Electronic Colloquium on Computational Complexity - Reports Series 1996 - available via:

E( :( :( : FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW:

http://www.eccc.uni-trier.de/eccc/
T R96- 050 Email:  ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

A hierarchy for (1, +k)-branching programs
with respect to £

P. Savicky, S. Zak *

Abstract

Branching programs (b. p.’s) or decision diagrams are a general graph-based
model of sequential computation. The b. p.’s of polynomial size are a nonuniform
counterpart of LOG. Lower bounds for different kinds of restricted b. p.’s are
intensively investigated. An important restriction are so called k-b. p.’s, where
each computation reads each input bit at most k£ times. Although, for more
restricted syntactic k-b.p.’s, exponential lower bounds are proven and there is
a series of exponential lower bounds for 1-b. p.’s, this is not true for general
(nonsyntactic) k-b.p.’s, even for k = 2. Therefore, so called (1,+4k)-b. p.’s are
investigated.

For some explicit functions, exponential lower bounds for (1,4k)-b. p.’s are
known. Investigating the syntactic (1,+k)-b. p.’s, Sieling has found functions
fn,e which are polynomially easy for syntactic (1,+k)-b. p.’s, but exponentially
hard for syntactic (1,4(k — 1))-b. p.’s. In the present paper, a similar hierarchy
with respect to k is proven for general (nonsyntactic) (1, +k)-b. p.’s.

1 Introduction

A branching program (b. p.) is a computation model for representing the Boolean
functions. The input of a branching program is a vector consisting of the values of
n Boolean variables. The branching program itself is a directed acyclic graph with
one source. The out-degree of each node is at most 2. Every branching node, i.e. a
node of out-degree 2, is labeled by an input variable and one of its out-going edges is
labeled by 0, the other one by 1. The sinks (out-degree 0) are labeled by 0 and 1. A
branching program determines a Boolean function as follows. The computation starts
at the source. If a node of out-degree 1 is reached, the computation follows the unique
edge leaving the node. In each branching node, the variable assigned to the node is
tested and the out-going edge labeled by the actual value of the variable is chosen.
Finaly, a sink is reached. Its label determines the value of the function for the given
input. By the size of a branching program we mean the number of its nodes.

The branching programs are a model of the configuration space of Turing machines
where each node corresponds to a configuration. Thus the polynomial size b. p.’s

*The research of both authors was supported by GA of the Czech Republic, grant No. 201/95/0976.



represent a nonuniform variant of LOG. Hence, a superpolynomial lower bound on
b. p.’s for a Boolean function computable within polynomial time would imply P #
LOG.

In order to investigate the computing power of branching programs, restricted mod-
els were suggested. An important restriction are so called read-once branching pro-
grams (1-b. p.’s), where the restriction is such that during each computation on any
input each variable is tested at most once.

The first exponential lower bounds for 1-b. p.’s were [16] and [17]. These results
were improved in [5]. These bounds are of magnitude 2%vV"), The first lower bound
of magnitude 2%") where n is the input size was 2*/¢ lower bound for a large ¢ for
the function “parity of the number of triangles in a graph”, see [2]. The constant ¢ in
this lower bound was improved, see [15], to a lower bound of magnitude 27/2°% for the
same function. For a different function, a lower bound 2"~°") was proved in [12]. In
[9], a lower bound 20V is proved for multiplication.

Several generalizations of 1-b. p.’s are investigated. Recently, the most powerful
among them are so called k-b. p.’s, where each computation is allowed to test each
variable at most k£ times. Since no superpolynomial lower bounds even for 2-b. p.’s
are known, even more restricted b. p.’s are investigated. Namely, so called (1, +k)-
b. p.’s, where for every input, there are at most k variables that are tested during the
computation more than once. If, moreover, the variables with repeated tests may be
read at most two times, we obtain a class that contain 1-b. p.’s and is contained in
2-b. p.’s. For (1,4k)-b. p.’s, an exponential lower bound for k£ up to n* for some fixed
positive @ may be found in [7], [11] and [18]. The results of [7] and [11] hold even for
« arbitrarily close to 1. A superpolynomial lower bound for k£ = o(n/logn) is proved
in [7].

The two restrictions mentioned above, namely k-b. p.’s and (1, +k)-b. p.’s can be
made even stronger, if the restriction of repeated tests i1s applied not only to valid
computation paths, but to every possible path from the source to a sink in the b. p.,
including inconsistent paths. In this way, we obtain so called syntactic k-b. p.’s and
syntactic (1, +k)-b. p.’s. Note that each 1-b. p. is a syntactic 1-b. p., while for k-b. p.’s,
k > 2 this is not true in general.

For syntactic k-b. p.’s, exponetial lower bounds are known, see [3], [6], [8], for some
k = Q(logn). The result of [3] and [6] hold even for nondeterministic k-b. p.’s. For
syntactic (1,4k)-b. p.’s, a strict hierarchy according to k& was proved in [13] and [14]
for k at most roughly n'/°.

In the present paper, we generalize the last mentioned result in such a way that it
holds also for (nonsyntactic) b. p.’s for k < 1/2 - n'/® log="/*n. Namely, we present
functions f, ; which are polynomially easy for (1,+k)-b. p.’s, but exponentially hard
for (1,4(k —1))-b. p.’s.

In order to prove the hierarchy result, an exponential lower bound for (1, +k)-b. p.’s
is proved. In comparison to [7], [11] and [18] the exponential lower bound is reached in a
smaller range of k. On the other hand, while all the three mentioned results use in fact
the same method, the present paper is based on a different method. The method of [7],
[11] and [18] may be applied only to functions f satisfying the following requirement
or its dual. If f(z) = f(y) = 1, then either = y or the Hamming distance of z and y
is at least n® for some positive ¢. The function used for the lower bound in the present
paper does not have this property.



The structure of the paper is as follows. In Section 2, a function f, ; of n variables
is defined and some its properties are proved. In Section 3 an exponential lower bound
for frin (1,4(k —1))-b. p.’s is proved using two theorems proved later in Sections 5
and 6. In Section 4, we present a polynomial size (1, +k)-b. p. for f,; and summarize
the main result.

2 The function and its basic properties

In this section, we define the function f, and prove some properties of the function.
Informally, the function is defined as follows. The n variables are divided into & blocks
of length m. For every y = 1,2,...,k, a weighted sum of the bits of block 5 determines
an index ¢; of some of the input bits. Then, the value of the function is the parity of
the bits determined by ¢; for y = 1,2,..., k. The exact definition of f,  requires some
technical notation.

For every natural number n, let p(n) be the smallest prime greater than n. Consider
the set {1,2,...,n} as a subset of Z,), the field of the residue classes modulo p(n).
Then, for every t € Zpmy, let w(t) =1t,if ¢ € {1,2,...,n} and w(t) = 1 otherwise.

Definition 2.1 For every ¢ = ({1,t3,...,1;) € {1,2,...,n}* and every z € {0,1}", let
Par(;c,t) =2, BTy, B... Dy,

Definition 2.2 Let k divide n and let m = n/k. Then, let ¢, : {0,1}" — {1,2,...,n}F
be defined as follows. For every z let t, x(2) =qer (t1,12,...,1;), where for every
i=1.2,.. k

lj=w <Zi$(j-1)m+i> )
=1
where the sum is evaluated in 7). Moreover, let Jok(x) =aer Par(z, i, i()).

In order to prove some required properties of 1, i, we shall use the following theorem
originally proved in [4]. A different proof of this theorem may be found in [1].

Theorem 2.3 (Dias da Silva and Hamidoune) Let p be a prime and let hy and hy be
integers. Moreover, let hy < hy < p and let A C Z, such that |A| = hy. Let A’ be the
set of all sums of hy distinct elements of A. Then, |A’| > min(p, ho(h1 — hs) + 1).

Corollary 2.4 Let ¢ > 0 be fired. Then, for every n large enough, the following is
true. If A C Z,y and |A| > (2 4 ¢)\/n, then, for every t € Z,, there is a subset
B C A such that the sum of the elements of B is equal to 1.

Proof: Let hy = |[(1 4+ ¢/2)\/n] and hy = 2hy. Choose any subset C' of A of size
hi. By Theorem 2.3, there is at least min(p(n), h; + 1) different sums of h, distinct
elements of C'. We have A3 + 1 > (14+¢)n —O(y/n). Since p(n) = n + o(n), see [10],
we have min(p(n), h3 + 1) = p(n). Hence, for every t € Z,,), there is a set B C A of
hy elements adding up to t. O



Lemma 2.5 For any fized ¢ > 0, for every n large enough and for every k as above,
the following is true. If r is an integer such that n > r > k((2+¢)/n+ 1), and if at
most n — r of the variables of the function Par(z,, ,(x)) are set to some constants,
the restricted function is still not a constant function.

Proof:  For simplicity, let s = [(2 4 ¢)y/n]. There are at least r > k(s + 1) free
variables distributed among the & blocks. Let ¢ be the number of blocks with at most
s free variables. Set the free variables in these ¢ blocks in an arbitrary way, say, to
zeros. Now, these ¢ blocks contain only fixed variables and it is possible to evaluate
the entries of v, x(z) determined by these blocks. There are at most ¢ different input
variables the index of which is equal to some of these indices. Let us call these variables
marked.

The remaining blocks contain at least (k — t)(s + 1) + 1 free variables and, hence, at
least (k —t)(s 4 1) free variables that are not marked. It follows that there is a block
with at least s+ 1 free variables that are not marked. Choose s+ 1 of these variables,
call them critical variables, and set the other free variables in the same block in an
arbitrary way, say to zeros.

There are still £ — ¢ — 1 blocks with some free variables different from the block
with the critical variables. Each of these blocks contain at least s + 1 free variables,
marked or not marked. Set all free variables in each of these blocks in such a way that
the index determined by each of these k —¢ — 1 blocks belongs to the block itself. This
is possible according to Corollary 2.4.

Now, the only remaining free variables are the critical variables and all these vari-
ables are in one block. The indices determined by the other blocks are fixed to values
different from the indices of critical variables. The function obtained by this setting
of variables is not a constant function, since it is possible to set one of the critical
variables to 0 or 1 and the remaining ones in such a way that the index determined
by the block with critical variables is just the index of the first chosen critical variable
(Corollary 2.4). Hence, the value of the function may be both 0 and 1. O

Lemma 2.6 If at most n/k — 3\/n of the variables of the function i, are sel lo
some constants, the restricted function still salisfies the following. For every choice of
1 <iy,09,...,2 < n, there is a setling of the free variables such that the value of 1,
is equal to (11,19,...,1x).

Proof: In each blok, at least 3 /n variables are free. Using Corollary 2.4, each entry of
Yk (z) may be set to any value from {1,2,...,n} independently of the other entries.
a

3 The lower bound

In this section, we prove an exponential lower bound for f,; in (1,+(k —1))-b. p.’s, if
k is not too large. There are several possibilities how to bound the number of repeated
tests in a path. We use the following definition, i.e., we count only the number of
different variables involved in the repeated tests, not the number of these tests.



Definition 3.1 Let P be a b. p. For every input x, let R(x) be the set of indices of
input bils that are read more than once during the computation for x. The b. p. P is

called a (1,+k)-b. p., if for every z, |R(z)| < k.
For a path a, let 7(a) be the set of variables tested in a.

Definition 3.2 Let S be some set of paths in a b. p. going from a node u to a node
v. Then the number
U 7(a)

a€S

—min|r(a)|

will be called the fluctuation of S. If both occurrences of x(«) in the expression above
are replaced by m(a) NI, where [ is a set of variables, we call the resulting number the
fluctuation of S relative to I.

We say that an edge (u,v) is a lest of a variable z;, if u is of degree 2 and z; is the

label of wu.

Definition 3.3 We say that a branching program P is (p, r)-well-behaved, if it satisfies
the following three conditions:

(i) Every path from the source of P to a sink contains at least p tests.

(i1) The first p tests on any path starting in the source of P test p different variables.
(iii) If w is any node of P and S is the set of all paths with p tests leading from the
source to w, then the fluctuation of S is less than r.

One of the key steps of the proof is the following theorem. Its proof may be found
in Section 5.

Theorem 3.4 Let n, k, p, r be integers such that r < n, 2kp < n —r. Let [ be
a Boolean function of n variables such that any setting of at most n — r variables to
constants still leads to a nonconstant function. Let P be a (1,+(k—1))-b. p. computing
f. Then, there is a subprogram P’ of P arising from P by setling at most (2k — 1)p
variables to constants that is (p,r)-well-behaved.

To prove the lower bound, we shall combine Theorem 3.4 with the following Theo-
rem 3.5. This theorem is implicitly used already in [13]. For convenience of the reader,
we present a complete proof in Section 6.

If v; is a vector, let v;; be its i—th coordinate.

Theorem 3.5 Let k, p and m be integers and let k divide p. For 7 = 1,2,...,m,
let v; € {0,1}, where T is some index-set of size p. Assume that for every k-tuple
i1y09,---yix € I, there is a function ¢ : {0,1} — {0,1} such that
(1) ¢ is computable by a decision tree of depth at most k — 1.
(2) For every j = 1,2,...,m we have

$(0j) = Vi B Vi, B ... B Vjiy-
Then, we have m < 20(=1/k)

Now, we can state and prove the lower bound result.



Theorem 3.6 Let n, k be integers, let k divides n and let k < /n/3. Then, every
(1,+(k = 1))-b. p. computing f,r has size at least

(L— 3—ﬁ—3k\/ﬁlogn— 1)
2 .

2k3  2k?

Proof: First, let us introduce an auxiliary notation. For partial inputs wq,us, ..., ug
specifying disjoint sets of bits, let [uq, us,. .., u,] denote the (partial) input specifying
all the bits specified in some of u; in the same way as in corresponding wu;.

Let r = k(|3y/n]—1), ¢ =n/k=3y/nand p = |¢/(2k*)| k. We have 2kp < ¢ < n—r.
By Lemma 2.5, setting of at most n — r variables in Par(z, v, x(z)) = fux leads to
a nonconstant function. Hence, the function Par(x,, r(z)) satisfies the assumption
of Theorem 3.4 for our choice of k, p and r. Let P be a (1,+(k — 1))-b. p. of size ¢
computing f, . Consider the subprogram P’ of P guaranteed by Theorem 3.4. Let u
be the partial input with at most (2k — 1)p fixed variables which yields P" and let w,
be the source of P’. We have that P’ is a (1,4(k—1))-b. p. of size at most ¢ computing
the restriction of Par(z, v, x(z)) according to u.

Let wy be the node of P’ such that the number of paths starting at wq, ending in w;
and containing p tests is maximal. There is at least 27 /¢ of such paths. Call the set of
these paths P;. Each path tests some set of variables. Since P’ is (p,r)-well-behaved,

the fluctuation of P; is less than r and hence, there are at most (pjT) of different sets of
variables tested along individual paths from P;. Let P, be some of the largest subsets
of Py of paths testing exactly the same set of variables. Then, we have

P
(7)

Each path in Py together with u determines a partial input. For every partial input,

Pal >

it is possible to evaluate its contribution to the k entries of the value of v, ;. By this,
we mean the sums from Definition 2.2 restricted to bits with the value fixed by u and
the given path from P,. The number of possible contributions is at most n*. Hence,
there is a subset P5 of Py of paths with the same contributions and such that its size
m =get | P3| satisfies

m>
>

Let vy, vq,..., v, be the list of elements of P3 and let I be the set of indices of variables

(1)

set to a constant by inputs v;. By construction of Py, |I| = p. We are going to verify
that the inputs vy, vy, ..., v, satisfy the assumption of Theorem 3.5.

Let us fix some iy,29,...,4; € I. Let x be a partial input such that [u,v,z] is
a total input satisfying t, x([u,v1,2]) = (41,%2,...,2;). Such an z exists, since the
number of bits fixed by [u,v4] is not larger than 2kp < ¢ < n/k — 3y/n and therefore
we may apply Lemma 2.6.

Since all the partial inputs vy, vy,..., v, have the same contributions to the sums
in the Definition 2.2, v, x([u, v;, z]) = (i1,12,...,1) forall j = 1,2,... m.

Consider the restriction P” of P" according to the values of input bits from the input
z. The only free input bits of P” are the bits from I. For every v;, the computation
of P” computes f, x([u,v;,z]) = Par([u,v;, z], (t1,%2,...,1%)) = 0ji; Dvji, & ... S vji,.



Moreover, for every v;, the computation of P” reads all the bits from I, then it reaches
the node w, and in the rest of the computation, at most & — 1 variables with indices
in [ are read. (Since P"is also a (1,+(k —1))-b. p.)

Consider the subprogram of P” starting in w, and let P" be the decision tree
obtained from this subprogram as follows. First, we expand the subprogram starting
at wy into a tree. In the second step, we delete all edges of the tree that are not visited
by any computation starting from w; for some of v;. After this, some of the nodes of
the tree might have out-degree 1. In the last step, every such node is deleted and the
edge leading to it is redirect to the single successor of the considered node.

Every leaf of P is reached by a computation for some v;, otherwise some of the
edges of the path leading to the leaf would have been deleted. Hence, each path of P
tests at most & — 1 variables, since it tests a subset of the set of variables read by some
computation of P after the node w; for some of v;.

Let ¢ be the function computed by P". Clearly, ¢ satisfies the assumption (1) of
Theorem 3.5.

By construction of P, P” and P" are equivalent on inputs v;. Thus, for each
J = 12...,m, we have ¢(vj) = for([u,vj,z]) = vji & vjsy B ... S vj;. Hence, ¢
satisfies also the assumption (2) of Theorem 3.5.

These arguments work for every k-tuple of indices from I. Hence, Theorem 3.5
implies m < 2p(1=1/k)

Together with (1), this implies

or/k
¢z (pjr)nk'
Since (pjT> <n", we have

c> 2p/k—7‘10gn—klogn. (2>

The theorem now follows by substitution of the chosen values of p, r and k& into the
last estimate. O

4 The hierarchy

We shall prove an upper bound for the function f,; on (1,+k)-b. p.’s. Together
with the lower bound from the previous section, it gives that (1,+k)-b. p.’s are more

powerful than (1,+(k —1))-b. p.’s.

Theorem 4.1 Let k =k(n) <1/2- n'/® log_1/4n. Then, for every n large enough, we
have (i) There is a (1,4k)-b. p. compuling f,x of size O(n?).
(it) Every (1,+(k —1))-b. p. compuling f, has size at least 20(n/k%)

Proof:  Let us start with (i). We shall construct a (1,4+k)-b.p. P computing f, 4.
Consider the input bits in the input z divided into & groups in the same way as in
the definition of ¢, 5. Let ¥, x(z) = (i1,%2,...,1%). In order to describe P, we shall
describe for every 5 = 1,2,...,k a b. p. P; computing z;, © x;, ... D x;,. Then, P is
Py.



Let z1,x3,...,2, be the bits in the first group. The b. p. P is leveled and it
reads the bits in the first group in the natural ordering. For simplicity, assume that
each level consists of p(n) vertices corresponding to the residue classes mod p(n). The
computation starts in level 0 in the node corresponding to 0. After reading z;, the
computation reaches the j-th level in the node corresponding to the residue class x1 +
2w343z3+...4+jz; mod p(n). Foreach j =0,1,...,m—1 and each node w at level j,
this determines the two nodes at level j 4+ 1, where the edges from w lead to. Consider
the node corresponding to ¢ € Z,,,) at level m. In this node, the variable w(t) is tested
and its value is the output of P;.

The b. p. just described computes z;,, since the computation reaches the m-th level
in the node corresponding to z1 + 2z5 + 323 + ... + mz,, mod p(n) and by definition
of ¥, k, we have t; = w(x1 + 225 + 3z3+ ... + ma,,).

Now, assume, P; is constructed. In order to construct Pji;, append to each of
the two sinks of P; a b. p., computing z;, in a way similar to the computation of z;,
in P;. We obtain a b. p. with four sinks corresponding to the four possible values of
Ty, Dy, ®... D, and z;,,,. Now, P;y; is obtained by joining the sinks with the same
valueof z;, B, ... D Tijps-

Note that, P; has size at most p(n)n/k. Moreover, for each j = 2,3,...,k, the
b. p. P; contains at most 2p(n)n/k additional nodes w.r.t. Pj_;. Hence, P is of size
at most 2p(n)n = O(TL2>.

In order to prove (ii), note that, if & = k(n) <1/2- n'/® log_1/4 n, then

1 n S 3/n
2 2k3 T 2k2

Using this, Theorem 3.6 implies (ii). O

+ 3ky/nlogn + 1.

5 Proof of Theorem 3.4

Let us start the proof by the following. Let an edge (u,v) be a test of a variable ;.
The Boolean value labeling this edge is called the value required by this test. Two
tests of the same variable are consistent, if they require the same value.

Now, we shall construct a sequence vg,vy,...,v; of nodes of P, where vy is the
source and v; 1s some of the sinks and a sequence Ty,T,,...,T;, where T; is a set of
some paths from v;_y to v;. We shall construct these two sequences by a process starting
with vy beeing the source of P and with an empty sequence of sets. The process will be

described in steps. In step j, we start with some sequence vg,vy,...,v;-1 of nodes and
a sequence of sets Ty, Ty, ..., Tj_;, we add a new node v;, a new set T; and possibly
modify the sets T; for 2 = 1,...,7 — 1. The process stops, when v; becomes a sink of

P and we set t = 7. In each step of the process, to each of the sets T; a type A, B or
(' is assigned. The type is assigned when the set is created and it may be modified, if
the set is changed at some later step.

Definition 5.1 Let T, T5,...,T; be the sets constructed at some step of the process.
Let t4, 13 be tests of the same variable contained in 73, 75,...,T;. Then, we say that
the test t1 preceeds the test tq, if either for some ¢ both 1 and ¢, are in some path o € T;
and t; preceeds t3 in « or t; is contained in T;, and ¢ in T}, and 11 < 2. Moreover,



we say that the rank of a test ¢ is h, if h 1s the maximum integer, for which there are
tests ty,1q,...,1, of the same variable, such that ¢t = ¢, and for all 2 = 2,3,....h, t,_4
preceeds t;. A test is called a repeated test, if its rank is at least 2.

In each step of the process, we require that the sequence 71,75, ..., T} is consistent.
By this, we mean the following. If «; € T} is any choice of one path from each of the
sets, the concatenation of «; is a consistent path in P. We will require even stronger
structural property. Our requirement is as follows.

Requirement 1 Let z; be any variable contained in a repeated test in 71, 75,...,T}.
Then
(i) all its tests in T4, Ty, ..., T; are consistent,

(ii) there is exactly one test of z; of rank 1, say ¢y,

(ii1) there is exactly one test of z; of rank 2, say i,.

(iv) If j; < jg are such that ¢; is contained in «; € T}, and ¢; is contained in ay € T},
then |7}, | = |T},| = 1 and ¢, is the last test of as.

Note that if Requirement 1 is satisfied, there may be inconsistent tests of some
variable in 7,75, ..., T}, if all have rank 1. In particular, all these tests have to be
contained in the same set T} for some j; =1,2,...,7.

Requirement 2 (i) If 7; is assigned type A, then it contains no test of rank 2.

(ii) If 7; is assigned type B, then it contains no test of rank 2 and, moreover, it contains
exactly one path.

(iii) If T; is assigned type C, then it contains exactly one path, this path contains
exactly one test of rank 2 and this test is the last test of the path.

The procedure of creating sets T; and the assignment of types will be such that in
each step of the process, Requirements 1 and 2 will be satisfied.

Let a sequence 14,15, ..., T;_4 satistying Requirements 1 and 2 be given. Note that,
at the beginning of the process, i.e. if y = 1, the sequence of sets is empty and, hence,
it satisfies both Requirements 1 and 2. In order to describe the procedure of creating
the set T}, choose any path o starting at v;_y and calculate the ranks of tests in «
according to the sequence 11, Ty, ..., Tj_1,{a} of j sets.

Definition 5.2 A path « starting in v;_; is called good, if there is no test of rank 2
in a.

Let a be a good path starting at v;_y. There are two kinds of tests in a, tests of
rank 1 and tests of rank at least 3. Note that if some variable has a test of rank 1 in
«, then there 1s no other test of the same variable in « and also no test of the variable

in 11,715, ...,T;_1. Moreover, if some variable has a test of rank at least 3, then also
the first test of this variable in « has rank at least 3. Hence, the variable is repeated
already in 77,75, ...,T;_; and then all occurrences of this variable in 77,75, ...,T;_;

are consistent. Hence, every test of such a variable in « is either consistent with all its
preceeding tests in Ty, Ty,...,Tj—; or with none of them.



Definition 5.3 (i) A good path « is called consistent, if all tests in « of any variable
that is repeated in Ty, T5, ..., Tj_ are consistent with all the tests of the same variable
in 11, Ty, ..., Tj_y.

(ii) A good path is called mazimal good path, if it leads to a sink or to a node labeled
by a variable x;, such that adding a test of x; to the path creates a test of rank 2.

If a consistent good path is not maximal, then it leads to a node, such that the
variable z; tested in it is either repeated in 73,75, ...,T;_; or has not test there. In the
former case, one of the edges leaving the node forms a consistent prolongation of the
path. In the latter case, both edges leaving the node lead to a consistent prolongation.
Hence, every consistent good path is a prefix of a consistent maximal good path, i.e.
of a consistent path that is moreover a maximal good path.

We shall distinguish the following three cases. It is easy to see that if Case 1 does not
occur, then at least one of Cases 2 or 3 occurrs. If Case 2 and 3 occur simultaneously,
Case 2 has higher priority. Consider all consistent maximal good paths starting at

Vj-1-

Case 1: Every such path contains at least p tests of rank 1.

Case 2: Among these paths, there is a consistent good path « containing < p tests of
rank 1 and leading to a sink.

Case 3: Among these paths, there is a consistent good path « containing < p tests
of rank 1 and leading to a node w in which a variable x; is tested, such that adding a
test of x; to the end of a produces a test of rank 2.

Now, we describe the procedure of creating the set T}, the assignment of type to
this set and the possible modifications in the previous sets.

In Case 1, let S be the set of all consistent good paths containing exactly p tests
of rank 1 and such that the last test of the path has rank 1. Note that no path of S is
a prefix of another. If a consistent good path reaches a node adding a test of rank 1,
then a consistent good path may continue along both edges leaving the node. Hence,
S consists of 2P paths.

For every node u, let S, be the subset of paths from S leading to the node u. Now,
choose u so that the fluctuation of S, relative to the variables in tests of rank 1 be
maximal. Then, v; =, T; = S, and its type is chosen to be A.

In Case 2, T; = {a} and it will be considered of type B. In this situation, the
process stops and t is set to j.

In Case 3, either there is some test of z; (mentioned in Case 3 above) of rank 1 in
T1,Ty,...,Tj—1 (Subcase 3a) or there is some test of x; of rank 1 in a (Subcase 3b).
Assume, Case 2 does not occurr. Then, the two subcases are handled as follows:

Subcase 3a. Let j; be such that z; has a test in 7}, . If the type assigned to
Tj, is A, we choose a path 3 containing z; in T}, change the set T} to {3} and its
type is changed to B. After this change, the test of x; in 3 is the unique test of z; in
Ty, T,,...,Tj—1. Among the two edges leaving w, we choose the edge consistent with
the test of z; in 3. Let o' be the path consisting of & and the chosen edge. Finally, let
T; = {c'} and let its type be C.

Subcase 3b. Let o be the path consisting of a and the edge leaving w, which is
consistent with the test of z; already contained in o. Then, let T; = {o'} and let its
type be C.

10



It 1s easy to verify that in each case, the new sequence of sets Ty, 75, ..., T; satisfies
Requirements 1 and 2.

According to the description of the process, some tests contained in the new set Tj
may be later deleted, if Subcase 3a occurrs. Note, however, that if some test is not
deleted until the end of the process, then, if its rank was 1, 2 or 3, it does not change
and if it was more than 3, it is still at least 3 at the end of the process.

Assume, the process just described stopped with the sequence Ty, Ty, ..., T;. Con-
catenation of any choice of a; € T; for : = 1,2,...,t forms a valid computation testing
at most tp different variables and ending in a sink. By the assumptions of the theorem,
setting of at most n — r variables does not lead to constant subfunction. Hence, we
have tp > n —r > 2kp and so, t > 2k + 1.

The number of sets in the sequence Ty, T;, ..., T; of type A, B or C' will be denoted
a, b and c respectively. The type B may be assigned to a set in 71, 7T5,...,T; only in
Case 2 and in Subcase 3a. Case 2 may occur only as the last step of the process and
in Subcase 3a the new set is assigned type C. Hence, ¢+ 1 > b.

Assume for a moment that there is no set of type A among the first 2k sets in the
sequence. Then, b+ ¢ = 2k. Hence, we have 2¢ > 2k — 1 and so ¢ > k. Since c is the
number of sets of type C, there is at least ¢ tests of rank 2 occurring in sets T} of size
1. Hence, these tests are repeated tests of different variables in any computation which
may be created from Ty, T, ..., T;. It is a contradiction, since P is a (1, +(k—1))-b. p.

Hence, there is a set Tj of type A among the first 2k sets of Ty, Ty,...,T;. Let T;
be the first of such sets. All the sets Ty,T5,...,Tj_y are of type B or C and hence
contain exactly one path. Let J be their concatenation. Note that 3 contains at most
(2k — 1)p tests of different variables. If we set the variables occurring in 3 to the values
required in 3, we obtain a subprogram P’ of P, in which v;_; is the source.

Those variables tested in T} that are not fixed by 8 have no occurrence in Tj44,. .., Tt
Hence, if the fluctuation of 7} relative to these variables is at least r, it is possible to
choose a; € T; for all © > 7 so that the path Ba;...a; contains no test of at least r
variables. This is a contradiction with the assumptions of the theorem. Hence, T} has
fluctuation less than r relative to the variables not fixed by £.

Let T1,T,,...,T]_; be the sequence Ty, Ty,...,Tj_, at the beginning of the step
Jj. Since T; C T!

7 we have that § is a concatenation of some paths chosen from

T, T,,...,Tj_;. In the following, we shall derive the properties of tests in paths in
P’ using the properties of these tests in the context from the step j, in which 7} was
created. In particular, this means that the rank of tests in the paths starting in v;_; is
calculated according to 7y, Ty,...,T_;. Also the notions maximal and consistent good
path are considered according to the sequence T}, Ty, ..., T!_,. If we consider a test in
this way, we say that we consider the test in the original context. As a shorthand, the
original rank refers to the rank considered in the original context.

Now, we are going to prove that P’ is (p, r)-well-behaved. When created, the set T
was assigned type A, otherwise, it cannot have type A at the end of the process. This
may happen only in Case 1. Hence, the consistent maximal good paths in P starting
at vj_; satisty the requirements of Case 1 in the original context.

Consider a path o/ in P’ from the source to a sink. Let a denotes o' considered in
the original context. Let v be the longest prefix of « that is good. It may be « itself
or it may end in a node w such that adding to v the edge from w which is contained in
a would create a test of rank 2. In this latter case, adding any edge from w to v leads

11



to a test of rank 2. Hence, in both cases, 7 is a maximal good path in P. Moreover, v
is consistent. It follows by the requirement of Case 1 that v contains at least p tests
of rank 1. All these tests are not influenced by the setting according 3. This implies
condition (i) of the definition of (p,r)-well-behaved b. p.

Claim. In each path in P’ all of the first at most p tests have original rank 1.

In order to prove the claim, let o/ be any path in P’ containing at least one test of
original rank 2. Let A" be the prefix of o' ending just before the first of such tests. Let
~ denotes 4" considered in the original context. It is a good path and any prolongation
of 7 by one edge contains a test of rank 2. Hence, v is a consistent maximal good path
in P. Thus, it contains at least p tests of rank 1. These tests are not influenced by
the setting according to 3. Hence, 4’ contains at least p tests of original rank 1 and no
test of original rank 2. The claim follows.

The claim implies that no two of the first at most p tests in any path in P’ starting
in the source may contain the same variable. This implies (ii) of the definition of
(p,r)-well-behaved b. p. Moreover, the claim also implies that the fluctuation of any
set of paths with p tests in P’ is the same as the fluctuation of the set relative to tests
of original rank 1. Together with the definition of sets S and S, in the description of
Case 1, this implies that in every S, the fluctuation is at most the fluctuation of 77,
which is by some previous paragraph at most r. This implies (iii) of the definition of

(p, r)-well-behaved b. p.

6 Proof of Theorem 3.5

Let us start the proof by the following. W.l.o.g., assume I = {1,2,... p}. Let t = p/k.
Let ¢, for r = 1,2,...,1 be the function ¢ guaranteed by the assumptions of the
theorem for the k—tuple k(r—1)+1,k(r—1)+2,...,kr. Hence, forevery j = 1,2,...,m
and every r = 1,2,...,t, we have

Gr(05) = Vjker=1)41 D Vjk(r=1)42 T - - - D Vj sk

Following [13], denote by G, for any r = 1,2,... ¢ the function defined for any z €
{0,1}7 by
Gr(z) = Tpr-1)41 D Trir—1)42 D - .- B 2o © ¢r ().

It is easy to see that for every y = 1,2,...,m and every r = 1,2,...,1, we have
G,(v;) = 0. It follows that m is at most the number of solutions in {0,1}? of the
system of equations G, (z) = 0 for r = 1,2,...,¢{. We shall use the following lemma,
which is proved in [13] as Lemma 7. We use exactly the proof from [13].

Lemma 6.1 (Sieling) For each J C {1,2,...,t}, J # 0, there are exactly 277" ele-
ments x of {0,1}? so that
D) =0 9

reJ

12



Proof: Let J C {1,2,...,t}, J # 0 be given. We partition the set {0,1}? into classes
consisiting of two elements. Then, we show that for the two inputs = in each class,
@D, c; G-(z) takes different values. Therefore, the number of inputs with @,¢; G,(z) =
0 and @,c7G,(z) =1 are equal. This implies the lemma.

We describe the partition by a procedure that computes for each input z the other
member Z of the class x belongs to. The @-sum @,.o; GT(.TC> consists of the @-sum
@B.cj ¢ (x) and a G-sum of |J|k different single variables. The decision tree for each
¢r, v € J tests for the given input = at most k& — 1 variables. Hence, there are at most
|.J|(k — 1) variables tested by the decision trees for the given input. Therefore, some of
the |.J|k single variables contained in the @-sum is not tested for the given input z by
any of the decision trees. Among these variables, choose the variable with the smallest
index. We obtain z by negating this variable. In the decision trees, the same paths are
selected for = and Zz, since the variable differing these two inputs is not tested on any
of the paths. This implies T = x and therefore, this procedure really gives a partition
of {0,1}? into two-element sets.

Moreover, for every x € {0,1}?, @, cj¢r(2) = B,y ¢:(T), since in the decision
trees, the same paths are chosen. On the other hand, the @-sum of single variables
takes different values, since the variable differing « and & is contained there. Therefore,

we have @,c; G (v) # B,c; Gr(2). O

Using Lemma 6.1, we shall prove the following statement:

Lemma 6.2 For every J C {1,2,...,t} and every choice of ¢, € {0,1} for all r € J,
the system of equations

Gy(x)=¢ for reJ (4)

has ezactly 20~V solutions.

Here, we assume that every element of {0, 1} satisfies the system of equations, if
J = 0. Lemma 6.2 implies Theorem 3.5, if we choose J = {1,2,...,t} and ¢, = 0 for
all r € J.
Proof: For J = (), the statement is trivial. Fix some nonempty .J and some right hand
sides (RHSs) ¢, in the system (4) for all » € J. By induction, assume that the lemma
is true for every proper subset of J and any choice of the RHSs. Let ¢, [0] = ¢, for
r € J. Let h be the number of r € J for which ¢,.[0] = 1. Construct a sequence c¢,[1]
forr € Jand 2 =0,1,...,h such that:

(i) For all » € J, ¢,[h] = 0.
(i) For every ¢ = 0,1,...,h — 1, there is exactly one r € .J such that ¢,[i] # ¢, [t + 1].

For:=0,1,...,h, let a; be the number of solutions of (4) with the RHSs ¢,[¢]. Let M
be the number of solutions of (4) with zero RHSs. First, we shall express a; in terms
of M. In particular, a, = M. In order to express the other a;, notice that for every
t=20,1,...,h—1, the number a; + a;41 is exactly the number of solutions of a system
of |J| — 1 equations, obtained by removing the equation r, for which ¢,[i] # ¢, [t + 1].
By the induction hypothesis, the number of solutions of this reduced system is 27=I7+1,
This implies that for even 7, aj_; = M and for odd ¢, a)_; = 2r=7I+1 _ M. Since ¢, [0]
was an arbitrary choice of the RHSs in (4), we have that for any choice ¢, of the RHSs,

13



the number of solutions of (4) is either op=l1+1 _ M or M if the number of r € J for
which ¢, = 1 is odd or even respectively.

In order to determine M, we use Lemma 6.1. Namely, we express the number of
solutions to (3) for our choice of J in terms of M and we compare the result with the
value given by Lemma 6.1. An element of {0,1}? is a solution of equation (3), if and
only if it is a solution of (4) with a RHS with an even number of ones. Clearly, two
different choices of the RHSs in (4) lead to disjoint sets of solutions. Since we have
2M1=1 possibilities of the RHSs with an even number of ones, the number of solutions
of (3) is 21I=1 M. By Lemma 6.1, this should be equal to 2°=!, hence M = 2¢=MI Tt
follows that for every choice of the RHSs, (4) has exactly 27=17l solutions. O

As stated above, this implies Theorem 3.5, if we choose J = {1,2,...,t} and ¢, =0
for all r € J.

References

[1] N. Alon, M. B. Nathanson and I. Z. Ruzsa, The polynomial method and

restricted sums of congruence classes, J. Number Theorey, to appear.

(2] L. Babai, P. Hajnal, E. Szemeredi and G. Turan, A lower bound for
read-once-only branching programs, Journal of Computer and Systems

Sciences, vol. 35 (1987), 153-162.

[3] A. Borodin, A.Razborov and R. Smolensky, On Lower Bounds for Read-
k-times Branching Programs, Computational Complezity 3 (1993) 1 — 18.

[4] J. A. Dias da Silva and Y. O. Hamidoune, Cyclic spaces for Grassmann
derivatives and additive theory, Bull. London Math. Soc., 26 (1994), 140-
146.

[5] P.E. Dunne, Lower bounds on the complexity of one-time—only branching
programs, In Proceedings of the FCT, Lecture Notes in Compuler Science,
199 (1985), 90-99.

[6] S. Jukna, A Note on Read-k-times Branching Programs, RAIRO Theo-
retical Informatics and Applications, vol. 29, Nr. 1 (1995), pp. 75-83.

[7] S. Jukna, A. A. Razborov, Neither Reading Few Bits Twice nor Reading
Illegally Helps Much, TR96-037, ECCC, Trier.

[8] E. A. Okolnishkova, Lower bounds for branching programs computing
characteristic functions of binary codes (in Russian), Metody diskretnogo

Analiza, 51 (1991), 61-83.
[9] S. J. Ponzio, A lower bound for integer multiplication with read-once

branching programs, Proceedings of 27’s Annual ACM Symposium on the
Theory of Computing, Las Vegas, 1995, pp. 130-139.

14



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

K. Prachar, Distribution of Prime Numbers (in German),
Primzahlverteilung, Springer-Verlag, Berlin—-Gottingen—Heidelberg, 1957.

P. Savicky, S. Zék, A Lower Bound on Branching Programs Reading Some
Bits Twice, to appear in TCS.

P. Savicky, S. Zak, A Large Lower bound for 1-branching programs, TR96-
036, ECCC, Trier.

D. Sieling, New Lower Bounds and Hierarchy Results for Restricted
Branching Programs, TR 494, 1993, Univ. Dortmund, to appear in J.
of Computer and System Sciences.

D. Sieling and 1. Wegener, New Lower bounds and hierarchy results for
Restricted Branching Programs, in Proc. of Workshop on Graph-Theoretic
Concepts in Computer Science WG9/, Lecture Notes in Computer Sci-
ence Vol. 903 (Springer,Berlin, 1994) 359 — 370.

J. Simon, M. Szegedy, A New Lower Bound Theorem for Read Only Once
Branching Programs and its Applications, Advances in Computational
Complezity Theory (J. Cai, editor), DIMACS Series, Vol. 13, AMS (1993)
pp. 183-193.

I. Wegener, On the Complexity of Branching Programs and Decision Trees
for Clique Functions, JACM 35 (1988) 461 — 471.

S. Z4k, An Exponential Lower Bound for One-time-only Branching Pro-
grams, in Proc. MFCS’8}, Lecture Notes in Computer Science Vol. 176
(Springer, Berlin, 1984) 562 — 566.

S. Zé&k, A superpolynomial lower bound for (1,4k(n))- branching pro-
grams, in Proc. MFCS’95, Lecture Notes in Computer Science Vol. 969
(Springer, Berlin, 1995) 319 — 325.

15



