let U be a set
of n points into R™ and let v > 0. Then there exists an embedding [ of U inlo RH1o87/7* gych
that for any @,7 € U, (1 — v)dy(@,?) < dy( f(%), f(¥)) < (1 + v)dy(4,¥). Such an embedding is

computable by a randomized polynomial time algorithm.
We can now prove the non-approximability result for R'°8"™.

Theorem 11 There exist a constant ¢, > 0 such that (1 + €1)-approzimating the Fuclidean
MiIN TSP in R°8" is NP-hard under randomized reductions (and thus infeasible, unless RP = NP).

PROOF:[Of Theorem 11] Let ¢(?) be the constant of Corollary 9 for the Euclidean case. Fix constants
¢, v and ¢; such that

(14 e)(147)/(1=7) < 1+ €@ and e = /42

Assume we have a (1 + ¢ )-approximate algorithm for Euclidean Min TSP in R'°8". Then the
same algorithm can also be adapted to work in R1°8" (use a preprocessing phase that adds a bunch
of n° new dummy points, see Remark 8). Given an instance z with points in R", we can map it
into an instance z’ with points in R°'°8” using Lemma 10 with parameter 4. Since the cost of a
solution is the sum of the distances between certain pairs of cities, it immediately follows that for
any tour 7 we have

(1 —v)cost(z,7) < cost(z',m) < (1 + v)cost(z, )
and thus

opt(x) < opt(z')/(1 - 7) .

If a tour 7 is (1 4 € )-approximate for z’, then

optla) _ opt(e)/(1=1) _ 147

m(z,m) = m(z',m)/(1+7) 71—~
and so 7 is (1 + €())-approximate for z. Since finding (1 + ¢(?))-approximate solutions in R" is
NP-hard, the above randomized reduction yields the NP-hardness (under randomized reductions)
of (1 + € )-approximating the Euclidean MiN TSP in R1°8", ]

(14 ¢)<1+?

The previous theorem could be improved in two aspects: use a deterministic reduction (so that
hardness would be established under the nicer P # NP condition instead that under the RP # NP
condition) and prove hardness for other £, metrics. Both improvements boil down to proving the
following conjecture.

Conjecture 1 For any fired p € Z7 and v > 0, a polynomial-time computable funclion f:R™ —
RPoly(t/v)logn ¢picts such that, for any two vectors @, T € R”™

(1 =7)dy(@, %) < dp( f(0), [(7)) < (1 +7)dp(a,7) -

*Reference [JL84] is not easy to collect. The results of [JL84] are also presented in [JLS87], and an alternative
(and simpler) proof is given in [FM88].




The k-Center Problem In the MIN k-CENTER problem one is given a set of points U in a
metric space and an integer k. The goal is to select a set S of k points (the centers) so that it is
minimized the maximum distance between a point of U — § and the closest center. The problem
has been studied in several papers, including [KH76, HS85].

Theorem 12 For any fixed p > 1, it ts NP-hard to approzimate MIN k-CENTER within any factor
smaller than (1.5)1/p when the points are in R"™ and distances are computed according to the [,
norm.

Proor: [Of Theorem 12] Kariv and Hakimi [KH76] give a simple reduction from the Dominating
Set problem to the k-center problem. Given a graph (G, consider a metric space and a set U of points
such that each point of U corresponds to a node of the graph and such that points corresponding
to adjacent vertices are at distance dy, while the others are at distance dy (where dy < dy). It is
easy to prove that, if the graph admits a dominating set of size k, the optimum of the k-Center
instance (U, k) is dy; otherwise the optimum is dy. The dominating set problem is NP-hard even
for graphs of maximum degree 3 [GJ79]. Such graphs can be mapped into an ¢, metric space so
that adjacent vertices are at distance 41/ and non-adjacent vertices are at distance 61/?. Thus,
the k-center problem cannot be approximated within a factor smaller than (1.5)1/ P'in £, normed
R™ spaces. m|

4 The MIN ST Problem

The hardness of approximating MIN ST will be established with a longish chain of reductions. The
starting point is the following hardness result, that may have a little independent interest. Recall
that in the Minimum Vertex Cover (MIN VC) one is given a graph G = (V, E) and looks for the
smallest set C' C V such that C' contains at least one endpoint of any edge in F.

Theorem 13 The MIN VC problem is Max SNP-hard even when restricted to triangle-free graphs
with mazimum degree 3 (we call this restriction MIN TF VC-3).

Proor: [Of Theorem 13] The Max 2SAT problem is Max SNP-hard even when restricted to
instances where each variable occurs in at most 3 clauses (apply to Max 2SAT the reduction from
Max 3SAT to Max 3SAT-3 described in [Pap94]). One can assume without loss of generality that
the 3 occurrences of each variable are either one positive occurrence and two negative occurrences,
or vice versa. We reduce Max 2SAT-3 to MiN VC using the reduction of [PY91]: we create a
graph with a node for any occurrence of any literal, putting an edge between two nodes if they
represent literals that occur in the same clause or if they are one the complement of the other.
See [PY91] for the proof that this is an L-reduction. The obtained graph has maximum degree
3: each literal is adjacent to the fellow literal occurring in the same clause and to the (at most)
two occurrences of its complement. Also, the graph is triangle-free: let [y, I3 and I3 be any three
occurrences of literals. Since clauses contain only two literals, from pigeonhole principle it follows
that one of the three occurrences (say, /1) does not occur in the same clause with any of other two.
Then, if I1, I3 and I3 form a triangle it follows that l; and I3 are both the complement of /1. Being
adjacent, they also have to occur in the same clause, but this is a contraddiction since the literals
occurring in a clause have to be different. a

We note in passing that, as a corollary, we obtain that the MAX INDEPENDENT SET problem is
Max SNP-hard in the same, very restricted class of graphs. We now move to the restriction of MiIN
ST to Hamming spaces.



NoTaTiON: For a pair of indices 7, j € [n] we define @, € {0,1}" as the n-dimensional boolean
vector all whose coordinates are zero but the i-th and the the j-th, e.g. E‘;’A = (1,0,0,1,0).
Similarly, we let @’ be the the vector in {0,1}" whose only non-zero coordinate is the i-th, e.g.
a3 = (0,0,1,0). For a vector @ € {0,1}" and indices i,j € [n], we let red; ;(@) € {0,1}" be the

vector defined as follows

oo falh] ihEiNRA]
red; ;(@)[h] = { if (h=1iVh :Jj) Adli] = dlj] =1

In other words, red; ;(@) is equal to @ unless @ has a one in the i-th and the j-th coordinate.
In this latter case, the i-th and the j-th coordinate of red; ;(@) are set to zero. For example
red; 5(0,1,1,1) = (0,1,1,1), while red; 3(0,1,1,1) = (0,0,0,1). We will make use of the following
simple combinatorial lemma.

—

Lemma 14 For any @,b € {0,1}", for any i,j € [n], di(red; ;(@),red; ;(b)) < dg(a,b).

Proor: Without loss of generality, assume ¢ = 1 and j = 2. The lemma trivially holds when both
d = redy 2(@) and b = red; 2(b). Assume @ # redy o(@) (the other case is perfectly symmetric), that
is, @ = (1,1,a’) (with @ € {0,1}"~2). There are four cases to be considered:

o If b= (1,1,0'), then dg(red; ;(@),red; ;(b)) = dp((0,0,a),(0,0,)) = dp(a,b') = dp(a,b).
o It b =(0,1,0") or b= (1,0,5) then dg(red; ;(@),red; ;(b)) = 1 + dg(@,b') = d(a,b).

— -

o If b= (0,0,0'), then dy(red; ;(@),red; ;(b)) = dp(@, ') = dr(a@,b) — 2.

Theorem 15 The MIN ST problem is Max SNP-hard when restricted to Hamming spaces.

Proor: We give an L-reduction from MIN TF VC-3. Let G = (V, E) be a triangle-free graph of
maximum degree 3, assume V = [r] and let ;. = |E|. We define an instance of Hamming MIN ST
as follows: the number of dimensions is n and the set of points is

U={0yud{ay:{i,j} e E}
where 0 is the vector with all zero entries.
Claim 16 Given a vertex cover C' C 'V in (G il is possible to find a Steiner tree for U of cost m+C'.

Proor:[Of Claim 16] Let S = {a@* : i € C'}. Consider the graph whose vertex set is S U U and
such that two vertices are adjacent iff their Hamming distance is one. We claim that this graph is
connected: indeed all the nodes of § are clearly adjacent to 0; furthermore any node in U is adjacent
to some node in § (since C'is a vertex cover), thus all the nodes are connected to 0. Since the
graph is connected it admits a spanning tree, that is also a Steiner tree for U/. All the edges of such
Steiner tree have cost 1, and there are |C'| +m of them (because the tree has | S|+ |U| = |C|4+m+1
nodes), so the claim follows. O

From the above claim it follows that opt(U) < m + opt(G) < 4opt((G), and we have established the
first condition of the L-reducibility. As usual, the other condition is more difficult to prove.



Claim 17 Given a Steiner tree T for U it is possible to find in polynomial time another Steiner
tree T" such that: (i) cost(T") < cost(T) and (ii) all the edes of T" have cost one and all the Steiner
nodes of T' are weight-one vectors.

Proor:[Of Claim 17] We first make sure that all edges have cost 1: any edge of cost d > 1 is broken
into a length-d path using d — 1 additional Steiner nodes. Let S be the new set of Steiner vertices.
We now reduce the number of non-zero coordinates of Steiner vertices. For any {i,j} ¢ F we map
each point @ € SUU into red; ;(@); this mapping only changes Steiner points (by definition of red; ;,
definition of U, and the fact that {i,j} ¢ F). From Lemma 14 we also have that any phase does
not increase the cost of the tree. At the end of this set of transformations, we run a “clean-up”
phase that does the following: if some transformation has collapsed one node onto another, we take
only one node (if a Steiner node is collapsed onto a node in U we clearly take the node in U). If the
transformation creates cycles, we break them (e.g. finding a spanning tree of the final graph), and,
again, this does not increase the cost. It remains to see that, after this process, no Steiner node can
have more than one non-zero coordinate. If a Steiner node has some set of k£ non-zero coordinates,
then they must correspond to a clique in G (otherwise, at some phase, some of them would have
been changed by the application of the red operator): since G is triangle-free, k < 2, but if k£ = 2
then the Steiner node would be equal to a node of U, and thus would have been removed in the
clean-up phase. It follows that & = 1. O

From the above claim, the following one follows quite easily.

Claim 18 Given a Steiner tree T for U it is possible to find in polynomial time a vertex cover C

for G such that |C| < cost(T) —m

Proor: [Of Claim 18] We first find the Steiner tree T’ as in the previous claim. Then, if we let
S be the set of Steiner vertices of 77, we have that cost(T) > cost(T') = |S| + |U| — 1 = | S|+ m.
Let C = {i:d; € S};it is easy to see that |C| = || < cost(T) — m and that C is a vertex cover
in G. The latter fact follows from the fact that for any edge {¢,5} € E, the vector d; ; belongs to
U; since all the edges of T’ have cost one, and T’ does not contain weight-3 vectors, then either
d; € Sord; €9 (otherwise @, ; would be an isolated node in T’ contraddicting the fact that 7’ be
connected). ]

If T is any Steiner tree of U, the vertex cover C' for G computed according the previous claim
satisfies

cost(C') — opt(G) < (cost(T) — m) — (opt(U) — m) = cost(T) — opt(U)

and so also the second condition of the L-reduction is satisfied. O

If the following conjecture holds, then we can reduce MIN VC-B to Hamming MIN ST (without
imposing the triangle-free restriction).

Conjecture 2 Let U C {0,1}" be an instance of Hamming MIN ST such that 0 € U and all
vectors of U have weight at most 2. Then there exists an oplimum solution where all the Steiner
nodes have weight at most 2.

Janos Kérner proposed a further generalization: if U is contained in the Hamming sphere centered
in some @ € U and of radius k, then there exists an optimum solution all whose Steiner nodes lie in
the same sphere. This seemed to be a reasonable combinatorial analog of the fact that if the points
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are in R* and distances are computed according to the Euclidean metric, the Steiner points of an
optimum solution will be in the convex hull of the points of the instance. Lately, Janos refuted the
generalized conjecture. The instance U = {(0,0,0,0),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}
refutes the generalized conjecture even for £k = 3. An optimum solution of cost 7 uses the Steiner
node (1,1,1,1). Computational experiments show that any solution without (1,1,1,1) has cost at
least 8.

To approach the MIN ST in ¢; normed spaces we use a reduction from the Hamming case. Note
that for points in {0,1}™ the ¢; distance equals the Hamming distance. However, the reduction
is non-trivial since R™ contains so many points that are not in {0, 1} and we have to argue that
having much more choice for the Steiner nodes does not make the problem easier. The Rectilinear
MinN ST problem looks very much like a relazation of the Hamming MIN ST problem; our reduction
makes use of a rounding scheme proving that the relaxation does not change the optimum.

Theorem 19 Let U C {0,1}" C R"™ be an instance of Rectilinear MIN ST all whose points are in
the Boolean cube. Let T be a feasible solution for U. Then it is possible to find in polynomial time
(in the size of T ) another solution T' such that cost(T") < cost(T') and all the Steiner nodes of T'
are in {0,1}".

Before proving the theorem, we note the following relevant consequence.

Corollary 20 For any instance U C {0,1}" of Rectilinear MiN ST, an optimum solution exists
all whose Steiner points are in {0,1}".

We now prove Theorem 19.

Proor:[Of Theorem 19] Let S = {51,...,8,} be the set of Steiner points of T, and let F be the
set of edges of T'. For any 3; € 5 we will find a new point 8’ € {0,1}", so that if we let 7’ be the
tree obtained from T by substituting the § points with the corresponding §' points, the cost of 7"
is not greater than the cost of T. The latter statement is equivalent to

Yoo s—dh+ Yo ls-&lhz Y lS-dak+ Y ls-3

(3, eE,aeU (5,5n)€E (%, W), aeU (8,3,)€E

1

We will indeed prove something stronger, namely, that for any ¢ € [n] it holds

S ma-dlt Y SE-sil> Y Si-ad+ Y (8- 8
(3;,2)€E , @2eU (85,5n)€E (8 M)el , A€V (8,8,)€EE

1)

Let i € [n] be fixed, we now see how to find values of §[i],..., s [i] € {0,1} such that (1) holds.

We express as a linear program the problem of finding values of &[], ..., 8, [¢] that minimize the

right-hand side of (1). For any j € [m] we have a variable z; (representing the value to be given

—.

to 3%[i]) and for any edge e = (@,b) such that at least one endpoint is in § we have a variable y.,

representing the lenght |@[i] — b[i]|. The linear program is as follows

11



min > e Ve

Subject to

Yye > ax;—wp Ve= (5,5, €FE
Ye > Tp —x; Ve= (§j,§h) ekl (LP)
Ye > T Ve = (§;,1y) € E such that @[i] =0
Yye > 1—x; Ve=(5;,4) € E such that @fi] =1
z; >0
Ye 2 0

Setting z; = s;[t] and setting Yap = |@[:] — B[4]| yields a feasible solution, and its cost is the

left-hand side of (1). Let (Z*, §*) be an optimum solution for (LP). From the previous observation
we have that setting §%[i] = 27 we satisfy (1). It remains to be seen that (LP) has an optimum
solution where all variables take value from {0, 1}. This follows from the fact that (LP) is the linear
programming relaxation of an undirected Min-CUT problem, where all the @ such that @[] = 0
(respectively, 4[i] = 1) are identifed with the source (respectively, the sink), each §; is a node, and
the edges are like in 7. It is well known (see e.g. [PS82]) that a Min-CUT linear programming
relaxation has optimum 0/1 solutions, and that such a solution can be found in polynomial time.

a

Remark 21 There seems to be no natural analog of Theorem 19 in other norms. FEven in RZ,
using the Fulcidean metric, we have that the optimum solution of the instance {(0,0),(1,0),(0,1)}
must use a Steiner point not in {0,1}2.

Theorem 22 Rectilinear MIN ST is Max SNP-hard.

Proor: We reduce from Hamming MIN ST. The reduction leaves the instance unchanged. For an
instance U C {0,1}", we let opt(U) (respectively, optz(U)) be the cost of an optimum solution for
U, when seen as an instance of Hamming MIN ST (respectively, of Rectilinear MIN ST). Clearly,
we have that optp(U) < opty(U). Given a solution 7" for U, we find a solution 7’ as in Theorem 19.
Since in {0,1}" the distance induced by the ¢; norm equals the Hamming distance, we have that
cost(1T") = costp(T") < costp(T"). We have an L-reduction with a = g = 1. o

It is easy to see that the Rectilinear MIN £-ST and the Hamming MIN k-ST are Max SNP-
hard as well. The instances produced by the above reductions have the property that an optimum
solution has at most n Steiner nodes. So the reduction works unchanged for MIN £-ST.

5 Open questions

We don’t know how to extend our non-approximability result for MIN ST to the Fuclidean case.
Arora [Ar096] notes that, by inspecting the way his algorithm works, it is possible to claim that, for
any instance of Euclidean MIN ST, there exists a near-optimal solution where the Steiner points
lie in some well-specified positions (either at “portals” or in positions chosen at the bottom of the
recursion). This observation could perhaps be a starting point.

We don’t have explicit estimations of the constants to within which it is hard to approximate
geometric MIN TSP and rectilinear MIN ST. The constant for Min TSP should be only slightly
smaller than the corresponding constant for the (1,2) — B case (estimated around 1+ 107°). The
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constant for MIN ST is more likely to be around 1 + 10~*. Finding much stronger estimations
(comparable to the 3/2 bound of Christofides and the 1.644 bound of Karpinski and Zelikovsky)
is an open and challenging question. It appears that MIN TSP and MIN ST lack the nice logical
definability that allows to prove very strong non-approximability results for MAX CUT and MaX
3SAT using so-called “gadget reductions” [BGS95, TSSW96, Has96].
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Abstract

We prove that the Traveling Salesperson Problem (MIN TSP), the Minimum Steiner Tree
Problem (MIN ST), the Minimum k-Steiner Tree problem (MIN k-ST) and the k-Center Prob-
lem (MIN k-CENTER) are Max SNP-hard (and thus NP-hard to approximate within some con-
stant » > 1) even if all cities (respectively, points) lie in the geometric space R™ (n is the
number of cities/points) and distances are computed with respect to the l; (rectilinear) metric.
The MiN TSP and MIN k-CENTER hardness results also hold for any I, metric, including the
Euclidean {5 metric, and (under randomized reductions) also in R'°8™ for the Euclidean metric.

. . . . . . A d—2 Ny, d—1
Arora’s approximation scheme for Euclidean MIN TSP in R? runs in time n©1o8" " n)/¢"™" and

achieves approximation (1 + ¢€); our result implies that this running time cannot be improved to
n%¢ unless NP has subexponential randomized algorithms. We also prove, as an intermediate
step, the hardness of approximating the above problems in Hamming spaces. The only previous
hardness results involved metrics where all distances are 1 or 2.

1 Introduction

Given a metric space and a set U of points into it, the Traveling Salesperson Problem (Min TSP)
is to find a closed tour of shortest total length visiting each point exactly once, while the Minimum
Steiner Tree Problem (MIN ST) is to find the minimum cost tree connecting all the points of U;
the tree can possibly contain points not in U, that are called “Steiner points”.

Both problems are among the most classical and most widely studied ones in Combinatorial
Optimization, Operations Research and Computer Science during the past few decades, and before.
Important special cases arise when the metric space is R and the distance is computed according
to the ¢; norm (the rectilinear case) or the {3 norm (the Fuclidean case).

We establish the first non-approximability results for this class of problems. As an intermediate
step, we prove that they are hard to approximate also in Hamming spaces. The Hamming versions
of MIN TSP and MiN ST seem to have never been considered before. Our main contributions are:
(i) the identification of this class of metric spaces as the “right” one to prove hardness in more
natural geometric spaces, and (ii) the derivation of combinatorial results that could have some
independent interest.

Our techniques prove hardness of approximation for other problems, including the Minimum
k-Center Problem studied by Hochbaum and Shmoys [HS85], and all the problems mentioned in
Arora’s paper [Aro96] on approximation schemes for geometric problems.

We now state and discuss our results for MiN TSP and Min ST.

*Dept. of Computer Science, University of Geneva, Rue General-Dufour 24, CH 1211 Geneva, Switzerland. Email:
trevisan@cui.unige.ch. Work partly done at the University of Rome “La Sapienza”.



The Traveling Salesperson Problem

Interest in the MIN TSP started during the 1930’s. In 1966, the (already) long-standing failure of
developing an efficient algorithm for the MiN TSP led Edmonds [Edm66] to conjecture that the
problem is not in P: this is sometimes referred to as the first statement of the P # NP conjecture.
See the book of Lawler et al. [LLKS85] for a very complete survey on MIN TSP. Here we will only
review the results that are relevant for the present paper. The MIN TSP is NP-hard even if the cities
are restricted to lie in R? and the distances are computed according to the 5 norm [GGJ76, Pap77].
Due to such a negative result, research concentrated on developing good heuristics. Recall that an
r-approximate algorithm (r > 1) is a polynomial-time heuristic that is guaranteed to deliver a tour
whose cost is at most r times the optimum cost. A 3/2-approximation algorithm that works for
any metric space is due to Christofides [Chr76]. In twenty years of research no improvement of this
bound had been found, even in the restricted case of geometric metrics.

In the late 1980’s, the emergence of the theory of Max SNP-hardness [PY91] gave a means of
possibly understanding this lack of results. Indeed, Papadimitriou and Yannakakis [PY93] proved
that the MIN TSP is Max SNP-hard even when restricted to metric spaces (as we shall see later,
the result also holds for a particularly restricted class of metric spaces), and thus a constant € > 0
exists such that metric MiN TSP cannot be approximated within a factor (1 + €) in polynomial
time, unless P = NP. The complexity of approximating MIN TSP in the case of geometric metrics
remained a major open question. In his PhD thesis, Arora noted that proving the Max SNP-
hardness of Euclidean MIN TSP in R? should be very difficult, but that this could perhaps be
done in R*™ for sufficiently large k(n) ([Aro94, Chapter 9]). The relevance of non-approximability
results for geometric MIN TSP was also stated in the open questions section of a survey by Arora
and Lund [AL96]. In [GKP95], Grigni, Koutsopias and Papadimitriou proved that the restriction
of the MIN TSP to shortest paths metrics of planar graphs can be approximated within (1 + €)
in time n®(1/9). Such an approximation algorithm is called a Polynomial Time Approxzimation
Scheme (PTAS). This result led Grigni et al. [GKP95] to conjecture that Euclidean MIN TSP has
a PTAS in R?. They again posed the question of determining the approximability of the problem
for higher dimensions. In a very recent breakthrough, Arora [Aro96] developed a PTAS for the
Mix TSP in R? under any £, metric. Such an algorithm also works in higher dimensional spaces
and, in particular, it runs in time pOUog ™M =2 n) (M1 4y pk(n)  Note that the dependence of the
running time on k(n) is doubly exponential. In a preliminary version of [Aro96] Arora asked if it
was possible to develop a PTAS for Euclidean MIN TSP in R” or if, at least, it was possible to
have the running time being singly exponential in k(n), e.g. nOk(n)/e),

Our Results. In this paper we essentially answer negatively to both questions. We prove that
MiNn TSP in R™ is Max SNP-hard using any ¢, metric (thus, unless P = NP, there cannot be a
PTAS for these problems). Furthermore, we show that (1+ €;)-approximating Euclidean MiN TSP
in R1°6™ is NP-hard under randomized reductions, for a proper constant ;. The latter result implies
that there cannot be an algorithm that finds (14 ¢)-approximate solutions for Euclidean MiN TSP
in R* running in time n°*/9 for any € > 0, unless NP C RQP, where RQP is the class of problems
solvable by randomized algorithms with one-sided error and running time n°1°8™) The Max SNP-
hardness of the n-dimensional case is proved by means of a reduction from the version of the
metric MIN TSP that was shown to be Max SNP-hard in [PY93]. The reduction uses a mapping
(see Lemma 5) of the metric spaces of [PY93] into Hamming spaces and the observation (see
Proposition 3) that, for elements of {0, 1}" a “gap” in the Hamming distance is preserved if distances
are computed according to a £, metric. Our mapping of the metric spaces of [PY91] into Hamming



spaces is not an approximate isomelry, that is, it does nol preserve distances up to negligible
distorsion. We also suspect that such kind of mapping would be provably impossible. Instead, our
mapping introduces a fairly high (yet constant) distorsion, but satisfies an additional condition that
makes the mapping be an L-reduction [PY91]. Our mapping, combined with a reduction by Kariv
and Hakimi [KH76], gives also non-approximability results for the Minimum k-Center Problem. The
Minimum k-Cities Traveling Salesman Problem (MIN k-TSP) and the Minimum Degree-Restricted
Steiner Tree Problem (two problems mentioned in Arora’s paper [Aro96] on approximation schemes
for geometric problems) are generalizations of the MIN T'SP. The hardness results that we prove
for MIN TSP clearly extend to them.

The Minimum Steiner Tree Problem

The origins of the MIN ST problem seem to be even more remote than the MIN TSP’s ones:
the case when |U| = 3 and the metric space is R? with the £, norm has been studied by the
Italian mathematician Torricelli (a student of Galilei’s) in 17th century. Reportedly, Gauss had
an interest to this problem as well. Recent results about this problem are similar to the ones for
Mix TSP: exact optimization is NP-hard in R* both in the Rectilinear (1) case [GJ77] and in
the Euclidean ({3) case [GGJ77]. Constant-factor approximation is achievable in any metric space
(the best factor should be 1.644 due to Karpinski and Zelikovsky [KZ95]), in general metric spaces
the problem is Max SNP-hard [BP89], Arora’s algorithm achieves approximation (1 + ¢) in R* in
time 000" ™2 n)/m =1
problem.

. No non-approximability result was known for geometric versions of the

Our Results. We prove the Max SNP-hardness of the problem in R™ under the {; norm. As a
preliminary step, we prove the hardness of the problem restricted to Hamming spaces. The latter
hardness is proved via a reduction from the Minimum Vertex Cover problem (MIN VC) restricted to
triangle-free graphs of maximum degree 3. The Max SNP-hardness of this very restricted version of
MiN VC is proved in this paper and could be used as a starting point for other non-approximability
results. The reduction from MIN VC to Hamming MIN ST uses a combinatorial result (Claim 17)
stating that for an instance where all points have weight! 2 or 0, if a technical condition is satisfied,
there exists an optimum solution where all Steiner points have weight 1. We remark that there
exists an instance of Hamming Steiner Tree where all the points have weight 3 or 0 and such that
an optimum solution must contain a Steiner point of weight at least 4. Thus, our combinatorial
result cannot be generalized too much. Reducing from Hamming Steiner Tree to Rectilinear Steiner
Tree requires another combinatorial result (Theorem 19): for an instance where all the points are
in {0,1}" C R", there exists an optimum solution where all the Steiner points lie in {0,1}". We
prove this fact using the integrality property of Min-CUT linear programming relaxations. Our
non-approximability result extends to MIN k-ST, the variation where one is also given an integer k
and the goal is to find a minimum Steiner tree among the ones involving at most k& Steiner points.

Discussion

We give the first non-approximability results for geometric versions of network optimization prob-
lems. For Euclidean MIN TSP, there is little room for improvement of our results, as well as there

'For a vector u € {0,1}", its weight is defined as the number of non-zero coefficients, e.g. the weight of (0,1,1,0,1)
is three.



is little room for improving Arora’s algorithm. If we believe that NP has not sub-exponential algo-
rithms, then the best possible running time for an approximation scheme for Euclidean MiNn TSP
is of the form 22d/5p01y(n); alternatively, our non-approximability result could be extended to
Rlog/loglogn - \Much more consistent improvements are possible for MIN ST, however our results
at least state very clearly that the number of dimensions does matler in the running time of an
approximation scheme for these geometric problems.

We feel that one important contribution of this paper is the recognition of Hamiming spaces as a
class of metric spaces that seem to retain most of the hardness of general metrics while having a nice
combinatorial structure. We believe that other non-approximability results could be established
using Hamming spaces as intermediate steps. We also think that it should be worth trying to
improve Christofides algorithm in Hamming spaces. While the well-behaved structure of Hamming
spaces should not make this task impossible, it is likely that such an improved algorithm could give
useful ideas for more general cases.

2 Preliminaries

We denote by R the set of real numbers. For an integer n we denote by [n] the set {1,...,n}. For
a vector @ € R”™ and an index ¢ € [n], we denote by @[] the i-th coordinate of @, Given an instance
z of an optimization problem A, we will denote by opt,(z) the cost of an optimum solution for
x, we will also typically omit the subscript. For a feasible solution y (usually a tour or a tree) of
an instance x of an optimization problem A, we denote its cost by cost4(z,y) or, more often, as
cost(y). In this paper we will use the notions of L-reduction and Max SNP-hardness. Max SNP is
a class of constant-factor approximable optimization problems that includes MAX 3SAT, we refer
the reader to [PY91] for the formal definition.

Definition 1 (L-reduction) An optimization problem A us said to be L-reducible to an optimiza-
tion problem B if two constants o and 3 and two polynomial-time computable functions f and g
exist such that

1. For an instance z of A, z' = f(z) is an instance of B, and it holds optg(z') < aopt 4(z).

2. For an instance z of A, and a solution y' feasible for z' = f(z), y = ¢g(z,y’) is a feasible
solution for x and it holds |opt 4(z) — cost4(z,y)| < Bloptg(z') — costg(z’, y')|.

We say that an optimization problem is Max SNP-hard if all Max SNP-problems are L-reducible to
it. From [ALM'92] it follows that if a problem A is Max SNP-hard, then a constant ¢ > 0 exists
such that (1 + ¢)-approximating A is NP-hard.

A function d : U x U — R is a metric if it is non-negative, if d(u,v) = 0 iff v = v, if it is
symmetric (i.e. d(u,v) = d(v,u) for any u,v € U), and it satisfies the triangle inequality (i.e.
d(u,v) < d(u,z)+ d(z,v) for any u,v,z € U).

Definition 2 ((1,2) — B metrics) A metricd : U X U — R is a (1,2) — B metric if il satisfies
the following properties:

1. Forany u,v € U, u # v, d(u,v) € {1,2}.

2. For any u, at most B elements of U are at distance 1 from u.



Papadimitriou and Yannakakis [PY93] have shown that a constant By > 0 exists such that the
Min TSP is Max SNP-hard even when restricted to (1,2) — By metrics.

For an integer p > 1, the £, norm in R" is defined as ||(u1,...,u,)|[, = (O-rey |us|P)H/P). The
distance induced by the ¢, norm is defined as d,(@, ) = ||& — ¥]|,. For a positive integer n, we
denote by d% the Hamming metric in {0, 1}" (we will usually omit the superscripts). We will make
some use of the following fact.

Proposition 3 Let i, % € {0,1}* C R". Then d,(i,7) = du(i,s)/".
Before starting with the presentation of our results, we make the following important caveat.

Remark 4 In some of the proofs of this paper we implicitly make the (unrealistic) assumption that
arbitrary real numbers can appear in an instance and that arithmetic operations (including squared
roots) can be computed over them in constant time. However, our results still hold if we instead
assume that numbers are rounded and stored in a floating point notation using O(logn) bits. This
fact follows from a minor modification of the argument used in [Aro96] to reduce a general instance

of Fuclidean TSP or Steiner Tree into an instance where coordinales are positive integers whose
value is O(n?).

3 MiNn TSP and MIN k-CENTER

Let us begin with a lemma relating (1,2) — B metrics and Hamming metrics. The lemma gives a
“distance preserving” embedding of (1,2) — B metric spaces into Hamming spaces.

Lemma 5 Let U be a finite set and d be a (1,2)— B metric over U. Then there exists an embedding
f:U = {0, 1}BB|U|/2 such that for any u,v € U,

L du(f(u), f(v))=2B if d(u,v) = 2, and
2. dg(f(u), f(v))=2(B-1) if d(u,v) = 1.

Such an embedding is compulable in time polynomial in |U].

Proor: Let U = {uy,...,u,}. Recall that a (1,2) — B metric (U,d) can be represented as an
undirected graph G = (U, E), where {u,v} € E iff d(u,v) =1 (see [PY93]). Let E = {e1,...,en}.
An edge e is said to be incident on a vertex u if u is one of the endpoints of e. The degree of a
vertex u (denoted by deg(w)) is the number of edges incident on w. Note that any vertex in G
has degree at most B, and thus m < Bn/2. The embedding f of U into {0,1}387/2 is defined as
follows: for any ¢ = 1,...,n, for any j = 1,...,3Bn/2, the j-th coordinate of f(u;) is

1 if(i—1)B+1<j<iB—deg(u),
fluj)ijl=< 1 ifnB+1<j<m+nB and ¢;_,p is incident on u;, and
0 otherwise.

We first note that, by construction, f(u;) has B — deg(u;) nonzero coordinates among the first
nB ones, and deg(u;) nonzero coordinates among those between the (nB +1)-th and the (nB +m)-
th. All of the other coordinates are zero. It follows that for any w € U, f(u) has ewactly B
nonzero coordinates, and thus, the Hamming distance between any two different points in f(U) is
at most 2B. More specifically, the Hamming distance between f(u;) and f(u;) (¢ # j) is equal



to 2(B — a;;), where a;; is the number of indices of coordinates such that both f(u;) and f(u;)
are equal to one. Since f(w;) and f(u;) cannot have a one in the same position in any of the first
nB coordinates, it follows that a;; is equal to the number of indices A, 1 < h < m, such that
f(u;)[nB + h] = f(u;)[nB + h] = 1. It is not hard to see that f(u;)[nB + h] = f(u;)[nB + h] =1
if and only if {u;,u;} = e, and thus, a;; can only be either 0 or 1, and it can be 1 if and only if
d(u;,u;) = 1. Clearly the embedding can be computed in time O(B|U|?): since B is constant, this
is polynomial in |U|. O

The following simple corollary is required in the proof of our hardness result.

Corollary 6 Let p > 1 be fized. Let U be a finite set and d be a (1,2) — B metric over U. Then
there exist a constant § (depending on B) and an embedding f : U — R3BIUI2 such that for any
w,v € U, dp(f(u), f(v)) =1 if d(u,v) = 1 and d,(f(u), f(v)) = 1+ 6 if d(u,v) = 2. Such an

embedding is computable in time polynomial in |U].

Proor: Map U = {uy,...,u,} into a set U’ = {@},...,d,} as in Lemma 5. From Proposition 3
we have that for any ¢ and j, if d(u;,u;) = 1 then dy(a}, @) = (2(B — INY?, and if d(u;,u;) = 2
then d (i}, ) = (2B)'/?. If we divide each coordinate of the points @’ by (2(B — 1))1/?, we
obtain a set of points in R3B7/? whose distances satisfy the hypothesis of the corollary, with
§ = (2B/2(B — 1))}/? — 1. The entire process can be done in time polynomial in |U]|. m|

The main result of this section is now only a matter of standard calculations.

Theorem 7 For any fived p > 1, the MIN TSP is Max SNP-hard when restricted to the £, metric
in RO (n is the number of cities).

Proor: For some constant By, the MIN TSP is Max SNP-hard when restricted to (1,2) — By
metrics [PY93]. We shall now describe an L-reduction from the (1,2) — By metric TSP to the
TSP in RO, Let ¢ = (U,d) be an instance of the MiN TSP, where U = {u1,...,u,} and d is a

(1,2) — By metric. We map the cities into R3Bon/2 a5 in Corollary 6, thus obtaining an instance 2/
of MIN TSP in R3Po™/2_ Tt is easy to see that, for any tour r,

cost(z’,m) = n + §(cost(z, ) — n) = n(1 — §) + dcost(z,7) .

This implies
opt(z') = n(1 — §) + opt(z) < opt(x)

(since 0 < 6 <1, and opt(x) > n) and that
1
cost(z, ) — opt(z) = g(cost(avl7 T) — opt(a’))
Thus, we have an L-reduction with & = 1 and 3 = 1/é. O

Remark 8 Given an instance of MIN TSP with n points, if one adds n® more points, all of
them being at distance 1/O(n°t1) from some point of the instance, this perturbs the optimum in a
negligible way. We can use this simple observation to scale down our hardness resull to R™ (adding
3Bgn/2 — 1 points), or even to R’ for fired § > 0 (adding O(n'/*) points).

Combining the above theorem and the above observation with the results of Arora et
al. [ALM192], we have the following non-approximability result for the geometric Min TSP.



Corollary 9 For any positive integer p > 1, a constant €?) > 0 such that approzimating the
MIN TSP in R™ within (1 + ¢®)) is NP-hard.

The following lemma, which was stated in [LLR95, Theorem 3.1] and was implicit in [JT.84]2,
will be used to give a non-approximability result for Euclidean MIN TSP in R°8",

Lemma 10 ([JL84]) There exists a constant p > 0 such that the following holds. Let U be a set
of n points into R™ and let v > 0. Then there exists an embedding [ of U inlo RH1o87/7* gych
that for any @,7 € U, (1 — v)dy(@,?) < dy( f(%), f(¥)) < (1 + v)dy(4,¥). Such an embedding is

computable by a randomized polynomial time algorithm.
We can now prove the non-approximability result for R'°8"™.

Theorem 11 There exist a constant ¢, > 0 such that (1 + €1)-approzimating the Fuclidean
MiIN TSP in R°8" is NP-hard under randomized reductions (and thus infeasible, unless RP = NP).

PROOF:[Of Theorem 11] Let ¢(?) be the constant of Corollary 9 for the Euclidean case. Fix constants
¢, v and ¢; such that

(14 e)(147)/(1=7) < 1+ €@ and e = /42

Assume we have a (1 + ¢ )-approximate algorithm for Euclidean Min TSP in R'°8". Then the
same algorithm can also be adapted to work in R1°8" (use a preprocessing phase that adds a bunch
of n° new dummy points, see Remark 8). Given an instance z with points in R", we can map it
into an instance z’ with points in R°'°8” using Lemma 10 with parameter 4. Since the cost of a
solution is the sum of the distances between certain pairs of cities, it immediately follows that for
any tour 7 we have

(1 —v)cost(z,7) < cost(z',m) < (1 + v)cost(z, )
and thus

opt(x) < opt(z')/(1 - 7) .

If a tour 7 is (1 4 € )-approximate for z’, then

optla) _ opt(e)/(1=1) _ 147

m(z,m) = m(z',m)/(1+7) 71—~
and so 7 is (1 + €())-approximate for z. Since finding (1 + ¢(?))-approximate solutions in R" is
NP-hard, the above randomized reduction yields the NP-hardness (under randomized reductions)
of (1 + € )-approximating the Euclidean MiN TSP in R1°8", ]

(14 ¢)<1+?

The previous theorem could be improved in two aspects: use a deterministic reduction (so that
hardness would be established under the nicer P # NP condition instead that under the RP # NP
condition) and prove hardness for other £, metrics. Both improvements boil down to proving the
following conjecture.

Conjecture 1 For any fired p € Z7 and v > 0, a polynomial-time computable funclion f:R™ —
RPoly(t/v)logn ¢picts such that, for any two vectors @, T € R”™

(1 =7)dy(@, %) < dp( f(0), [(7)) < (1 +7)dp(a,7) -

*Reference [JL84] is not easy to collect. The results of [JL84] are also presented in [JLS87], and an alternative
(and simpler) proof is given in [FM88].




The k-Center Problem In the MIN k-CENTER problem one is given a set of points U in a
metric space and an integer k. The goal is to select a set S of k points (the centers) so that it is
minimized the maximum distance between a point of U — § and the closest center. The problem
has been studied in several papers, including [KH76, HS85].

Theorem 12 For any fixed p > 1, it ts NP-hard to approzimate MIN k-CENTER within any factor
smaller than (1.5)1/p when the points are in R"™ and distances are computed according to the [,
norm.

Proor: [Of Theorem 12] Kariv and Hakimi [KH76] give a simple reduction from the Dominating
Set problem to the k-center problem. Given a graph (G, consider a metric space and a set U of points
such that each point of U corresponds to a node of the graph and such that points corresponding
to adjacent vertices are at distance dy, while the others are at distance dy (where dy < dy). It is
easy to prove that, if the graph admits a dominating set of size k, the optimum of the k-Center
instance (U, k) is dy; otherwise the optimum is dy. The dominating set problem is NP-hard even
for graphs of maximum degree 3 [GJ79]. Such graphs can be mapped into an ¢, metric space so
that adjacent vertices are at distance 41/ and non-adjacent vertices are at distance 61/?. Thus,
the k-center problem cannot be approximated within a factor smaller than (1.5)1/ P'in £, normed
R™ spaces. m|

4 The MIN ST Problem

The hardness of approximating MIN ST will be established with a longish chain of reductions. The
starting point is the following hardness result, that may have a little independent interest. Recall
that in the Minimum Vertex Cover (MIN VC) one is given a graph G = (V, E) and looks for the
smallest set C' C V such that C' contains at least one endpoint of any edge in F.

Theorem 13 The MIN VC problem is Max SNP-hard even when restricted to triangle-free graphs
with mazimum degree 3 (we call this restriction MIN TF VC-3).

Proor: [Of Theorem 13] The Max 2SAT problem is Max SNP-hard even when restricted to
instances where each variable occurs in at most 3 clauses (apply to Max 2SAT the reduction from
Max 3SAT to Max 3SAT-3 described in [Pap94]). One can assume without loss of generality that
the 3 occurrences of each variable are either one positive occurrence and two negative occurrences,
or vice versa. We reduce Max 2SAT-3 to MiN VC using the reduction of [PY91]: we create a
graph with a node for any occurrence of any literal, putting an edge between two nodes if they
represent literals that occur in the same clause or if they are one the complement of the other.
See [PY91] for the proof that this is an L-reduction. The obtained graph has maximum degree
3: each literal is adjacent to the fellow literal occurring in the same clause and to the (at most)
two occurrences of its complement. Also, the graph is triangle-free: let [y, I3 and I3 be any three
occurrences of literals. Since clauses contain only two literals, from pigeonhole principle it follows
that one of the three occurrences (say, /1) does not occur in the same clause with any of other two.
Then, if I1, I3 and I3 form a triangle it follows that l; and I3 are both the complement of /1. Being
adjacent, they also have to occur in the same clause, but this is a contraddiction since the literals
occurring in a clause have to be different. a

We note in passing that, as a corollary, we obtain that the MAX INDEPENDENT SET problem is
Max SNP-hard in the same, very restricted class of graphs. We now move to the restriction of MiIN
ST to Hamming spaces.



NoTaTiON: For a pair of indices 7, j € [n] we define @, € {0,1}" as the n-dimensional boolean
vector all whose coordinates are zero but the i-th and the the j-th, e.g. E‘;’A = (1,0,0,1,0).
Similarly, we let @’ be the the vector in {0,1}" whose only non-zero coordinate is the i-th, e.g.
a3 = (0,0,1,0). For a vector @ € {0,1}" and indices i,j € [n], we let red; ;(@) € {0,1}" be the

vector defined as follows

oo falh] ihEiNRA]
red; ;(@)[h] = { if (h=1iVh :Jj) Adli] = dlj] =1

In other words, red; ;(@) is equal to @ unless @ has a one in the i-th and the j-th coordinate.
In this latter case, the i-th and the j-th coordinate of red; ;(@) are set to zero. For example
red; 5(0,1,1,1) = (0,1,1,1), while red; 3(0,1,1,1) = (0,0,0,1). We will make use of the following
simple combinatorial lemma.

—

Lemma 14 For any @,b € {0,1}", for any i,j € [n], di(red; ;(@),red; ;(b)) < dg(a,b).

Proor: Without loss of generality, assume ¢ = 1 and j = 2. The lemma trivially holds when both
d = redy 2(@) and b = red; 2(b). Assume @ # redy o(@) (the other case is perfectly symmetric), that
is, @ = (1,1,a’) (with @ € {0,1}"~2). There are four cases to be considered:

o If b= (1,1,0'), then dg(red; ;(@),red; ;(b)) = dp((0,0,a),(0,0,)) = dp(a,b') = dp(a,b).
o It b =(0,1,0") or b= (1,0,5) then dg(red; ;(@),red; ;(b)) = 1 + dg(@,b') = d(a,b).

— -

o If b= (0,0,0'), then dy(red; ;(@),red; ;(b)) = dp(@, ') = dr(a@,b) — 2.

Theorem 15 The MIN ST problem is Max SNP-hard when restricted to Hamming spaces.

Proor: We give an L-reduction from MIN TF VC-3. Let G = (V, E) be a triangle-free graph of
maximum degree 3, assume V = [r] and let ;. = |E|. We define an instance of Hamming MIN ST
as follows: the number of dimensions is n and the set of points is

U={0yud{ay:{i,j} e E}
where 0 is the vector with all zero entries.
Claim 16 Given a vertex cover C' C 'V in (G il is possible to find a Steiner tree for U of cost m+C'.

Proor:[Of Claim 16] Let S = {a@* : i € C'}. Consider the graph whose vertex set is S U U and
such that two vertices are adjacent iff their Hamming distance is one. We claim that this graph is
connected: indeed all the nodes of § are clearly adjacent to 0; furthermore any node in U is adjacent
to some node in § (since C'is a vertex cover), thus all the nodes are connected to 0. Since the
graph is connected it admits a spanning tree, that is also a Steiner tree for U/. All the edges of such
Steiner tree have cost 1, and there are |C'| +m of them (because the tree has | S|+ |U| = |C|4+m+1
nodes), so the claim follows. O

From the above claim it follows that opt(U) < m + opt(G) < 4opt((G), and we have established the
first condition of the L-reducibility. As usual, the other condition is more difficult to prove.



Claim 17 Given a Steiner tree T for U it is possible to find in polynomial time another Steiner
tree T" such that: (i) cost(T") < cost(T) and (ii) all the edes of T" have cost one and all the Steiner
nodes of T' are weight-one vectors.

Proor:[Of Claim 17] We first make sure that all edges have cost 1: any edge of cost d > 1 is broken
into a length-d path using d — 1 additional Steiner nodes. Let S be the new set of Steiner vertices.
We now reduce the number of non-zero coordinates of Steiner vertices. For any {i,j} ¢ F we map
each point @ € SUU into red; ;(@); this mapping only changes Steiner points (by definition of red; ;,
definition of U, and the fact that {i,j} ¢ F). From Lemma 14 we also have that any phase does
not increase the cost of the tree. At the end of this set of transformations, we run a “clean-up”
phase that does the following: if some transformation has collapsed one node onto another, we take
only one node (if a Steiner node is collapsed onto a node in U we clearly take the node in U). If the
transformation creates cycles, we break them (e.g. finding a spanning tree of the final graph), and,
again, this does not increase the cost. It remains to see that, after this process, no Steiner node can
have more than one non-zero coordinate. If a Steiner node has some set of k£ non-zero coordinates,
then they must correspond to a clique in G (otherwise, at some phase, some of them would have
been changed by the application of the red operator): since G is triangle-free, k < 2, but if k£ = 2
then the Steiner node would be equal to a node of U, and thus would have been removed in the
clean-up phase. It follows that & = 1. O

From the above claim, the following one follows quite easily.

Claim 18 Given a Steiner tree T for U it is possible to find in polynomial time a vertex cover C

for G such that |C| < cost(T) —m

Proor: [Of Claim 18] We first find the Steiner tree T’ as in the previous claim. Then, if we let
S be the set of Steiner vertices of 77, we have that cost(T) > cost(T') = |S| + |U| — 1 = | S|+ m.
Let C = {i:d; € S};it is easy to see that |C| = || < cost(T) — m and that C is a vertex cover
in G. The latter fact follows from the fact that for any edge {¢,5} € E, the vector d; ; belongs to
U; since all the edges of T’ have cost one, and T’ does not contain weight-3 vectors, then either
d; € Sord; €9 (otherwise @, ; would be an isolated node in T’ contraddicting the fact that 7’ be
connected). ]

If T is any Steiner tree of U, the vertex cover C' for G computed according the previous claim
satisfies

cost(C') — opt(G) < (cost(T) — m) — (opt(U) — m) = cost(T) — opt(U)

and so also the second condition of the L-reduction is satisfied. O

If the following conjecture holds, then we can reduce MIN VC-B to Hamming MIN ST (without
imposing the triangle-free restriction).

Conjecture 2 Let U C {0,1}" be an instance of Hamming MIN ST such that 0 € U and all
vectors of U have weight at most 2. Then there exists an oplimum solution where all the Steiner
nodes have weight at most 2.

Janos Kérner proposed a further generalization: if U is contained in the Hamming sphere centered
in some @ € U and of radius k, then there exists an optimum solution all whose Steiner nodes lie in
the same sphere. This seemed to be a reasonable combinatorial analog of the fact that if the points
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are in R* and distances are computed according to the Euclidean metric, the Steiner points of an
optimum solution will be in the convex hull of the points of the instance. Lately, Janos refuted the
generalized conjecture. The instance U = {(0,0,0,0),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}
refutes the generalized conjecture even for £k = 3. An optimum solution of cost 7 uses the Steiner
node (1,1,1,1). Computational experiments show that any solution without (1,1,1,1) has cost at
least 8.

To approach the MIN ST in ¢; normed spaces we use a reduction from the Hamming case. Note
that for points in {0,1}™ the ¢; distance equals the Hamming distance. However, the reduction
is non-trivial since R™ contains so many points that are not in {0, 1} and we have to argue that
having much more choice for the Steiner nodes does not make the problem easier. The Rectilinear
MinN ST problem looks very much like a relazation of the Hamming MIN ST problem; our reduction
makes use of a rounding scheme proving that the relaxation does not change the optimum.

Theorem 19 Let U C {0,1}" C R"™ be an instance of Rectilinear MIN ST all whose points are in
the Boolean cube. Let T be a feasible solution for U. Then it is possible to find in polynomial time
(in the size of T ) another solution T' such that cost(T") < cost(T') and all the Steiner nodes of T'
are in {0,1}".

Before proving the theorem, we note the following relevant consequence.

Corollary 20 For any instance U C {0,1}" of Rectilinear MiN ST, an optimum solution exists
all whose Steiner points are in {0,1}".

We now prove Theorem 19.

Proor:[Of Theorem 19] Let S = {51,...,8,} be the set of Steiner points of T, and let F be the
set of edges of T'. For any 3; € 5 we will find a new point 8’ € {0,1}", so that if we let 7’ be the
tree obtained from T by substituting the § points with the corresponding §' points, the cost of 7"
is not greater than the cost of T. The latter statement is equivalent to

Yoo s—dh+ Yo ls-&lhz Y lS-dak+ Y ls-3

(3, eE,aeU (5,5n)€E (%, W), aeU (8,3,)€E

1

We will indeed prove something stronger, namely, that for any ¢ € [n] it holds

S ma-dlt Y SE-sil> Y Si-ad+ Y (8- 8
(3;,2)€E , @2eU (85,5n)€E (8 M)el , A€V (8,8,)€EE

1)

Let i € [n] be fixed, we now see how to find values of §[i],..., s [i] € {0,1} such that (1) holds.

We express as a linear program the problem of finding values of &[], ..., 8, [¢] that minimize the

right-hand side of (1). For any j € [m] we have a variable z; (representing the value to be given

—.

to 3%[i]) and for any edge e = (@,b) such that at least one endpoint is in § we have a variable y.,

representing the lenght |@[i] — b[i]|. The linear program is as follows

11



min > e Ve

Subject to

Yye > ax;—wp Ve= (5,5, €FE
Ye > Tp —x; Ve= (§j,§h) ekl (LP)
Ye > T Ve = (§;,1y) € E such that @[i] =0
Yye > 1—x; Ve=(5;,4) € E such that @fi] =1
z; >0
Ye 2 0

Setting z; = s;[t] and setting Yap = |@[:] — B[4]| yields a feasible solution, and its cost is the

left-hand side of (1). Let (Z*, §*) be an optimum solution for (LP). From the previous observation
we have that setting §%[i] = 27 we satisfy (1). It remains to be seen that (LP) has an optimum
solution where all variables take value from {0, 1}. This follows from the fact that (LP) is the linear
programming relaxation of an undirected Min-CUT problem, where all the @ such that @[] = 0
(respectively, 4[i] = 1) are identifed with the source (respectively, the sink), each §; is a node, and
the edges are like in 7. It is well known (see e.g. [PS82]) that a Min-CUT linear programming
relaxation has optimum 0/1 solutions, and that such a solution can be found in polynomial time.

a

Remark 21 There seems to be no natural analog of Theorem 19 in other norms. FEven in RZ,
using the Fulcidean metric, we have that the optimum solution of the instance {(0,0),(1,0),(0,1)}
must use a Steiner point not in {0,1}2.

Theorem 22 Rectilinear MIN ST is Max SNP-hard.

Proor: We reduce from Hamming MIN ST. The reduction leaves the instance unchanged. For an
instance U C {0,1}", we let opt(U) (respectively, optz(U)) be the cost of an optimum solution for
U, when seen as an instance of Hamming MIN ST (respectively, of Rectilinear MIN ST). Clearly,
we have that optp(U) < opty(U). Given a solution 7" for U, we find a solution 7’ as in Theorem 19.
Since in {0,1}" the distance induced by the ¢; norm equals the Hamming distance, we have that
cost(1T") = costp(T") < costp(T"). We have an L-reduction with a = g = 1. o

It is easy to see that the Rectilinear MIN £-ST and the Hamming MIN k-ST are Max SNP-
hard as well. The instances produced by the above reductions have the property that an optimum
solution has at most n Steiner nodes. So the reduction works unchanged for MIN £-ST.

5 Open questions

We don’t know how to extend our non-approximability result for MIN ST to the Fuclidean case.
Arora [Ar096] notes that, by inspecting the way his algorithm works, it is possible to claim that, for
any instance of Euclidean MIN ST, there exists a near-optimal solution where the Steiner points
lie in some well-specified positions (either at “portals” or in positions chosen at the bottom of the
recursion). This observation could perhaps be a starting point.

We don’t have explicit estimations of the constants to within which it is hard to approximate
geometric MIN TSP and rectilinear MIN ST. The constant for Min TSP should be only slightly
smaller than the corresponding constant for the (1,2) — B case (estimated around 1+ 107°). The
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constant for MIN ST is more likely to be around 1 + 10~*. Finding much stronger estimations
(comparable to the 3/2 bound of Christofides and the 1.644 bound of Karpinski and Zelikovsky)
is an open and challenging question. It appears that MIN TSP and MIN ST lack the nice logical
definability that allows to prove very strong non-approximability results for MAX CUT and MaX
3SAT using so-called “gadget reductions” [BGS95, TSSW96, Has96].
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