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STABLE FAMILIES OF BASIS FUNCTIONS
AND COMPLEXITY LOWER BOUNDS

PER ENFLO AND MEERA SITHARAM

Abstract.

— Scalar product estimates have so far been used in proving several un-
weighted threshold lower bounds. We show that if a basis set of Boolean
functions satisfies certain weak stability conditions, then scalar product
estimates yield lower bounds for the size of weighted thresholds of these
basis functions. Stable basis families, in particular, include orthonormal
basis families.

— To do this, we define and distinguish between several related notions
of approximation, and give general methods of proving nonapproxima-
bility, (both directly and by using the transitive nature of approxima-
tion). These give complexity lower bounds: we point out how several
of the methods commonly used for proving threshold and communica-
tion complexity lower bounds including the “discriminator/correlation/
discrepancy method,” the “communication complexity” method, and
the “variation rank/geometric method,” reduce to three closely related
notions of nonapproximability that depend on estimates on the scalar
products between functions. Therefore, we give general techniques for
obtaining these estimates and in particular, we obtain estimates for spe-
cific functions. In addition, we obtain new and general complexity upper
bounds by exploring approximation from Boolean bases and the transi-
tivity of approximability relationships.

— We give examples of natural Boolean basis families that are stable,
give an alternative proof, using scalar product estimates, of an old lower
bound of [20] for the weighted threshold of parities, and moreover, for
certain unstable bases, we provide a method of adapting scalar product
estimates to give lower bounds.

— One of the examples of stable basis families indicates a direct method
-using scalar product estimates - for proving lower bounds for an alge-
braic circuit model, which is related to the more standard, arithmetic
circuit, and the algebraic, linear decision tree model.

— We give a method for constructing unstable bases, and show that even
simple families of threshold functions, are unstable, thereby indicating a
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possible reason why lower bounds for weighted thresholds of thresholds
are proving so difficult.

Key words. Circuit complexity; Communication complexity; Algebraic
complexity; Stability; Complexity Lower bounds; Linear approximation;
Nonlinear approximation.
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1. Introduction

A distinct difference has been observed between the difficulties of proving lower
bounds for unweighted versus weighted threshold circuits. Several lower bounds
are known, for instance, in [16], [5], [4], [27], [22] [19], [9], [11], for the size of
circuits that compute an unweighted threshold of basis functions from various
simple families, for example majorities, general symmetric functions, etc. How-
ever, only a few lower bounds are known for weighted thresholds and only of
weaker basis families, for example parities in [20], and AC°[d] functions in [8],
(see also [2], [21] and [26]). One of the reasons suggested is that methods similar
to the “correlation/discriminator/discrepancy lemma” of [16] and [11], which
is used in most of the unweighted threshold lower bounds, are inapplicable in
the weighted case. The correlation lemma states roughly that if a function is
computable by a threshold of given basis functions, then it must have a high
scalar product with at least one of the given basis functions over any distri-
bution, and viceversa, provided the weights used by the threshold are small.
This gives a clean way to construct a function that is hard to compute by an
unweighted threshold of functions from the given basis family, roughly, by con-
structing a function that has small scalar products with all the functions in the
family. Two methods similar to the “correlation method” have been named
in the literature as the “communication complexity method,” ([11]) and the
“variation rank or geometric method” ([22]). Although these methods have
been considered as distinct and different, these methods are closely related (as
will be seen during the course of this paper), more or less reduce to the same
general method that is based on scalar product estimates.

A direct application of such scalar product estimates for proving weighted
threshold lower bounds does not, at first glance, seem viable for most bases.
The following indirect application of this approach for weighted thresholds
has been attempted, but has not met with success: first express a weighted
threshold of a basis family as an unweighted threshold of a new basis family,
and then then force small scalar products with the new family. The problem
with this approach is that the new family is typically too powerful to allow the
construction of a function having small scalar products with all the functions in
the family. For example, [11] prove that two levels of weighted thresholds can
be simulated by three levels of unweighted thresholds. Here, they have replaced
the original basis family of weighted thresholds LT'; by the significantly more
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powerful family consisting of unweighted thresholds of unweighted thresholds
LT,.

Scalar product estimates have been employed for proving weighted threshold
lower bounds in the “spectral method” of [5] which is, however, applicable only
to basis families that are orthonormal (at least over a large subdomain). We
give a general result that subsumes the “spectral method.”

1.1. Results. (We indicate general results by *, and specific complexity ap-
plications by e). (x) The result around which this paper is constructed is the

following: if basis families satisfy certain weak stability conditions, then a di-
rect application of scalar product estimates does yield weighted threshold lower
bounds.

We develop this result by formalizing several classical notions of approximabil-
ity of functions from a space spanned by a given basis. Two of these notions
correspond exactly to computability by weighted and unweighted thresholds of
the basis functions; these two notions sandwich two intermediate notions of ap-
proximation, one of which we call “high-energy approximation,” which isolates
the use of scalar product estimates and provides the key to our result.

(x) To illustrate the relationship between the various notions of approximation,
we give general methods for proving nonapproximability. In some cases, the
methods provide a characterization of (non)approximability as well. (o) We

point out how the methods that have been used for proving threshold and
communication complexity lower bounds, reduce to these general methods.

() Using these notions of approximation, we study the special properties of
approximation from Boolean basis families, and the transitive nature of ap-
proximability. (e) We illustrate the use of transitive approximability in several

previous lower bound proofs, and in particular, we show how to bypass the
communication complexity bounds which many previous results use as inter-
mediaries (the “communication complexity method”) in the process of prov-
ing threshold complexity lowerbounds. (e) In addition, we obtain a general

complexity upper bound: unweighted thresholds of functions that are linear
combinations of arbitrarily many Boolean functions in a family B can in fact
be expressed as an unweighted threshold of (polyomially many) functions in B,
provided the linear combinations have small total weight. This is a generaliza-
tion of a result of [5] that Boolean functions whose Fourier transforms have a
small L; norm can be expressed as an unweighted threshold of parity functions.
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(*) Since many of the methods for showing nonapproximability and hence lower
bounds involve finding good upper bounds on scalar products between func-
tions, we give several general methods for doing so. (e) In particular, we give

an example of a read-once AC? function of depth 3 that has a small scalar
product with every LT, function.

We formally define various notions of weak and strong stability of basis fami-
lies and show that if a basis family is stable in the weakest sense, then lower
bounds on the size of weighted thresholds of these basis functions can be proven
using scalar product estimates. (o) Stable basis families, in particular, include
orthonormal basis families, and a special case of this result yields the “spectral
method” of [5]. Using scalar product estimates, we give an alternative proof
of an old lower bound of [20] on the size of weighted thresholds of parities
(or modr functions) needed to compute an AC°[3] function. The proof in [20]
does not take direct advantage of the stability of the basis. (%) In addition,

we point out a general method of using the divide and conquer paradigm and
adapting scalar product estimates to give lower bounds for stable and also for
certain highly unstable bases. As one application, this yields the the “geo-
metric method,” or “variation rank” method of [22] which was used to prove,
for example, that the function DIP, cannot be computed as an unweighted
threshold of few symmetric functions. These examples motivate a conjecture
that all of the basis families for which weighted threshold lower bounds are
currently known, are in fact stable in a weak sense. This would permit the
use of standard methods based on scalar product estimates even though these
bounds have currently been proven using other methods.

(e) We give examples of natural Boolean basis families that are stable. One
of the examples of stable basis families involves threshold gates that take real
values as input. This indicates a direct method -using scalar product estimates
- for proving lower bounds for an algebraic circuit model, which is related to
the more standard, arithmetic circuit, and the algebraic, linear decision tree
model.

(%) Finally, we give a method for constructing unstable bases, and

(e) show that even simple families of threshold functions, (all of which have the
same two symmetries), are unstable, thereby indicating a possible reason why
lower bounds for weighted thresholds of thresholds are proving so difficult.

1.2. Organization. In Section 2, we give basic background and explain the
notation that we use. In Section 3, we define four types of approximation,
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provide methods for establishing nonexistence of approximations, study the
properties of approximations from a Boolean basis, explore the transitive na-
ture of approximability, give methods for obtaining scalar product estimates,
and sketch applications of all of the above, for proving threshold and commu-
nication complexity lower bounds. In Section 4, we give stability conditions on
basis families that permit weighted threshold lower bounds to be proven using
scalar product estimates; apply this result to give an alternative proof of the
result that AC°[3] € QT; and discuss how this result can be adapted to show
uniform nonapproximability for certain highly unstable bases. In Section 5,
we show several examples of Boolean basis families consisting of functions over
discrete and continuous domains that are stable; and discuss how one of the
continuous examples gives a method of proving lower bounds for an algebraic
circuit model, using scalar product estimates. In Section 6, we give a method
for establishing instability of a basis and show that there exist Boolean bases
that are unstable; in fact, we show that a highly restricted family of threshold
functions is unstable.

2. Preliminaries

Unless otherwise specified, all functions are from some subset S C R" to R. For
example, S could be {—1,1}", or the continuous domain (0,1)", or {1,...,n}".
The n-tuples in {—1,1}" are viewed as subsets of both R™ and the finite vector
space IF3, with -1 mapping to 1, and 1 mapping to Op,. The number of
arguments of a function is often omitted and is assumed to be n. Similarly,
the words “polynomially many” and “polynomially bounded” usually refers to
a polynomial in n. For Boolean functions including characteristic functions of
sets, the range is {1,—1}, viewed as a subset of R. Thus, for example, the
functions A, V etc. map from {1, —1}" to {1, —1} in the obvious way, with -1

taking the place of the usual 1 and 1 taking the place of 0.
The Fourier transform of a function f from {—1,1}" or IF§ to R is denoted

A

f and is given by

flz)=1/2" 3 flu)(=1)<"*;

u€lFy

thereby f(z) can be written as ¥ f(u)(—1)<®*>. The functions Y, (z) are
uclFy

defined as (—1)<®*>  and are generally called parity functions, the function
X1~ is called the Parity function, and xg~ is called the constant One function.
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The Fourier coefficients of a function f from (0,1)" to R are denoted f(u)
for u € N"™ defined as

fw) = [ Flwyemonds
/

The space of functions from any subset S of R" to R is denoted Fg, and is
equipped with the usual inner product: if S is a discrete and finite set i.e, the
space is finite dimensional, then < f,g >gs=4.; 1/|S|> f(x)g(z), and if S is

x

(0,1)", i.e, the space is infinite dimensional, then < f, g >g=4cs [ f(2)g(z)dx.
s
Sometimes the inner product is defined with respect to a distribution R over
S; ie, R(z) > 0 for x € S and > R(z) = 1, or [R(z)der = 1. Then
z 5

< f,9 >sR=def ;R(x)f(x)g(x) or < f,9 >sRrR=def g’R(x)f(x)g(x)d:v. The

set of parity functions x, : v € IFy are mutually orthogonal in F{_; 13», but

not neccessarily in F{_;1}» %, for arbitrary distributions R. However, these

functions constitute a complete (possibly redundant) basis for F;_; 1y» %, for

any R. The norms are defined as usual: || f||1,s =qes ZS |f(z)]; or %: |f(z)|dx;
TE

and || f||co,s =def SUPzcs |f(x)|. However, the 2-norm ||f||2,s =dger V< f, f >s.
The norms could also be defined with respect to a distribution R over S in the

usual way. For example, ||f||o.sr =aef /< f, [ >sr. The projection f|x for
X being a subspace of Fg is the component of f in X. Thus f|x + f|x+ = f
and if M forms an orthonormal basis for X, then f|x = > < f,g >sg.

geM

The following are basic properties of the Fourier spectra of Boolean func-
tions.

Fact 2.1. For functions f and g over IFy, the following hold.

(i) Parseval’s identity:

1fll3=(1/2") 32 fx) = > @) =Ifl5

z€lFy z€lFy

This identity holds also when the Fourier coefficients f (x) are replaced
by the coefficients when f is expressed as a linear combination of any set
of orthonormal basis functions.

(ii) The value of the transform at 0™ is the expected value of the function:

FO7) = (1/27) 3 f(u).
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The following theorem expresses nonapproximability of Boolean functions
using equivalent statements of approximability. These are proven directly using
the duality principle in [26] and are proven (and expressed) differently in [11]
and [8] as generalizations of the “discriminator or correlation lemma” of [16].

THEOREM 2.2. Let f be a Boolean function and B a set of Boolean functions,
and let M C B consist of independent Boolean functions.

(i) The following are equivalent.
e There does not exist an approximation g € span(M) with sign(f) =
sign(g).
e There exists an approximation | € span(M)* with ||l||; > 0 and
sign(f(x)) = sign(l(x)), whenever I(z) # 0.

(ii)) The following are equivalent.
e There does not exist an approximation g = Y aph with Y |as| <1,
heM heM

and € < |g(z)| < 1 everywhere, and sign(f) = sign(g).

e There exists an approximation [ close to span(M)* with ||l||; = 1 and
sign(f) = sign(l), where ever | # 0. By “close to span(M)~” we mean
that | >, l(x)h(z)| < € for allh € M.

Complexity (resource) bounds on a function are always understood as be-
ing in terms of the number of its variables. In the case of threshold complexity
classes, the complexity of functions is given by the dimension of a good approx-
imating space spanned by specific kinds of basis functions. Some common basis
functions besides Parity, One and the parity functions y; are the following: the
functions A, for disjoint u,v € IF] are the And functions, and are defined as

/\uﬂ,(:v) = /\ ZT; /\ .’Z’Z’;

1EU 1€V

When viewed as mapping from {1, —1}" to {1, —1}, A, (z) takes the value —1
exactly when all the z;’s with ¢ € u are —1’s, and all the x;’s with ¢ € v are 1’s.

Some complexity classes of functions over {—1,1}" that the paper deals with
are the following. The class PT; (QT) consists of Boolean functions f that
are approximable by a function g in the span of (quasi)polynomially many basis
parity functions xs, with |[f — g||s < 1.

The class LT, consists of Boolean functions f that are approximable by a
function g in the span of basis parity functions x;, with [s| < 1 and ||f —¢||e <
1.
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In general, LT, is the class of Boolean functions f that are approximable
by a function ¢ in the span of polynomially many basis functions in LTy 1,
with with ||f — g||cc < 1. The class LTy is the class of Boolean functions f
that are approximable by a function g which is in the span of polynomially
many basis functions g¢; in LATd_l, with the additional condition that when
g = Y_; a;g;, the coefficients a; are normalized to _; |a;| < 1, and each a; is a
rational whose denominator is polynomially bounded. It should be noted that
often in the literature, the normalization of Y, |a;| is removed, the condition
[|lf — 9glloo < 1 is simply written as sign(f) = sign(g), and the a;’s are taken
to be polynomially bounded integers. Finally, AC°[d] is the class of functions
computable by (constant) depth d {A, V, —}-circuits of polynomially bounded
size.

Some algebraic complexity classes of functions over (0, 1)™ that the paper deals
with are described by threshold circuits, where the gates at the bottom level
take inputs from (0, 1)". These algebraic models of computation are related to
arithmetic circuits, (see [7] and see [23]), and algebraic, fixed degree (linear)
decision trees and algebraic computation trees studied in, for example, [29] and

[6].
3. Types of approximation

In this section, we define four types of approximation, provide methods for
establishing nonexistence of approximations, study the properties of approxi-
mations from a Boolean basis, explore the transitive nature of approximability,
and give methods for obtaining scalar product estimates. We also provide appli-
cations of all of the above, for proving threshold and communication complexity
lower bounds. The applications are usually sandwiched by (O’s

DEerINITION 3.1. Let f be a Boolean function and B a set of Boolean func-
tions, over a domain S C R", and let M C B consist of independent Boolean
functions.

(1) A function g € span(M) is a uniform approximation to f from span(M)
if sign(f) = sign(g).

(2) A function g € span(M) is an e-close 2-norm approximation to f from
span(M) if ||glla < 1 and | Y f(x)g(x)| (or | [ f(x)g(x)dx|) is at least €.
z s
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(3) A function g € span(M) is an e-high-energy approximation to f from
span(M) if g = Y aph, with Y |as| <1, and | Y. f(z)g(z)|
heM heM z
(or | [ f(x)g(x)dx|) is at least e.
s

(4) A function g € span(M) is a e-close approximation to f from span(M)
ifg= Y aph, with Y |ay| <1, and sign(f) = sign(g), with |g(z)| > €
heM heM

everywhere.

REMARK 3.2.

e An e-close approximation is an e-high energy approximation which is in turn
an e-close 2-norm approximation.

e An e-high energy approximation is an e-close approximation over some sub-
domain whose measure is an € fraction of the measure of S.

e An e-close approximation is a uniform approximation, but high energy or
close, 2-norm approximations need not be uniform approximations, nor vicev-
ersa.

e The first two kinds of approximation depend only on the space span(M) and
are independent (even of the Boolean-ness) of the basis M, but the latter two
depend on the actual basis M.

We now sketch some instances where these approximations arise in complexity
applications. (See [26] for a unified approximation theoretic treatment of these
and other complexity applications).

(O Here, we only consider the case where the domain S of the function f being
approximated is {—1,1}", so the space of functions is 2"-dimensional. The
complexity applications for continuous domains S is discussed in the Section
5. The function f has a uniform approximation from span(M) if f can be
expressed as a weighted threshold of functions in M. Similarly, f has an e-
close approximation from span(M), with € being at least 1/poly(n) for some
polynomial poly if f is an unweighted threshold of functions in M and |M|
is bounded by a polynomial. Many natural Boolean functions are unweighted
thresholds of linear functions, or simply linear combinations of polynomially
many Boolean functions, for example, any function with a low communication
complexity, is a simple linear combination of cross product functions by the
following fact.

Fact 3.3. If the deterministic communication complexity of a Boolean func-
tion f is at most logm, then f is exactly interpolated by Y. r;+(m—1), where
i<m
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the r; are cross-product functions (characteristic functions of cross-product sets,
or ‘“rectangles,”) not including the constant function.

In addition, close approximations naturally arise from probabilistic communi-
cation complexity, using the following fact.

Fact 3.4. If the (1 — €)-error probabilistic communication complexity of a
Boolean function f is at most log m, then there is a very close approximation g

with the same sign as f, of the form g = Y. a;r;, where, as usual, Y |a;| <1,
i<m? i<m

the the r; are cross-product functions, and |g(z)| > €/m everywhere.

O

The next proposition shows that establishing non-existence of high-energy
and close approximations is fairly straightforward, while establishing non-existence
of uniform approximations is not, which is not surprising since f has a uniform
approximation from span(M) if and only if f is computable by a weighted
threshold of functions in M.

ProPOSITION 3.5. Let f be a Boolean function and B a set of Boolean func-
tions, over a domain S C R", and let M C B consist of independent Boolean
functions.

e Establishing non-existence of a uniform approximation to f, is equivalent to
showing that there is a function | such that < [,g >= 0 for every g € M (or in
span(M)) and sign(f) = sign(l) wherever | is non-zero.

(1) To establish the non-existence of e-close 2-norm approximation to f from
span(M) is equivalent to showing that the projection f|span(v) has 2-norm
strictly less than e. This shows that there is no high-energy approximation to
f from any normal basis for span(M).

(2) To establish non-existence of e- high energy approximations from span(M)
to f, and therefore of e-close approximations, it is sufficient to show that for
all functions h in M, the scalar product < f,h >< €.

(3) Establishing non-existence of e-close approximations is equivalent to show-
ing that there is some distribution R on the domain such that for all functions
h in M, the scalar product < f,h >zr< €.

The validity of all of these methods is either straightforward or follows from
Theorem 2.2. We discuss implications of these methods for proving complexity
lower bounds.
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O Applying Method (1) is by no means easy, and hence uniform nonapprox-
imability results and the resulting lower bounds for weighted thresholds are
notoriously difficult and rare (recall that LT's is not known to differ from NP).
Exceptions include a few results in [2] (relying mainly on univariate techniques)
and [20] for weighted thresholds of parities, [21] for weighted thresholds of ands,
[8] for weighted thresholds of AC°[d] functions, and [26] for stronger lower
bounds for weighted thresholds of these and other classes of functions. All of
these papers, in effect, use Method 1, although all but the last two papers do
not state so explicitly. The last paper explicitly constructs a function [ as in
the proposition. It should, however, be noted that in 4.5 the result of [20] for
weighted thresholds of parities is given an alternate proof, this time explicitly
using the stability of the parity functions as a basis family and a method close
to Method (2) above.

The last method is the most commonly used, follows directly from Theorem
2.2(ii), and is referred to as a generalization of the “discriminator/correlation/
discrepancy method” in [11] and [16]. Methods 2 and 3 are fairly easy to use for
proving lower bounds, if the hard function f can be simply constructed to have
small scalar products with all the functions in the basis family B, perhaps with
respect to some distribution R. These methods have been used in [16], [19],
[22], [9], [11], to show non-existence of close approximations, and therefore, to
show unweighted threshold lower bounds.

Often, the stronger second and third methods of showing non-existence
of close 2-norm and high energy approximations are used for showing non-
existence of close approximations, but high energy approximations have not
been considered explicitly. The second method is used, in effect, in [22], but
is referred to as the “variation rank or geometric method,” (see explanation
following Observation 4.9).

The last three methods are also viable for showing the communication com-
plexity lower bounds of [16], [11], [15], [18], [24], [10], [12], [3], and [9], although
the original proofs of these bounds use more ad hoc methods.()

3.1. Boolean bases and transitive approximability. The next result
shows that close approximations from Boolean functions have a surprising prop-
erty which results in a general complexity upper bound as corollary. The proof
of the theorem follows closely along the lines of the proof of [5]. They showed
a special case of the corollary, namely that PL; C PT;.

THEOREM 3.6. If f is closely approximable by g € span(B), with |g(z)| >
1/poly(n) for all x, where B is a Boolean basis, then f is closely approximable
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by ¢ € span(M) with |¢'(z)| > 1/poly®(n) everywhere, where M C B, and
|M| < poly®(n).

ProOOF.  The idea of the proof is to obtain a random function ¢’ which is

constructed as a linear combination of at most poly®(n) functions in B, and

show that with non-zero probability, ¢’ has the same sign as g everywhere. Let

g = hEB aph, where hZB lap| = 1. Define a probability distribution over B, as
€ €

P(h) =des |an|. Construct the random function ¢’ as

! al )
9 =def ZZza

=1

where the Z; are N i.i.d. random variable, taking the values h or —h for h € B,
and defined as:
Z; = sign(ap)h with probability p(h).

L.e, the terms that go into ¢’ are picked at random.

Notice that for each fixed z, the value ¢'(x) is a random variable, given
as the sum of N i.i.d. random variables corresponding to the wvalues Z;(x),
1 < i < N, each distributed as follows:

1 withprob >  p(h),
h:aph(z)>0

—1 with prob >  p(h).
h:aph(z)<0

It is not hard to see that at any given z, the expected value of Z;(x) is

> p) = > p(h)

h:aph(z)>0 h:aph(z)<0

which is nothing but g(z), and the variance of Z;(x) is
E(Zi(2)*) = g*(z) =1 - ¢*(x).

Hence for any z, E(¢'(x)) = Ng(z), and Var(¢'(z)) = N(1 — ¢*(z)).

Choosing N > 2n/min,g?(x) > poly®(n), using the central limit theorem,
we obtain that for each xz, the probability that |g(z) — ¢'(x)| > |g(=)], (i.e, the
probability that ¢’(x) does not have the same sign as g(x)) is at most e ™ < 27",
and by the union bound, the probability that for some = the signs of g and
¢’ differ is strictly less than 1. Thus with non-zero probability, a function ¢’
exists that is a linear combination of at most poly®(n) functions in B, and has
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the same sign as g everywhere. Furthermore, by the nature of the construction
of ¢’ as a linear combination with polynomially bounded integer weights, it
follows that f has a 1/poly®(n)- close approximation (obtained by normalizing
g'), from the span of polynomially many functions in B, and in fact, ¢’ directly
provides an expression for f as an unweighted threshold of functions in B. O

Next, we give results of the following form: “f is approximable from the span
of a set of m; functions g; in some basis B, and g; are all approximable from
the span of a set of my “simple” functions h, then f is approximable from the
span of mimy “simple” functions.” These results will follow directly from 3.5
and 3.1.

Results of this nature are useful for building on previous nonapproximability
results. For example, a result of the above form, together with the nonapprox-
imability of f from the span of m;msy simple functions would imply that one
of the approximability hypotheses is false.

Moreover, statements of this type remain meaningful when the word “not
approximable” is replaced by “small scalar product.” This will be used in
Subsection 3.2.

THEOREM 3.7. Let f be a Boolean function, B a set of Boolean functions,
and @ a set of “simple” Boolean functions.

(1) If
e f has a high energy approximation g, with | Y-, f(x)g(x)| > 6, from the
span of functions in B
and
e every function in B is the linear combination of Boolean functions in
Q, with the sum of the absolute values of the coefficients bounded by m,
then
| < fyh>|>d/m, for some function h € Q.

(2) If

e f has a high energy approximation g from the span of functions in B
with |32, g(z)f(z)| > €,

and

e for every g € B there is a close approximation h, with the same sign as
g, and in the span of m Boolean functions in @), satisfying |h(z)| > ¢ for
all x

then
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(3)

(4)

(5)

(i) there is a set of m of functions h* € @, and a subset S consisting
of at least (1 + €)/2 fraction of the domain, such that for every
distribution R over S, | < f,h* > |g > 6, for at least one of the m
functions h*; and

(ii) | < f,h* > | > e+ — 1, for some h* € Q.

If

e f has a close approximation g from the span of a set of m; functions
gi, (1.e, g has the same sign as f with |g(z)| > § for all x, )

and

e cach g; has a close approximation h; from the span of a set of msy
functions h;;, with |h;(z)| > € for all z, and 1 — € < 6/my,

then

there is a close approximation h* to f from the span of the mymy resulting
functions h;; € @ with |h*(x)| > €6 for all z.

If

e [ has a close approximation g from the span of m; functions g; € B
with with |g(z)| > ¢ for all x,

and

e each g; can be expressed as a linear combination of functions in a set ()
with the sum of the absolute values of the coefficients bounded by ma,
then

[ has a close approximation h*, with |h*(z)| > §/mo everywhere. It
follows from 3.5(3) that for every distribution R, there is a function h € Q
such that < f,h >r> 6/my. Moreover, by 3.6 f has a close approximation
h* from the span of at most 4m?m?2 functions in Q.

If

e [ has a high energy approximation g, with the same sign as f, from
the span of my functions in B with |}, g(z) f(z)| > e,

and

e cach function in B has an approximation with the same sign from the
span of mgy simple functions h € @,

then

f is approximable on some subset S consisting of at least (1+¢)/2 fraction
of the domain from the span of mymo functions h € Q).

Proor. For (1) (2) and (5), since f has a high energy approximation g €
span(B), by 3.5(2), there is a function ¢* € B such that |}, f(z)g*(x)| > o
(1) now follows immediately.
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For (2) and (5), notice that since both f and ¢g* are Boolean, f and ¢g* must
coincide in sign on at least a (1 + €)/2 fraction of the domain. (5) now follows
immediately.

For (2), since ¢g* has a close approximation A from the span of m functions
h* € @, (i) follows by 3.5(3). The consequence (ii) follows from the fact that h
is a high energy approximation to ¢* with | Y-, ¢*(z)h(z)| > 0. Thus we obtain
the existence of 3 Boolean functions f, ¢* and h* such that

< f,g">>¢€ and < g*',h" >> 0.

Therefore < f,h* >> €+ 0 — 1.

For (3), we use the fact that the functions g; have a very close approximation
h; from the span of my functions h;j, since 1 — e < 6/m;. Now, to form the
required close approximation to f from the span of the m;m, functions h;; in
@, modify g as follows: simply replace each of the g;’s that form g, with the
corresponding approximation h;.

For (4), choose the close approximation h* to f as g/my. O

Next, we give some complexity applications of the properties of Boolean bases in
3.6 and the transitive nature of approximability in 3.7, in conjunction with the
nonapproximability characterizations in 3.5. Each application is sandwiched

by (O’s.

(O 3.7 (1) and (2) form the backbone of the lower bounds (nonapproximability
results) of [16] and [11] that LT3 € LTy, LT, ¢ PT,, and PTy ¢ LT,. [11]
uses communication complexity upper bounds to prove approximability of the
functions in the relevant class B by the span of a few cross-product functions
(in @), and then, in effect, uses of 2.2 (2) to show that f is not appropriately
approximable from the span of few cross-product functions. The desired non-
approximability of f from the span of few functions in B then follows from 3.7.
The papers, especially [11] employ the communication complexity paradigm
throughout instead of treating the issue as approximability from cross-product
functions.

It should be noted that while it is often easier to show that specific func-
tions are appropriately approximable from the span of cross-product functions
by giving a direct upper bound on the communication complexity, the word
“communication complexity” can otherwise be removed from all (lower bound)
proofs involving threshold functions, or linear (non) approximability results,
without making the proofs any more difficult, or any less intuitive. In fact,
translating “low communication complexity” as “appropriate approximability
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by few cross-product functions” allows one to take advantage of transitive ap-
proximability. This, in turn, allows a natural extension of approximability
notions, such as 3.7 that are already being employed and and often makes the
proofs that employ the “communication complexity method” shorter and more
transparent.

The hypothesis of 3.7 (2) also holds when the functions g are functions in
LT,, with h = Za,xz + ap and, as usual, E la;| < 1 and the qa; are rationals

with denomlnators bounded above by 1/4. Here the simple functions in () are
the linear monomials and the constant function. In this case, showing the the
negation of 3.7 (2) (ii) for 1/§ being polynomially bounded would simply mean
that g & LT1. O

(O An example application of 3.7(3) is the following result proved in [11] using
communication complexity. This can be obtained directly from 3.7(3) using
the useful fact in [11] that every LT, function has a very close approximation
from the span of polynomially many LT; functions.

“A circuit with an unweighted linear threshold gate on top, arbitrary linear
threshold gates at the middle level, and gates from a class C' in the lowest level
can be simulated by a circuit with exactly the same gate on top, unweighted
linear threshold gates in the middle level and exactly the same gates from C
at the bottom.”

Another example application of 3.7(3) is the following: LT'; functions have
a very close approximation from the span of few LT, functions by a result
of [11]. The approximation is sufficiently close that the weighted gates at the
middle level can be removed by replacing them by their approximation which is
a linear combination of unweighted threshold gates. Moreover, LT; functions
have a very close approximation from the span of few cross-product functions
by a simple probabilistic communication complexity upper bound, ( in fact
they are even interpolable from the span of a few more cross-product functions
by the straightforward deterministic communication complexity upper bound).
Therefore, LT, functions have a very close approximation from the span of
few cross-product functions, and this approximation does yield a probabilistic
communication complexity upperbound for L7, functions, although this is not
directly a consequence of Fact 3.4 alone. In general, it seems that approxima-
bility results are a viable method for proving communication complexity upper
bounds as well, in addition to the usual method of finding an appropriate com-
munication protocol. O
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(O Non-approximability results from cross-product functions, on the other
hand, are theoretically stronger than lower bounds on communication com-
plexity, but nevertheless provide a viable method of proving such lower bounds,
since in practice, several of the known lower bounds on communication com-
plexity such as the results of [16], [11], [15], [18], [24], [9], [12], [3], [9] actually
yield the stronger nonapproximability results from cross product functions,
which can be obtained independently using the methods of this Section. For
example, using 3.7(1) and (2), a lower bound of logm on the communication
complexity of a function g can be obtained by showing ¢ is not a linear com-
bination -with small coefficients - of m cross-product functions or by showing
that there is a function f such that | < f,s > | < e for cross-product functions
s, and yet | < f,g > | > me. Similarly, a lower bound of logm can be obtained
on the (1 — d)/2-error probabilistic communication complexity of g as follows:
show the negation of 3.7 (2) (i) that for each set of m cross-product functions,
for some € and each subset S with |S| > (1+¢)/2 fraction of the domain, there
is a distribution R over S with < f,s >z< 4, but < f,g >>¢. O

(O A special version of 3.7(4) is used in the proofs of [20] and [17] i.e, the
approzimability result that AC°[2] C PT,. [20] gives a separate probabilistic
argument. [17] gives an algorithm to find the approximating function. Our
proof of 3.7(4) subsumes this result, is straightforward from 3.5(3), and 3.6,
and clarifies exactly where the orthonormality of the functions in @) is needed,
and moreover gives the new result complexity result below.

COROLLARY 3.8. Let f be expressible as an unweighted threshold of (poly-

nomially many) functions g;, and let each g; be a linear combination Y. aph
heB

for any Boolean family B, with 3 |ay| being polynomially bounded. Then f
heB

can be expressed as an unweighted threshold of (polynomially many) functions
in B. For example, taking B to be the family of parity functions, it follows
that LATl- PL, C PATl. Le, an unweighted threshold of polynomially many
functions in PL, can be simulated by an unweighted threshold of polynomi-
ally many Parity functions. Here the orthonormality of the Parity functions is
purely incidental and irrelevant. Only their Boolean-ness is relevant.

O

3.2. Small correlation and nonapproximability. The next two theorems
provide general methods for showing that the scalar product < f, g > is small,
for some fixed f, and for all functions g in some class B which is modelled
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after LT;. Such scalar product estimates are needed for employing Methods
(2) and (3) of Proposition 3.5 to prove nonexistence of close and high energy
approximations to f. In the next section, we will show that when the family B
is a “stable basis family”, then in fact, scalar product estimates and Method
(2) and (3) can be used for proving uniform nonapproximability of f as well,
(which is much more valuable in the quest of proving weighted threshold lower
bounds).

Viceversa, many of the methods given below - for obtaining scalar product
estimates - will, in their turn, rely on nonapproximability results.

It is generally assumed that every g € B is either in the span of simple
functions or is approximable (to some degree of closeness) in the ||.|| norm
from the span of simple functions.

Showing that the scalar product < f, g > is small is a combination of two
tasks. First, a transitive approximability relationship is shown roughly of the
form: if < f, g > is large, and g is closely approximable from the span of simple
functions, then f must be also be closely approximable in some sense from
the span of few simple functions. Second, a strong nonapproximability result
is proven that f cannot be thus approximated. The second part is stronger
than what is required: we only require that f should not be approximable by
linear combinations of those simple functions that are used to approximate the
functions ¢ € B. But such sets of simple functions are hard to isolate, so one
is usually forced to consider all sets. The second part could be based on any
of the methods of the previous four subsections. The next theorem presents
natural combinations of these two parts. The proofs are straightforward and
use Theorem 3.7 and Theorem 2.2.

THEOREM 3.9. Let f be a Boolean function, B a set of Boolean functions,
and @) as set of “simple” Boolean functions.

(1) If every g € B is the linear combination of functions h in ) with the
coefficients summing, in absolute value, to at most m, and < f,h >< €
for each h € Q). Then < f,g >< me. (Application of 3.7(1)).

(2) If for every g € B there is a function h, with the same sign as g, and
in the span of m functions in @, satisfying |h(x)| > ¢ for all x; and
furthermore, if f is a function such that < f,q >< ¢, for every q € Q,
then < f,g >< e+ 1—4. (Application of 3.7(2)).

(3) If g is in the span of m functions h € @, and if for every subset S of the
domain that contains more than an (1 + €)/2 fraction of the points and
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any set M of m functions in @), f is not approximable from span(M) on
S, then < f,g >< €. Any appropriate method of this paper (including
those that follow in the next section) could be used to show that f is not
approximable on S from span(M).

O O From 3.9(3) we get the following for the special case where the functions
in B are LT, functions, and @ is the set of the linear monomials.

We use the following straightforward observation which reduces nonapproxima-
bility into a purely geometric problem that is amenable to decomposition.

OBSERVATION 3.10. Any set M of Boolean functions provides a map Ty, from
{—1,1}" to {—1,1}M by mappingx — (h1(z), ..., hjar(z)). Thus any Boolean
function f over {—1,1}" is transformed into a function f; over the image of
Tor- Le, far(x) =dgep frr(Tar(w)). Now, the convex hulls of f;;'(1) and f;/'(—1)
intersect if and only if f does not have an approximation with the same sign
from span(M). Two convex sets intersect if any of their subsets intersect, and
thus this observation allows a nonapproximability question to be decomposed.

THEOREM 3.11. Given a Boolean function f, and a function g € LT,. if for
each subset S C {—1,1}" with |S| containing more than an (1 + €)/2 fraction
of points, one of the following holds, then < f,g >< e.
(i) ConvexHull(f~1(1) NS) N ConverHull(f~1(—1) N S) is non-empty (follows
from 3.9(3) and 3.10).
(ii) The linear monomials and the constant function One continue to remain a
polystable basis on S, but | < f,x; >s | and | < f,One >g | are < 1/(n +
1)poly(n + 1) (follows from 3.9(3) and 4.2 in the next section).

(iii) There is a set Il of permutations of the variables such that f is invariant
under the permutations in 11, and for all linear functions g, Y. g(m)(x) has the
well

symmetric form a 'y x; + ag, for some a and aq. Finally, f is not approximable
i
by any symmetric function a '} z; + ag, over (| S(w) (follows from 3.9(3), and
i well
4.9 in the next section).

(iv) There is a set II of permutations of the variables such that f is invari-
ant under the permutations in II, and for some point a in f~1(1) NS and
bin f71(-1)nsS, ¥ w(a);=0,and > 7(b); =0, for all ; (or

w€ll,m(a)ES w€ll,n(b)ES
> w(a)i= X w(b);foralli,and |[{mr € l:7(a) € S} =|{mrell:
well,m(a)€eS well,w(b)eS

7(b) € S}|) (also follows from 3.9(3), and 4.9 in the next section).
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As a direct application of any one of the methods of 3.11, we obtain the
following.

FACT 3.12. The read-once AC"[3] functions of depth 3 satisfy: < RO[3],g ><<
ROI[3], One >=2RO|3](0"), for all g € LT},.

PROOF. Any of the methods of 3.11 can be used to prove this result.
We illustrate the convex-hull intersection argument (neccessary for employ-
ing 3.11(i)) We prove the straightforward result that RO°[2] ¢ LT;. The proof
of the fact is carried out along the same lines, by showing RO°[3]|s & LT

for any large subdomain S. We will consider the canonical AC°[2] function
kok

RO2|(z) == V A =z;;. If an LT, function g equals RO[2], then, in particular,
j=1i=1

g(z) = —1 when z;; = —1, for 1 <i < k and z;; = 1, for all 4 and all j # 1;
and ¢g(y) = —1 when y;p = —1, for 1 < i < k and y;; = 1, for all 4 and all
j# 2.

Moreover, for every z,w such that x +y = z + w (where the + stands for
addition in R"), either g(z) = —1 or g(w) = —1, since g, being in LT, is the
characteristic function of a halfspace of R". However, for our chosen function
ROI2], we can find z and w with z + w = x 4+ y, with both f(z) = f(w) = 1.
For example, choose z with z;; = —1 and z;p = —1for 1 <i < k/2 and z; = 1,
for all 7 and all j # 1, 2, and choose w such that x+y = z+w. This contradicts
the assumption that g = f. O

O

In the next section we discuss conditions on the basis family B under which
proving non-existence of high-energy approximations (Method 3 above) is suffi-
cient to show non-existence of uniform approximations, and therefore sufficient
to show weighted threshold lower bounds (which, in general, requires the more
difficult Method 1).

4. Stable basis families and uniform approximation

In this section, we define four notions of stability and show that if a basis is
stable even in the weakest sense, then showing uniform nonapproximability
reduces to showing “high energy” nonapproximability. We apply this idea to
give an alternative proof of the result that AC°[3] € QT,. In addition, we show
how this idea can be adapted to show uniform nonapproximability for certain
specific unstable bases. Finally, we show how stable basis families are useful for
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proving approximability results and use this to give a new complexity result
that unweighted thresholds of PL, functions can be obtained as unweighted
thresholds of parities.

DEFINITION 4.1. (1) A set B of functions forms a poly stable basis family,
if for all M C B of independent functions h, and values ay, the functions
satisfy || 3 aphl||3 > 1/poly(|M|) ¥ a2. When poly is just 1, then B is

heM heM

an orthonormal basis.

(2) A set B of functions forms a poly quasistable basis if for all M C B of
independent functions, and values ay, there exists M' C B of indepen-
dent functions, and values a},, with |M'| < poly(|M|), sign(h% aph) =

c 7

sign( Y aph), and furthermore, for all values aj,, || > ajhl||5 > 1/poly(|M'])
heM heM!

> af.
h'eM’

(3) A set B of functions forms a poly strong stable basis for approxi-
mating a function f, if for all M C B of independent functions and
for all values ay, that satisfy sign( > aph) = sign(f), it holds that

heM

|| > axhl|3 > 1/poly(|M|) ¥ ai. This notion can also be defined for
heM heM
quasistability.

(4) A set B of functions forms a poly weak stable basis for approximat-
ing a function f, if for all M C B of independent functions, for at
least one value of ay, that satisfies sign( Y- aph) = sign(f), it holds that

heM

|| 3 anh|l2 > 1/poly(|]M]|) 3 a?. This notion can also be defined for
heM heM
quasistability.

Next we show that if a Boolean basis B is stable even in the weakest sense,
then showing uniform nonapproximability reduces to showing high energy non-
approximability, which, as pointed out earlier, is much easier to show, using
the Method 3 in Proposition 3.5.

THEOREM 4.2. Let f be a Boolean function, B a family of poly-stable Boolean
functions, and let M C B. Then any approximation g € span(M) with
sign(f) = sign(g), § = Shear anh, and Spens lan| < 1, is a high energy ap-
proximation satisfying 9]l = | = f(x)g(x)| > 1/(|M|poly(|M])).

This result extends to the case where B forms a quasistable basis in the weak
sense with respect to approximating f.
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PrROOF. We show that any function g, which is a linear combination as in
the theorem, satisfies ||g|[1 > 1/(|M|poly(|M|)), using the fact that B is poly
stable. Since, in addition, sign(f) = sign(g), it follows that | > f(z)g(z)| >

1/(|M|poly(|M])), since f is Boolean.
Since B is stable,

3 a2 < poly(IM|) Y g*(x) = 2"poly(|M])||g|[3.

heM T

Assuming without loss that Y |a,| = 1, it follows that
heM

> ap > 1/|M],
heM

and hence 2"||g||2 > 1/(|M |poly(|M]|)). Moreover, the functions h are Boolean,
and therefore ||g||oo < 1, since Y |ap| = 1; thus
heM

llglls > 2"(1g]13 > 1/(1M|poly(|M])).

|

(O Notice that Theorem 4.2, together with the Method 3 in Proposition 3.5
directly imply, as a special case, the “spectral method” of [5] that the number
of Parities or monomials, or any other orthonormal set needed to approximate a
function exceeds the inverse of its maximum Fourier coefficient, or respectively,
the maximum scalar product of the function with an element of the orthonormal
set, which, in turn, yields that P7T; C PLgo1 as a corollary. O

Below, we obtain a generalization of this result that gives a similar lower bound
on the number of elements of a polynomially stable basis that are needed to
approximate a function, in terms of the maximum scalar product of the function
with elements of the basis.

In general, we will show that stable basis families reduce the difficulty of
Methods 1 and 2 in in Proposition 3.5 to the level of Method 3. The proof
follows directly from Propositions 3.5 and 4.2.

PROPOSITION 4.3. Let f be a Boolean function, B a set of poly stable (not
neccessarily Boolean) functions, and let M C B.

e To establish non-existence of a polynomially-close 2-norm approximation to
f from span(M), say a 1/p(n)-close approximation, it is sufficient to show that
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for all functions h € M, | < f,h > | is at most an inverse polynomial in |M|,
which depends on poly and p.

e If, in addition, B consists of Boolean functions, then to establish nonexistence
of any uniform approximation to f from span(M), it is sufficient to show that
for all functions h € M, | < f,h > | < 1/|M|poly(|M|). This also holds when
the basis is quasistable in the weak sense with respect to approximating f.

Therefore, once a Boolean basis B is shown to be polystable, then clearly f
cannot be computed by a weighted threshold of any set of at most m functions
in B, if | < f,h > | < 1/(m poly(m)) holds for all h € B. This however, may
not be easy to show, or may not even be true. To help with this difficulty, at
least in the case where poly is linear or even 1 (which happens if B is actually
orthonormal), the next theorem shows that with stable basis families, an even
weaker estimate on the scalar products is sufficient for showing nonexistence of
uniform approximations.

THEOREM 4.4. Let f be a Boolean function, B a family of poly stable Boolean

functions, and let M C B. To establish nonexistence of any uniform approxi-

mation to f from span(M), it is sufficient to show that || f|span(an)||ec = || X <
heM

fih>hl||lw <1;orthat > | < f,h>|<1/poly(|M]).
heM

Proor.  The proof uses the following claim which follows by Proposition
3.5(1).

Claim. Let f be Boolean and let X be an arbitrary space of functions. If f ¢ X
and the projection f|x satisfies || f|x||co < 1 then f is not approximable in the
oo norm from X, i.e, there is no g € X, with the same sign as f.

The proof of the theorem follows immediately from the fact that the basis
family B is both Boolean and poly stable. O

(O Next, we turn to a complexity application: we use Theorem 4.4 to give a
simpler proof of a result of [20] that AC°[3] € QT ;.

Lol 1
THEOREM 4.5. If the AC°[3] function f(z) := \1/ /i \7 Tijk, where n = l1lsl;
1

i=1j=1k=
and l; = ly = l3 has an approximant g € span(M) where M consists of parity
functions x,, with ||f — g||e < 1, then |M| > Q(2"°), for any constant ¢ < 1.
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ProOOF. Since the parity functions form a stable, even orthonormal basis, it
is sufficient, to show, using Theorem 4.4 that for all sets M consisting of parity

functions, ¥ |f(s)| <1, unless |M| > Q(2").
XsEM

Set the quantities ¢, := 1/2", g5 := (1 — @) and g5 := (1 — go). It is
not hard to see (see [25]) that |f(z)| is largest for [f(1™)| = |1 — 2¢3| and for
x for which z;5, = 1 except for a single value of 7 and j. In the latter case,

1f(2)| < 2q1¢205/((1 — q1)(1 — ¢2)). Since

o 1F(s) < 2¢5 — 1+ [ M| % 2q1g2/(1 — @1)g3/(1 — o)

XsE€EM

the conditions on |M| corresponding to ¥ |f(s)| < 1 depend on the choice
Xs€EM
of ¢3:

(i) g3 >1/2 or
()as<l/2
In case (i), > |f(s)|is bounded by 1 as long as

(M| < (1/q = 1)(1/¢2 = 1)(1/g5 = 1);

and in case (i), ¥ [f(s)| is bounded by 1 as long as
XsEM

M| < (1/g1 —1)(1/q2 — 1);

We choose case (i), and ignore the latter. Now for any ¢ < 1, l1,ls,l3 can be
chosen such that both g3 > 1/2, and (1/q1 — 1)(1/q2 — 1)(1/g3 — 1) > Q(2™).
which completes the proof. O

O

Is the converse of Theorem 4.4 true? The answer is no. In other words, it could
be that f is not approximable from X and yet f|x. does not behave like f.
However, a version of the converse does hold, thereby giving another equivalent
condition to nonapproximability, via Theorem 2.2 (1).

FAcT 4.6. We use f|s x to denote the projection of fs on Xg. Notice that this
is different from taking the projection f|x and then restricting it to S. In other
words, as mentioned in the background section, the space Xz is not the same
as taking X' and restricting to S. The following are equivalent.

e There is a nonempty subdomain S with || f loos <1

e There is no g € X, with the same sign as f.

S,X
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PrROOF.  For the forward direction, define [ € X+ to be 0 outside S, and
flxt = fs — flsx on S. Since flgx(z) < 1forall z € S, it follows that on its
support, [ has the same sign as f. Now apply 2.2(1).

For the reverse direction, we use a geometric argument to find the set S*
such that f|X|§* = fs — fl|s+.x has the same sign as f where ever non-zero.

Let C; be a cone or orthant in Fy. - viewed as R? - and given by {g :
sign(g) = sign(f)}. Notice that each facet of this cone is also a cone that
contains exactly those functions that are 0 outside some subdomain S, and
are either 0 or have the same sign as f on S. The entire cone C; corresponds
to S being empty. So we will denote the facet corresponding to subdomain
S as C;s. Now X' is a subspace that satisfies at least one of the following
properties.

(a) it completely contains some proper facet (of at least one lower dimension)
Cf,s of Cf,

(b) it cuts through a proper facet C g of Cf, or

(c¢) it is completely contained in the subspace formed by extending some proper
facet Cs of Cy to all orthants, i.e, the subspace containing exactly all functions
that are 0 outside S.

In case (a), we simply choose S* = S. Clearly, f|s- x = 0 and we are done.
In cases (b) and (c), we continue this process on a smaller cone Cjg, starting
with the function fg instead of f, and the subspace Xz instead of X. For the
base case, when |S| = 2, in cases (b) and (c), it is easy to see that fg — f
does in fact have the same sign as fg. O

$,X

REMARK 4.7. The use of subdomains as in the previous theorem is natural
since in general, the nonexistence of a (close) uniform approximation can be
established by showing nonexistence of a (close) uniform approximation over
any distribution or subdomain D. In particular, by Proposition 4.2, if a distri-
bution D can be found such that B is a polynomially stable basis with respect
to <>p, and and if < f,h >p is small for every h € M, then there is no
approximation from span(M) to f with the same sign. The results that follow
are an application of this general idea.

The next theorem considers a natural situation where B is an unstable family,
and yet Proposition 4.2 can be applied to show nonexistence of a uniform
approximation, and thereby provide a weighted threshold lower bound. Here,
all the functions in B, when viewed as vectors in Fy», form vector bundles,
such that all the vectors in any one bundle are close to each other (have large
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scalar product), but any two bundles are nearly orthogonal to each other. The
idea is to find a large enough subdomain where the vectors form a stable basis.

THEOREM 4.8. If all pairs of functions g;, g; in the class B of Boolean functions
satisfy either | < g;,g;, > | < d or | < g;,9; > | > 1— 0, for § being typically
significantly less than 1/2, and furthermore, for a given Boolean function f, | <
f.9; > | <, for all g; € B, then for M C B with |[M| < min{1/§'/3,1/¢'/3},
there is no g € span(M) with the same sign as f.

PrROOF. We first construct a subdomain/distribution D and show that

1D < f,9i >p 9iplloop < 1.
(3
Theorem 4.4 then completes the proof. The subdomain is constructed by first
dividing M into bundles such that for pairs g;, g; in each bundle, | < g;, g, >
| > 1—6 and for g; and g; in different bundles, | < g;,9; > | < 4. For each
bundle My, we find a representative function g, € My and remove from the D
all points where gy # g;, for some g; € Mj. The subdomain D thus constructed
is no less than 1 —|M|§ of the entire domain; therefore, the values | < f, g; >p |
are still no larger than (e+|M|0)/(1 —|M|0), and the values | < g;, g; >p | are
either 1, i.e, g;p = g;p, or is at most (§ + |[M|0)/(1 — |M|0), for g;, g; € M. Le,
gip and g;p are either identical or almost orthogonal. Furthermore, ||g;||2,p is
still 1, since the g; are Boolean. Intuitively, the function }° < f,g; >p gip is
7

a reasonable approximation to the true projection f|p span(ar), since the g; are
almost orthonormal over D. Furthermore,

lop <D 1< f,9:>p |
7

Hz<fagi >p GiD
i

(e + [M]6)

— (1 —|M]s)

which is at most 1 provided |M]| is sufficiently small as in the statement of the
theorem.

To find the true projection, we find orthonormal basis functions g; for
span(M)|p, from the functions g;|p, using, for example, Gram-Schmidt or-
thonormalization. We omit the exact calculations. Basically, since g; p already
forms a close-to-orthonormal basis, the orthonormalization does not blow-up
either the co-norm of the functions g, or the values | < f, g7 >p |, and thus
the projection f|p span(vry = 2 < f, 9] >p g still continues to have a small

| M,

]
M| is at most the bound given in the theorem. O

oo-norm provided
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Next we carry further the idea of stable bases over subdomains/distributions
and present a divide and conquer approach to showing that a function cannot
be approximated from a space of functions.

OBSERVATION 4.9. Let UP; C {—1,1}", and for all i, let P; = Py @ s;, where

‘@’ stands for addition W};en {—1,1}" is viewed as IF}, and s; is the shift vector
for P;. In other words, the P;’s are shifts of each other. Given a function f on
{—1,1}", we denote by fp, its restriction to P;; furthermore, we shall view all
of the functions fp, as being over Py, by defining fp.(z) := f(z & s;). Let f be
Boolean, B be a set of Boolean functions, and M be a (typically small) subset
of B.

(i) If the functions fp, form an orthonormal basis for the space of functions from
P, to the reals, and the functions {gp, : ¢ € M,i € N} span a subspace Xp; of
dimension m, then there is no close approximation h to f from span(M), with

|h(z)| > /m/|P| for all x € P.

(ii) If for some i, the set {gp, : ¢ € M} forms an orthonormal set and
< f,g >p.< 1/|M| for all ¢ € M then there is no approximation to f from
span(M). This can be extended to the case where the set {gp, : g € M} forms
orthonormal bundles as in Theorem 4.8.

Proor. For (i), we show that there is a P, such that for the distribution R

that is 1 on P; and 0 elsewhere, < f,g > < /m/|Py|, for all g € M. Then
the proof follows by 2.2(2). We in fact show something stronger. We show
that f|p, has no close 2-norm approximation. Since the functions fp, : i € N
form an orthonormal basis for a space of dimension |Fy|, and the set {gp, : g €
M,i € N} only spans a subspace X, of dimension m, it can be shown using
simple linear algebra and geometry, that there must be at least one P; such that
the projection fp,|x,, has a 2-norm at most \/m/|P|. In other words, we show
that if, for all the P;, the projections fp,|x,, had 2-norms exceeding 4, then the
space spanned by the projections f|p|x,,, and therefore the space X, would
have dimension at least |Py|6%. Thus for some P;, < fp,h* >p< \/m/| P,
for all h* € X}, with 2-norm bounded by 1; and taking h* to be any of the
functions in {gp, : ¢ € M,i € N}, we have what we require. Notice that the
above proof depends only on the dimension of the space X, and goes through
independent of the exact basis M.

For (ii), since the gp, form an orthonormal set for some P;, by 4.2, any
approximation g from their span to f is a high energy approximation with
< f,g >p,> 1/|M|. The result follows. O
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(O This general method has been used in several papers, although not stated
as such, for example [22], [20], [11]: in particular, (i) above is the crux of
the “geometric or variation rank” method used in [22] to show that DIP,
is not closely approximable by the span of few symmetric functions. Using
traditional terminology, (ii) represents a combination of “divide-and-conquer,”
or the “spectral method.”

5. Examples of stable basis families.

In this section, we show several examples of Boolean basis families B consisting
of functions over discrete and continuous domains that are poly stable. By the
results of the earlier sections, it then follows that showing weighted threshold
lower bounds involving functions from such basis families B can be proven
by scalar product arguments. One of these examples provides a method for
showing lower bounds for an algebraic circuit model of computation.

The first two examples are straightforward, and hence we omit the proofs.

THEOREM 5.1. (1) Let B be a set of And functions that are monotone or
anti-monotone with respect to the same sets of variables. Then B is

stable: for any M C B, || ¥ aphlz2 > 1/4/|M| ¥ a3.
heM heM

(2) Let B be a set of symmetric threshold functions t over {—1,1}", defined as
t(z) := sign(¥Xz; — ). Then B is stable: for any M C B, || 3 aphl||3 >
i heM

1/|M| ¥ ag.
heM

CONJECTURE 5.2. It is easy to see that general And functions do not form
a stable basis, since some of them can be obtained as large coefficient linear
combinations of others. However, we conjecture that they form a quasistable
basis. In fact, it seems likely that all of the known weighted threshold lower
bounds have been proven for quasistable basis families. If this is the case, al-
though their current proofs seem to use the strong first method in Proposition
3.5, by Proposition 4.2, they can, in fact, be proven using the weaker Method
3, or Theorem 4.4, i.e, using scalar product estimates that have already com-
monly been used for proving non-existence of close approximations and thereby
unweighted threshold lower bounds.

Observe that the above conjecture does not contradict the result in [20] that
there exist functions, which, when expressed as thresholds of And functions,
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need large integer weights: these functions have no close uniform approxima-
tions from And functions, but do have uniform approximations. This invalidates
the use of Method (3) in Proposition 3.5 as a way of proving nonexistence of
uniform approximations. This occurence is common: we will see examples in
the next section of basis families that are stable, even orthogonal, but which
require large integer weights for approximating certain functions, i.e, these
functions do provide uniform approximations for certain functions, but do not
provide close approximations. However, since the basis is stable, irrespective of
the weights the existence of uniform approximation does imply the existence of
high energy approximations from these basis families. Therefore, potentially,
the scalar product estimates of Method 2 can still be used to show nonexistence
of uniform approximations or weighted threshold lower bounds for these basis
families.

Next, we show stability of a class of weakly symmetric threshold functions over
the continuous domain (0,1)". These functions form a non-trivial family: for
instance, the discrete analog of these functions are unstable as will be shown
in the next section. Then, using Proposition 4.2, any function that has a
small scalar product with such thresholds cannot be computed as a weighted
threshold of such thresholds.

OPEN QUESTION 5.3. The algebraic model of computation over R" or (0,1)"
consisting of threshold circuits with gates over (0,1)" at the bottom level,
and the usual threshold gates over {—1,1}" at the higher levels is related to
arithmetic circuits, (see [7] and see [23]), and linear (algebraic) decision trees
studied in, for example, [29] and [6], although the exact relationship is unknown.
It would be useful to investigate this relationship since that would help to
transfer lower bounds such as those to be described below to the decision tree
model and viceversa. In particular, a threshold of m threshold gates over
the reals can be simulated by a linear decision tree of depth m, but clearly,
there are functions computable by linear decision trees of depth m that are not
computable by a threshold of m thresholds.

NOTE: For convenience, we assume that the range of the functions is {0, 1}
instead of the usual {—1,1}.

THEOREM 5.4. Let B be a set of threshold functions over (0,1)" that are sym-
metric on k disjoint sets of indices u1,...,u. l.e, each such function t has the

form sign(> a;( Y x;) + ag). Denoting Y- x; simply as u;, and appropriately
) JEu; j€u;
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normalizing, t can be viewed as a threshold function on (0,1)*. Clearly B is
a stable basis family if and only if the corresponding basis family over (0,1)*
thus obtained is also a stable basis family. If, for any two such functions t;
and t;, over (0,1)*, a separation condition holds: ||t; —t;||» > 1/p(n), for some
polynomial p, then B is a poly stable basis, for some polynomial poly(n) that
depends on k and p.

PrROOF. The proof proceeds by developing each ¢; as a Fourier series, studying
the coeflicients in this expansion and showing that for some frequency we have
the desired estimate needed for stability. We indicate how this works for two
dimensions on (0, 1)2. Consider a threshold function ¢ on the unit square, whose
defining line, say ax; + x2 = c intersects the square on the lines z; = 0 and
x1 = 1. The other types of threshold functions behave similarly. We develop ¢
as a Fourier series with coefficients #(uy, u), where recall that

11
ul, Us) //t T1,T e2milurzitus®2) go. o,
00

1 .
da; / €2m(u1$1+u2$2)d.’1}2
c—az1

o _

c—ari1

1
/ i(urz1) [1/(2miug)e 2”(“2’”2)]1 dx;
0
1

/ /(2miug) e?miwim) g,

0
_/ 1/(27”;u2)627ri(u1w1+u2(cfa:c1))d$1

0

1

- (47)2 (uz(u1 — aus)

(62m'(c—a)u2 _ 627ri(6)u1) .

m

Now if we take a linear combination of threshold functions, say > b;t;, then
j

using the obvious notation, the (u, ug)th Fourier coefficient of this linear com-

bination is
m

1

= Z b,

J

2mi(cj—az)uz _ 2mi(ci)ul . A
(47)2 (ug(u1 — ajus)) (e ’ )
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We now analyze A as a function of u; and uy, for u; < ¢ and uy < ¢, where q is
some polynomial depending on the polynomial p, and the number of threshold
functions m. We use the fact that the functions 227%%2 are almost orthogonal
in the interval —q < uy < g, for the different §8; in A, and use it to obtain the
polynomial poly required to show that these threshold functions form a poly
stable basis. The proof extends to arbitrary, fixed dimensions k.

We show that the modulus of A is large for some uy,us and to do so, we
observe the following:

i) There are at most p;(n) threshold functions which are pairwise separated
as in the assumption of the theorem. Here, p; depends on p and the
dimension k (recall that we have assumed that £ = 2 for this proof).

ii) There exists ps(n) depending on p(n) s. t if |a; —a;| <
2
p2(n)

= (n) then |¢; —¢;| >

and so [(¢; — a;) — (¢; — a;)| > pz(n)

(ii) follows immediately from the separation assumption. We now consider the
b;, of maximal modulus. We will assume |a;,| > The case |a;,| <
s1m1]ar

1 .
7 (n) pa(n) °

.. (1)

We will show that after averaging over appropriate intervals of u; and us, the
sum of those terms in A for which |a; — a;, | < zﬁ’ where ps is appropriately

chosen, is much bigger than the sum of those terms for which |a; —a;,| >
1

uz(u1—aj,u2)

given k,, there exists p3(n) and intervals of integers

PS(n)

To do that, we consider the factor appearing in (A). We see that,

I, = (cinf',en® 4+ n*2) and
I, = (conks, con® +n*2)  where
n*> > nkepy(n)

such that the following holds:
If uy,v1, € I and uy, vy € Iy, and if |a; — a;,| > ( y we have

1 1
nko |ug(ui—aj,—uz)

1
(vi—ajov2) | —
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In view of (2) it is enough to show that

b' 1 27ri(0j—aj)uz _ 27ri0ju1
Tug(ur — ajus) ¢ ¢

ug€ly j: . 2 {1 j o2

UZEIZ \a]—a]0|<m

is sufficiently by

By expanding (3) we obtain

7 1 1
Zuleh ZIQEIQ Z’L,j b’Lb] u2(ul

—a;u2) u2(uj —a;u2)
[eQni[(Ci_ai)_(cj_ajNu2 + 627rj(ci—c]-)u1 _ eZwi(ci—ai)uz—c]-ul _ eZwi(Cj—aj)ug—ciul]

.. (4)

Now (ii) and (2) imply that in (4), the sum of the terms for which i # j is
much smaller than the sum of those terms for which 7 = j. And the sum of the
terms for which ¢ = j is > |I1||Lo] - (3;(b;)?) - m, where py(n), |I;| and |I5|
depend only on p and the dimension. This completes the proof of the theorem.
O

6. Unstable Boolean bases and examples.

In this section, we give a method for establishing instability of bases and show
that there exist Boolean bases that are unstable. In fact, we show that a
highly restricted family of threshold functions is already unstable. The first
proposition gives straightforward but strong conditions that imply stability of
basis families, in the case that the domain of the functions S is a discrete set,
i.e, the space of functions under consideration is a finite dimensional space.
These conditions, theoretically, provide a means to construct unstable Boolean
bases.

PROPOSITION 6.1. A basis M of independent functions over a finite, discrete
set S can be represented as a matrix with |S| rows and |M| columns, with
each column h representing a basis function, and each row x representing a
point in S, so that the entry M (h,x) is nothing but the value h(z). Clearly,
M is a polynomially stable basis if, for all column vectors a with |M| entries,
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it holds that ||Mal|s > 1/poly(|M|)||a||2. Now consider a decomposition of M
in to |M| x |M| submatrices M; : i < |S|/|M|. For some such decomposition,
if at least 1/poly(|M|) of these square matrices M; are nonsingular and have
inverses whose 2-norms are bounded by poly(|M]|), then M is a polynomially
stable basis.

The condition in the above proposition is usually too strong to be useful
for establishing stability of basis families. Besides the fact that the submatrices
M; could be nonsingular, it could also be that although all the submatrices
have large inverses, the sets of vectors a for which each submatrix behaves
unstably are disjoint sets, and therefore, for any single vector a, a sufficiently
large number of submatrices behave stably. However, the proposition above
gives an easy way to construct unstable bases M, by using only submatrices M;
whose inverses have large 2-norms.

Do there exist unstable Boolean bases M? In other words, do there exist
square Boolean matrices whose inverses have large 2-norms (since M can be
constructed using several copies of such square matrices as described in Propo-
sition 6.1)7

A straightforward upper bound of n™? exists on the (co-norm of the) in-
verse of {—1,1}-valued matrices, since the determinant is given as n! times
the volume of the simplex formed by the rows. In addition, matrices with
fairly large 2-norms for their inverses (€2(2"/2)) can be easily constructed from
simple arguments [13], and using cyclic codes. The next result of [1] and [28]
shows that, in fact, the upper bound of n™? is quite tight, and [28] gives a
construction of ill-conditioned matrices that meet this bound for the inverse
2-norm.

Fact 6.2. ([1] and [28]) Take the columns of a matrix M to be the linear
monomials x; over {—1,1}M|. Then there exists an |M| x |M| submatrix
whose inverse has 2-norm at least Q((n/c)™?) for some constant c.

PROOF. We sketch the proofs for completeness. The proof uses a result
of [14] that constructs a threshold function which does not use the constant
term, and which requires large (integer) weights, or in other words, when these
weights are normalized, there is a large difference between the smallest and the
largest weights. The result acheives this by showing that there is a function
f such that for each a, for which sign(Ma) = sign(f), there are 2 entries i, j
in @ such that |a;| is almost 1, |a;| is very small, and all entries of Ma have
absolute value at least |a;|. It follows by a familiar result on linear polytopes
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that there is at least one nonsingular square submatrix of M, say M*, such
that all entries of M*a have absolute value ezactly |a;|. But since |g;| is much
larger than |a;|, this must mean that (M*)~' has a large oo-norm. It follows
that (M*)~! has a large 2-norm since M* is just an n X n matrix. O

REMARK 6.3. The result seems counter-intuitive, since the linear monomials
forming M are a stable, even orthonormal basis. However, as remarked after
5.2, this does not contradict the above fact, since even if many submatrices
in M have inverses with large 2-norms, on any given vector a, significantly
many of them behaves stably. In other words, as mentioned in the discussion
following Conjecture 5.2, the result in [14] shows that while there is no close
approximation from the linear monomials to a certain function f, a uniform
approximation exists. Hence non-existence of uniform approximations from
linear monomials cannot be established using method 4 of Proposition 3.5.
But for such functions f, since the basis is stable, 4.2 shows that a high-energy
approximation exists, and thus conversely, to show non-existence of uniform
approximation from the linear monomials, method 3 and Theorem 4.4 can still
be used.

While the above result shows that unstable Boolean bases exist, these bases
are quite artificial since they are constructed using several copies of matrices M;
whose inverses have large 2-norms, and it is not clear that any natural family
of Boolean functions behave in this manner.

Next we give a natural family of threshold functions that forms an unstable
basis. Recall Theorem 5.1 that symmetric threshold functions form a stable
basis. Next we show that weakening this symmetry even slightly creates an
unstable basis.

DEFINITION 6.4. A threshold function t,,, is 2-symmetric if it is of the form

tuw(z) = sign(ay Z T+ ag Z T; — ag),

€U 1€V
where u and v are disjoint sets of indices. Thus t,,, can be viewed as a threshold
function in 2 variables, over {0,...,n}?, given as

tuw (U1, U2) := sign(a1uy + agus — ag).

We refer to the latter as 2-threshold functions.

The following is straightforward and was assumed earlier for the case of thresh-
old functions over continuous domains.
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FAcCT 6.5. The set of 2-symmetric threshold functions over {—1,1}" is a poly-
nomially stable basis if and only if the set of {0, 1}-valued 2-threshold functions
over {0, ...,n}? is also a polynomially stable basis.

We use an n x n {0,1} matrix M* given by [13] that has a cyclic structure,
whose inverse has a 2-norm close to 2*/2, to prove the following theorem. We
describe the matrix M* here. The rows r; of M* all have 3 non-zero entries,
and have the following cyclic pattern:

ri = (10110...0); 75 = (01110. . .0);

rs = (001011...0);r, = (000111...0);etc.

giving nonsingularity. Now, we get
(r1+19) — 2(rs +74) + 4(rs +76) ... + 22 (rp_y + 1)

= (110...0),

thereby showing that M* has a large 2-norm for its inverse.

THEOREM 6.6. The set of 2-symmetric threshold functions t,, for any fixed
set of indices v and v is not polynomially stable.

Proor. To prove the theorem, we show that there is a linearly independent
set of at most N < 10n 2-threshold functions ¢;, and coefficients a; such that

N
at least one of the |a;| = 1, but || 3" a;t;||» < 1/2"/2. To achieve this, we build
J

an n x n? matrix M to satisfy the following properties:

(i) the columns of M correspond to the domain points in {1,...,n}? and whose
rows correspond to n Boolean functions h;;

(ii) M will embed the n x n submatrix M* (described before the theorem) as
a submatrix; All the other entries in M will be 0.

(iii) Each of the functions (rows) h; will be a linear combination of at most 10
threshold functions %;;

(iv) all of the N < 10n threshold functions thus used will be linearly indepen-
dent over the entire domain i.e, over all the columns of M.

Since M*! is known to have a large 2-norm, it will then follow that there
is a 1 x n coefficient vector a such that ||aM||, < 1/27/2||a||,. Furthermore,
since each of the rows of of M is a linear combination of at most 10 threshold
functions, the result follows.
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We now describe the construction of M that satisfies (i)-(iv). We mimic the
structure of the matrix M* described above on a zigzagging subset S consisting
of n of the domain lattice points {0,...,n}? The set S will correspond to the
columns of M*. Each row r; of M* will obtained as the support of a linear
combination of at most 10 threshold functions.

It is easy to see that we can obtain a row r; of M (and M*) of the form
(00...111...0) as a function supported at 3 adjacent lattice points such as

on the domain, and we can obtain the next row r;;; of the form (00...1101...0)

0

0
0

111

0

0
0

0

as a function supported at 3 lattice points such as

on the domain. Thus the set S of n points corresponding to the columns of the
matrix M* are as given below. The numbers refer to the rows of M and M*.

0

0
Notice that each row or function h; (which is 0 everywhere else on the n x
n lattice except at the 3 specific points) can be obtained as a simple linear

coocoo-

0
0

o .

)

0

0

0
0

110
001

0

0

0
0

o

0

o .

0

0

coocoo.

0
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combination of atmost 10 threshold functions, while making sure that all the
threshold functions thus used are linearly independent. Thus M satisfies all
the conditions (i)-(iv), whereby the proof is complete. O

OPEN QUESTION 6.7. It is an interesting open problem whether the better
lower bounds of [1] and [28] on the 2-norms of the inverses of Boolean matrices
can be mimicked by threshold functions (or any other natural family of Boolean
functions) as in the above proof. This would show that the stability of families
of threshold functions is even worse than that indicated by the above theorem.
This provides an intuition as to why nonexistience of uniform approximations
from threshold functions (or lower bounds for a weighted threshold of thresholds
is so hard to prove: recall the notorious question as to whether LTy is different
from NP). However, it is still possible that threshold function families satisfy
some other notion of stability such as quasistability in the weak sense, because
that would be sufficient to permit the use of Methods 2 or 3 of Proposition 3.5
or Theorem 4.4 to show such lower bounds.
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