Electronic Colloquium on Computational Complexity - Reports Series 1996 - available via:

E(:(:(: FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW:

http://www.eccc.uni-trier.de/eccc/
T R96- 052 Email: ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

Gossiping and Broadcasting versus
Computing Functions in Networks

Martin Dietzfelbinger
Fachbereich Informatik, Lehrstuhl 11
Universitat Dortmund
D—-44221 Dortmund
Germany
email: dietzf@ls2.informatik.uni-dortmund.de

September 25, 1996

Abstract

The fundamental assumption in the classical theory of dissemination
of information in interconnection networks (gossiping and broadcasting)
is that atomic pieces of information are communicated. Messages in the
network always consist of a set of such pieces. The purpose of this paper is
to make results from this theory applicable to the problem of computing
functions in synchronous networks built from processors that are connec-
ted by (bidirectional) links, across which arbitrary messages may be sent.
We show that, under suitable assumptions about the way processors may
communicate, computing an n-ary function that has a “critical input” and
distributing the result to all processors on an n-processor network takes ex-
actly as long as performing gossiping in the graph that defines the network
structure. A similar relation exists between the problem of computing func-
tions with the output appearing at only one processor and the complexity
of broadcasting in the corresponding graph.

The restrictions we have to impose on the way processors communicate
are, e.g., in the case of 1-way communication across the links, that in one
step, a processor may either send one message or receive one message or
do nothing, and that

() “Predictable reception”: a processor must know at the beginning of
the step whether is is to receive a message across one of its links or
not.

As an example, we consider the problem of computing the OR of n bits
and distributing the result, which is essentially the same as solving a certain
type of synchronization problem. Our results show that on a network that

obeys the aforementioned restrictions, for this task it is optimal to use the
communication pattern of a gossiping scheme, while for computing the OR
of n bits with the result appearing at one processor it is optimal to use
the pattern given by a broadcasting, or, equivalently, by an accumulation
scheme. It is obvious that gossiping and accumulation schemes can be used
to compute functions, as long as the length of messages is unrestricted and
computation is given for free; however, it seems that until now there was no
formal study of the opposite direction. All results are sharp, that means,
no constant factors are involved.

We further study the complexity of broadcasting one bit in a synchron-
ous network that does not necessarily satisfy restriction (). In fact, the
only restriction is that in one step a processor can send only one message.
We show that in this model the number of steps needed for broadcasting a
bit equals the number of rounds needed by so-called 2-broadcasting proto-
cols, in which in one step a processor can inform two of its neighbors of the
piece of information that is to be broadcasted. The method can be applied
to parallel random-access machines (PRAMs) and distributed memory ma-
chines (DMMs) with the ARBITRARY access resolution rule to obtain lower
bounds for broadcasting. The result also implies that in networks without
restriction (*) computing the OR function and distributing the result can
be done faster than gossiping, but at most by a factor of 4.

1 Introduction

The purpose of this paper is to demonstrate that the well-established theory of
gossiping and broadcasting in interconnection networks can directly be applied
to obtain lower bounds for algorithms that compute functions in synchronous
networks consisting of processors connected by bidirectional links. In this intro-
ductory section, we informally discuss the relevant structures and describe the
results. Formal definitions will be given in Section 2.

1.1 Gossiping and broadcasting

In gossiping theory one deals with the following basic situation: each node of a
network initially has an atomic piece of information; the purpose of a gossiping
scheme is to distribute all the information to all the nodes. For this, in rounds,
the nodes send each other messages consisting of an arbitrary number of pieces
of information. The standard restriction is that in one round a node can commu-
nicate with only one of its neighbors. One distinguishes 1-way (or half-duplex)
mode, where in a round information can be sent through a link in only one direc-
tion, and 2-way (or full-duplex) mode, where in a round two nodes may exchange
all their information through a link that connects them. The most intensively
studied efficiency criterion in this theory is the number of rounds needed for

disseminating all pieces of information to every node. The broadcasting problem
is similar, excepting that only one piece of information, initially located at one
node, is to be spread to all others. The accumulation problem is the converse of
the broadcast problem: the aim is to collect all pieces of information initially loc-
ated at the single nodes in one distinguished node. For an account of the history
of the problem area and the intensive research devoted to it see the survey [17],
the more recent surveys [14, 20], or other articles in the special issue of Discrete
Applied Mathematics (vol.53, 1994). In the fundamental paper [8], which also
contains many lower bound arguments, the relevance of the gossip model for real
multiprocessor systems is discussed.

1.2 Computing functions in processor networks

We consider the problem of computing functions in networks. The computational

model is a network of n processors, P, ..., P,, that are connected by bidirectional
links, according to a network graph G = (V, E). The processor network is to
compute an n-ary function f: A; x --- x A, — A, for arbitrary sets Ay,..., Ay,

and A, in the following way. Initially, processor P; knows the :th component a; of
the input @ = (ay,...,a,); at the end, all processors know the result f(a) (“global
output”). (For example, for realizing a synchronization barrier in the network,
i.e.,in order to find out whether all processors have finished certain subtasks from
a set 7y given to them and inform them whether to proceed to another set 7, of
subtasks that requires that all activities for 77 are finished, the Boolean function
OR must be computed with global output.) We will also consider the situation
where only one processor has to know the result (“local output”). The processors
work synchronously in lock-step, i.e., in global steps ¢t = 1,...,T. In one step, a
processor may communicate with at most one of its neighbors. Different models
are obtained by allowing only 1-way traffic on a link in a step (half-duplex mode)
or 2-way-traffic (full-duplex-mode). There is one essential restriction, which turns
out to be necessary for our results to be true, which can be phrased informally
as follows.

() “Predictable reception”: a processor must know at the beginning of a step
whether is is to receive a message across one of its links in this step or not.

That means, a processor must not, in step ¢, wait for a message that may or
may not arrive and proceed in different ways when a message arrives and oth-
erwise. This restriction makes it impossible that information is transferred by
not sending a message in a certain round. The relevance of such a possibility in
the context of computations on the parallel random-access machine (PRAM) was
observed in [7], and investigated in more depth in [3]. Apart from this restriction,
the model is quite general, e. g., a processor may wait for a message from any one
of its neighbors without specifying the sender or may make a message available to

any neighboring processor that wants to receive it. As will be discussed later, al-
gorithms that observe restriction () are suitable to be executed on asynchronous
networks as well (Remark 2.8).

1.3 Results

It 1s almost obvious that if a network has a 7T-round gossiping scheme then it
can solve the synchronization problem in 7' steps with 1-bit messages and trivial
computation, and, under the assumption that messages may be arbitrarily long
and computation is for free, it can compute any function with global output in
T steps. The main result of this paper essentially is that this is best possible.
More specifically, we show the following for processor networks with “predictable
reception”.

e If an n-ary function f that has a critical input a, i.e., an input with the
property that each of the n components of the input can be changed in
such a way that the value of the function changes, can be computed on a
processor network G with global output in 7" steps, then G has a T-round
gossiping scheme.

e If an n-ary function f that has a critical input can be computed on a
processor network (G in T steps with local output at processor P, or a
function f that depends on component a;, can be computed on G in T
steps with global output, then G has a T-round broadcasting scheme.

These results hold if both in the processor network and in the gossiping net-
work 1-way resp. 2-way communication is assumed. Of course, the idea of the
proof is to show that any communication pattern that the network produces on
the critical input in fact essentially is a gossiping scheme respectively a broad-
casting scheme. Although this is quite intuitive, the result does not seem to be
obvious, due to the fact that the communication in the processor network is not
oblivious, 1. e., communication patterns for different inputs ¢ may be different, in
contrast to gossiping schemes, which have one fixed communication pattern. The
role played by the restriction “predictable reception” becomes apparent only in
the proof. In contrast, e. g. in [8] it is stated, but not proved formally, that lower
bounds for gossiping carry over directly to the synchronization problem or, even
more generally, to computing any multiple-output function in which all output
components depend on all input components, like matrix inversion or computing
the discrete Fourier transform of a vector, on arbitrary processor networks. In
Sections 4 and 5 we will consider networks without restriction (*). As for com-
puting functions with global or local output, we shall see that the possibility of
using different communication patterns on different inputs actually makes it pos-
sible to compute the OR faster than by a gossiping respectively an accumulation
scheme. Still, it can be shown that in no network the speedup can be more than

4

a factor of 4. In Section 5, we will exactly characterize the complexity of broad-
casting a bit in a synchronous network with very general communication rules in
terms of a variant of broadcasting schemes in the gossiping type model. The only
remaining restriction is that in one step a processor may send only one message
that may not be duplicated by the communication system.

1.4 Applications

The consequences of our results for networks with “predictable reception” are
threefold. First, as corollaries we obtain a host of lower-bound results for com-
puting functions in networks of different topologies with algorithms that obey
restriction (), since all lower bounds proved for gossiping and broadcasting carry
over. As is common in gossiping theory, many of these bounds are tight. E. g., we
obtain the following.

e Computing the OR in I-way mode with global output on a complete net-
work of n processors takes 1.44...logn + O(1) steps' [8, 12, 23, 27].

e Computing the OR in 1-way mode with global output in a ring of n pro-
cessors takes time n/2 +/2n + O(1) [19, 8].

e Computing the OR in 1-way or 2-way mode with global or local output on
a butterfly network with n = k - 2F nodes takes at least 1.7417k steps [22].

e Computing the OR in a complete k-ary tree of depth d with local output at
the root takes exactly kd steps; with global output, 2kd steps are necessary
and sufficient [20].

Second, it follows that the so-called minimum broadcast subgraphs (cf. [17]) of a
network or the trees and schedules used to achieve optimal broadcast times are
also the optimal communication pattern for computing functions with a critical
input on the corresponding networks, with local output, under restriction (*).
The analogous statement for minimum gossip graphs (cf. [17]) also holds. Third,
it has been an objection to upper bounds described in gossiping theory that the
model used is somewhat unrealistic in that it allows to send messages containing
an arbitrary number of atomic pieces of information from one node to another
in one round. Thus, claims to the effect that a lower bound was optimal by
giving the matching upper bound were not completely satisfying. (See [1] for an
investigation of gossiping with bounded packet sizes.) In our network model, the
corresponding upper and lower bounds hold for the problem of computing the OR
function, which can be solved by sending messages consisting of one bit. Thus,
both upper and lower bounds hold for a quite realistic model.

1 All logarithms are to the base 2, unless noted otherwise.

The model without “predictable reception” is general enough to make it pos-
sible to draw conclusions about the complexity of broadcasting a bit in some other
models, viz., PRAMs and distributed memory machines (DMMs), with commu-
nication that obeys the EXCLUSIVE READ rule. Not surprisingly, the mode of
writing is not relevant in this context. (See [13] for information on the complex-
ity of PRAM computations, and [11] for a specification of the DMM model with
various access conflict resolution rules.)

1.5 Related work

In [8], the relevance of results for the gossiping problem for real multiprocessor
systems was discussed in depth, but informally, i. e., without making the model for
the multiprocessor system explicit. To the best of the knowledge of the author, the
problem considered here has not been studied before on a comparable technical
level, with the exception of work done by Belting in his diploma thesis [4], who
used a combination of the lower-bound method for the gossip problem on the
complete network from [8, 12, 23, 27] with the degree technique for proving lower
bounds for CREW PRAMs from [10] to show that computing the OR function
in networks that obey restriction (%) and the concurrent-write property (it is
forbidden that in one step, more than one message are sent to one processor) takes
exactly as long as gossiping in this network. The proof method used in the present
paper is completely different. Our technique is, however, related to the method
introduced in [30] for analyzing computations on concurrent-read concurrent-
write PRAMs with bounded communication width. The method for analyzing
broadcasting algorithms in networks with unrestricted communication is a new
and more general formalization of the idea of analyzing PRAM computations by
keeping track of those cells and processors that are “affected” by some input bit,
which has been used in [3, 7].

In [2], the problem of computing and distributing the value of a commutative
and associative function in a complete network is considered, with the variant of
communication mode that allows a processor to send one message and receive
one message in one step. The lower bound [logn| claimed in that paper for the
broadcasting problem is called “obvious”, and it seems that a fixed communica-
tion pattern is assumed. Similarly, the lower bound mentioned in [5] for the more
general “k-port” model seem to be based on this assumption.

Also, it should be mentioned that in the context of asynchronous communic-
ation in networks, Tel studied a family of algorithms that were all recognized to
be equivalent (called “normal algorithms” in [28] and “wave algorithms” in [29]).
They would correspond to the problem of computing functions that have a crit-
ical input with “local output”. However, because of the absence of a notion of
time in these models, Tel’s results do not have direct applications in our setting.

1.6 Structure of paper

The structure of the rest of this paper is as follows. In Section 2 we recall the
relevant notions from gossiping theory and formally describe the network model.
Section 3 contains the proof of the main theorem; Section 4 contains variants
of the main result, in particular, extensions to functions that do not have a
critical input, to multiple-valued functions, and to networks without restriction
(*). Finally, in Section 5 we consider the problem of broadcasting one bit in
unrestricted networks, and mention applications to other parallel computational
models (exclusive-read PRAMs, and distributed memory machines (DMMs) with
the ARBITRARY read and write conflict resolution rule).

2 Preliminaries

In this section, we first recall some basic definitions and facts from gossiping and
broadcasting theory. Next, we give a precise description of the type of processor
networks we will consider. For completeness, we also recall the definition of some
well-known complexity measures for n-ary functions.

2.1 A formal view of gossiping and broadcasting

For the rigorous definitions of gossiping, broadcasting, and accumulation schemes
we partly follow the survey paper [20]. (See that paper as well as [14] for more
information on the subject, in particular for lower and upper bounds for specific
networks, and for variations of the models.) Throughout this paper, by a graph
G = (V, E) we mean an undirected graph without loops or multiple edges, where,
without loss of generality, V = {1,...,n} for some n € N. An undirected edge
between nodes ¢ and j is denoted by {, 7}, a directed edge from ¢ to 5 by (7, j).

Definition 2.1 Let G = (V, E) be a graph.
(a) A directed matching in G is a set M CV x V —{(¢,2)|i € V} such that
(i) if (i,j) € M then {i,j} € E;
(i) if (s,7) and (¢',3') are distinct elements of M then {i,5}0{i',5'} = 0.

(b) An undirected matching of G is a set M C E consisting of node-disjoint
edges.

Definition 2.2 A communication protocol for a graph G = (V,E) in l-way
[resp. 2-way] mode is a sequence M = (M, ..., Mr) of directed [resp. undirec-
ted] matchings of G. The number T is called the number of rounds of protocol
M. Inductively, we define a sequence K(M) = (Ko, K1,...,Kr) of mappings
KV — P(V), where P(V) denotes the power set of V, as follows.

7

(i) Ko(2) = {i}, forieV;
(ii) For 1 <t<T,ieV:

Kio1(h)U K;—1(2) for the (unique) l € V such that
Ko — (l,2) € M, [resp. {l,i} € M,],
(i) = if such an | exists.

Ki_1(2), otherwise.

This definition is the straightforward formalization of the description of the
flow of pieces of information in the graph that is induced by the communication
protocol M in the obvious way: in step ¢, processor P; sends a message consisting
of all pieces of information it has collected so far to P; if and only if (z,7) € M,
[resp. {i,7} € M;]. The statement “j € K,(:)” is interpreted as “by the end of
round ¢, processor P; has received (‘knows’) the piece of information that was
initially located at P;”.

Definition 2.3 Let G be a graph, M a communication protocol for G in 1-way
[2-way] mode. Let K(M) be the sequence associated with M as in the previous
definition.

(a) M is a gossip protocol for G in l-way [2-way| mode if Kr(:) =V for all
eV

(b) M is a broadcast protocol for G in 1-way mode with source node ig € V
if io € Kp(7) for all i € V;

(¢) M is an accumulation protocol for G in l-way mode with target node

i €V if Kp(ig) =V.
Definition 2.4 Let G = (V, E) be a graph.

(a) The l-way [2-way] gossip complexity r(G) [r2(G)] of G is the minimum T
such that there is a gossip protocol for G in 1-way [2-way] mode with T
rounds.

(b) The (1-way) broadcast complexity b((,i9) and the (1-way) accumulation
complezity a(G, 1) are defined analogously.

One can also define broadcast and accumulation complexity in 2-way mode.
However, it is easily seen that these do not differ from their 1-way counterparts.
In fact, we even have the following. (For the simple proofs of these claims, see,

e.g., [20].)
Fact 2.5 a(G,ig) = b(G, 1) for all G = (V. F) and ig € V. u

2.2 Specification of the network model

In this section, we describe the machine model that will be the basis of our
considerations. The description will be slightly informal; a fully rigorous definition
(involving abstract state sets, transition functions, read-address, write-address,
and write-value functions, as well as input and output functions) can quite easily
be constructed, e. g., along the lines of the formal description of a CREW PRAM
in [7, 10]. We consider a network consisting of n processors, P, ..., P,, and of a
set of bidirectional links, each of which joins two of the processors. The topology
of the network is described by a graph G = (V, E) with V = {1,...,n}, the edges
{1,j} € E representing the links. Assume the network is to compute a function
fi Ay x---x A, — A. At the beginning of the computation, input «; is given to
processor P;, for ¢ € V| that means, the initial state of P; depends on q;.

The computation proceeds synchronously in steps t = 1,...,7T. The actions
of the network in one step are as follows. We first describe the 1-way case (half-
duplex use of links). Processor P;, ¢ € V, on the basis of its state after step t — 1,
chooses one of the following two possibilities.

(S): Choose a message m;, and a set V;;, C {5 € V | {i,j} € E} representing
possible recipients of the message. We say that F; SENDS a message in this
step. (For notational convenience, we also allow that V;, = (), which means
that P; does nothing in this step.)

(R): Choose a nonempty set W;; C {l € V' | {l,¢} € E} of neighbors, represent-
ing possible senders from which P; wishes to RECEIVE a message.

Now, messages are transmitted, so as to satisfy the choices made by the pro-
cessors, as described in the following. Consider the set

Ey={(1,5) | J € Vig and i € W},

representing all edges across which information may flow. It will be important
that we may choose from E; disjoint edges to be used for communication in a
greedy manner, and still are guaranteed that all processors that want to receive
a message actually get one. For this, condition (%) is formulated technically as
follows:

(x)! “Predictable reception (1-way)”: For any directed matching M’ C E; there
is a directed matching M with M’ C M C E,; that covers all recipients,
i.e., if P; has chosen to receive a message in step ¢ then (i,7) € M for some

e V.

Some matching M C FE; that covers all recipients is chosen (by “the system”),
and for each pair (¢,7) € M message m;; is delivered to P;. Messages that are not
delivered are discarded. We require that no matter which decision is made here

by “the system”, the output produced at the end of the computation is always
correct. (This rule is analogous to the ARBITRARY write-conflict resolution rule
for PRAMs, cf. [21].) Processors P; that send a message in step ¢ change their
state only by noting that step ¢ is finished; those processors P; that have received
a message m; assume a new state that also depends on this message. After the
last step, T', the result f(a) is known to all processors (in “global output” mode)
or to one designated processor P;, (in “local output” mode), that means, f(a) is
a function of the state that is finally reached by each processor resp. by processor

P

0"

Remark 2.6 We sketch two special combinations of possible choices for the sets
Vi and W;, that may make it clearer which variety of possibilities is covered by
this model.

(a) All senders P, might specify a set V;; with |V;;| = 1 or V;; = 0, and
all recipients P; might specify W, = {¢ | {¢,7} € E}: this corresponds to the
situation where each receiving processor has a “write window” into which other
processors may write; conflicts are resolved by the ARBITRARY rule known from
PRAMs. Requirement (*)' simplifies to the condition that for each recipient P;
there must be at least one message actually addressed to it.

(b) All recipients P; might specify a set W,, with |W;,| = 1, i.e., they are
interested in seeing a message from a specific neighbor, and all senders F; might
specify Vi, = {j | {¢,7} € E}, i.e., make their respective message available to
all their neighbors: this corresponds to a situation in which senders offer their
information via a “read window” accessible to all their neighbors. Requirement
(*)! turns into the EXCLUSIVE READ rule known from PRAMs.

In the 2-way (full-duplex) variant of the model, the basic structure of the
computation is similar. However, here at the beginning of step ¢ processor P
fixes a message m;; and a set V;; C {j € V | {1,j} € F} of neighbors that
are possible partners. (If V;; = (J, the processor does not want to communicate.)
Consider the graph G; = (V;, E;), where V, = {i | Vi; # 0} and E, = {{7,5} |
i,j € Vyandi € V;, and j € V;;}. The condition “predictable reception” here
takes on the following form.

(x)? “Predictable reception (2-way)”: Any partial matching M’ C F; can be
extended to a perfect matching M for (&, i.e., to a matching in (G; that
covers all nodes in V; and includes M’.

The “system” (arbitrarily) chooses one such perfect matching M, and the
processors communicate according to this matching, i.e., for every edge {i,7} €
M message m;, is delivered to P; and message m;, is delivered to P;. Processors
that have received a message change their state accordingly.

Definition 2.7 Let G = (V, F) be a graph specifying a processor network, and
let f be an n-ary function.

10

(a) A network algorithm (in 1-way or 2-way mode) is said to compute f with
“slobal output” (“g”) if for all inputs a, after T steps have been performed,
all processors know f(a).

(b) The 1-way network complexity TyB(f) is the minimum number T of steps of
a 1-way algorithm with global output that computes f. The 2-way complexity
Té’g(f) is defined analogously.

(c) A network algorithm in 1-way or 2-way mode is said to compute f with
“local output” (“I”) at node P, if after step T of the algorithm processor
P, knows the result f(a).

(d) The network complexities Télm(f) and Télm (f) are defined for local output
at processor P;, in analogy to the case of global output.

Remark 2.8 While restriction (*)' (respectively (%)? in the 2-way case) may

not seem to be a natural assumption to make in fully synchronous networks, it
arises quite naturally in connection with the problem of performing synchron-
ous algorithms on fully asynchronous networks. Assume that in an asynchronous
network internal computations of processors and delivery of messages may be
delayed for indefinite but finite periods of time. Still, we want to perform an
algorithm written for a synchronous network in which processors can either re-
ceive or send one message in one step. The obvious idea is to have each processor
keep an internal (virtual) step counter, and to keep the exchange of messages
synchronized by the use of time stamps. Conceptually, we assume that there is
a “communication system” that manages a global message buffer. If P; wants to
send a message m;; to one of the processors P;, 7 € V4, it places the message,
extended by a time stamp ¢, and the list V;; into this buffer, and proceeds to step
141 no matter what happens to the message. If P; wants to receive a message in
step ¢ from one of the processors F;, 1 € W, ,, it submits a corresponding request
to the system, again with time stamp ¢. The system searches the buffer for a
message that has time stamp ¢ and lists P; among its possible recipients. If one
is found, it is delivered to P; and removed from the buffer; P; proceeds to step
t 4+ 1. Otherwise, P; is blocked until a message appears in the buffer that can
be delivered to it. Synchronous algorithms that obey restriction (*)! are suited
for being run in this way on an asynchronous network, in the following sense: no
matter in which order messages are submitted or delivered, every receive request
for step ¢t will finally be satisfied; it never happens that a processor waits indef-
initely for a message that will not arrive. (In the terminology of asynchronous
distributed systems, this is a “liveness” property; see [29].)

2.3 Complexity measures for functions

We recall some definitions concerning functions f : A; x---x A, — A. Originally,
these notions were formulated for Boolean functions, but they can readily be

11

generalized to other domains (cf. [13]). The concept of a critical input will be
central for the main result. For discussion and applications of all these notions
in the context of parallel computing on PRAMs see, e.g., [6, 7, 25, 30], and in
particular the survey [13].

Definition 2.9 Fiz a function f: A; x --- x A, — A.

(a) An input a = (a1,...,a,) is critical for f if for every i € {1,...,n} there
is an input b that differs from a only in the ith component and satisfies

fla) # f(b).

(b) The critical complexity ¢(f) is is the mazimal k such that there is an input
a with the property that for k different indices 1 € {1,...,n} there is an
input b that differs from a only in the ith component and satisfies f(a) #
f(b).

(c¢) For each input a, the sensitive complexity (or certificate complexity) s(f, a)
of f at a is the minimal k such that there is a set I, C {1,....n} of cardin-
ality k with the property that all inputs b = (by,...,b,) withVi € I,:a; = b;
satisfy f(a) = f(b). The sensitive complexity s(f) of f is max{s(f,a) |

a is an input }.

(d) The function f depends on input bit ¢ if there are inputs a and b that differ
only in the ith component and satisfy f(a) # f(b).

3 Computing functions versus gossiping

This section contains the formulation and the proof of the main results concerning
the relationship between gossip and accumulation protocols on the one hand and
computing functions in networks with global respectively local output on the
other hand.

Throughout this section, let G = (V, E) be a graph with V = {1,...,n} for
some n € N, and let 1g € V be fixed. We assume alternately that G represents a
gossiping network and a processor network. The following is well known and an
almost immediate consequence of the definitions.

Observation 3.1 If f: Ay x---x A, — A is an arbitrary n-ary function, then
(a) TZ5(f) < r(G);
(b) TG5(f) < ra(G);
(c) T& (1), T&s,(f) < b(Gio), forio € V.

If f is the OR of n bits, it can be computed within these time bounds by using
1-bit messages only.

12

Proof. We only consider (a); the other statements are proved similarly. Let
M = (My,...,Mr) be a l-way gossip protocol, and let ¢ = (ay,...,a,) be the
input. The sequence K(M) = (Ko, K1,...,Kr) is defined as in Definition 2.2.
In step ¢, 1 <t < T, the processors send each other messages according to the
communication pattern given by M,. If (¢,5) € M,, processor P; sends a message
m;+ to P;, where m;+ is a representation of the input fragment (al)leKi(t—l)- From
the definition of (M) it follows by induction that the required information is
available to P; in this step; since M is a gossip protocol, after step ¢ each pro-
cessor knows the complete input @ and can compute f(a). Note that the longest
message can be at most as long as a. — If f is the OR function, it is sufficient
to send as message m;; the single bit Vg, ;—1) @ (Note that the only proper-
ties of the OR function used here are that it is commutative, associative, and
idempotent. In complete networks, idempotency is not required, see [2, 5].) m

The main result of this paper is essentially that, under the restriction “pre-
dictable reception”, these algorithms for computing f are optimal if global re-
spectively local output is required and f has a critical input. If global output is
required and f is nonconstant, lower bounds for broadcast protocols apply.

Theorem 3.2 Let G = (V, E) be a graph with node set V = {1,...,n}, which
represents a network of processors, and let f be an n-ary function. If [has a
critical input, then

(a) To5(f) =r(G);

(b) TEE(f) = ra@);

(¢) Ty () = TE3,(F) = b(Gdo), for io € V.
Further,

(d) if f depends on the igth input component for some io € V, then TH5(f),
TZE(f) = b(G, o).

Corollary 3.3 The complezity of computing the OR of n bits on G (under re-
striction (*)' resp. (*)?) is given by

(a) r(G) [r2(G)] for 1-way [2-way] communication and global output, and

(b) b(G,1g) for 1-way or 2-way communication and local output at processor
P;

0"

(In the upper bounds, 1-bit messages are sufficient.)]

13

Proof of Theorem 3.2. We deal with part (a) in detail; the proofs of the other
parts, being similar, will only be sketched. In view of Observation 3.1, only the
inequality T8(f) > r(G) has to be proved. For this, assume that a l-way al-

gorithm for computing f on (i in T steps is given, and that ™ = (af,...,a))is a

7N

critical input for f. Obviously, it is sufficient to construct a 1-way gossip protocol
for G that has T' rounds.

The construction splits into two parts. First, we eliminate ambiguities from
computations according to the algorithm, i.e., for each input a we fix a computa-
tion C,, which essentially corresponds to a communication pattern. In the second
part, we show that C,x induces a gossip protocol for G.

Part 1: Fiz computations. Consider the network algorithm that computes f
in T steps. First, we arbitrarily fix a computation Cy= for input a¢*. Consider
steps t = 1,...,T one after the other. Let E;(a*) be the set of all possible pairs
of senders and recipients determined on the basis of step t — 1 (cf. Section 2.2).
Then an arbitrary matching M;" C F;(a™) is chosen that covers all recipients, and
messages are delivered according to M;*. Now, consider some input a # a*. We
proceed by induction on t. Assume C, has been fixed up to step t—1, and consider
the graph (V, Ey(a)) induced by the communication requests of the processors for
step t. Let M!(a) = M;" N E,(a) be the set of those edges in F;(a) that are used in
step t of Cyx. By restriction (*)!, we may extend M](a) to some directed matching
M,(a) C Fy(a) that covers all recipients. Deliver messages according to M,(a).

Part 2: Identify a gossip protocol. Consider the communication protocol M* =
(M}, ..., Mf). The proof of part (a) of the theorem is finished once the following
assertion is established.

Lemma 3.4 (Main Lemma) M™* is a 1-way gossip protocol for G.

Proof. Let the sequence K(M™) = (Ko, Ki,...,Kr) be as in Definition 2.2.
We must show that Kr(¢) = V for all « € V. For this, it is sufficient to establish
the following assertion (A4;) for t = T"

(A;) for all inputs @ = (ay,...,a,) and all ¢ € V:
(Vj € Ki(i):a; = a}) = P; is in the same state in Cy» and C, after step ¢.

Indeed, if Kp(i) # V, e.g., 7 ¢ Ki(2), then by (Ar) processor P; is in the same
state after step 7' on input a¢® and each input that differs from a* only in the jth
component, which contradicts the assumption that a* is critical for f and that
the network computes the function f with global output.

We prove (A;) by induction on ¢. For ¢t = 0, the claim follows from the
definitions: Ko(i) = {¢}, for « € V, and the initial state of P; only depends on the
ith input bit. Now assume ¢ > 0, and that (A;_1) is true. Let : € V and a be an
input so that a; = a} for all j € K;(z). There are two cases.

Case 1: There is no [such that ({,¢) € M;". Then, by definition, K;(i) =
K,_1(%), in particular a; = aj‘ for all j € K;_1(z). By the induction hypothesis,

14

P; is in the same state after step t — 1 in both C,x and C,. Since no [satisfies
(1,7) € M;", no processor P; delivers a message to P in step ¢t of C,x, i.e., by
restriction (*)' (“predictable reception”), in step ¢ of Cyx processor P is a sender.
Since this decision is based on the state at the end of step t — 1, P; decides in
the same way in computation ', thus does not receive a message in ', in step
t either, and enters the same state in €', as in Cyx.

Case 2: There is some (unique) [such that (1,7) € M,". In this case, by
definition, Ky(7) = K;—1(1) U K;—1(7). We apply the induction hypothesis (A;_1)
to a with respect to both K;_{(I) and K;_1(2) to conclude that P, is in the same
state after step t — 1 of C, and of C,x, and that the same is true for P;. Since
(1,7) € M, the message m;; sent by processor P in this step is delivered to P;
in step ¢ of computation Cyx; in particular, P is a sender with z € V;; and P, is a
recipient with [€ W;,. Since both P; and F; are in the same state after step £ —1
in Cyx and Cy, this will also be true in computation C,; thus, edge ({,7) is in Ei(a)
and 1in Mt*, and P; sends message my; in step ¢ of C, as well. By the construction
of C, described in Part 1, edge (I,7) will be chosen to be in M;(a), and message
my; will be delivered to P; in C,. This implies that P; receives identical messages
in step t of Uy and of C,; hence P; will enter the same state at the end of step ¢
in these two computations. This finishes the induction step, and the proof of the
main lemma.]

We will not prove parts (b) and (c¢) of the theorem in detail, since the argu-
ments are essentially the same as in part (a). We only point out the changes to
be made. In part (b), undirected matchings are used in place of directed match-
ings. We fix a computation C,+ arbitrarily, and show exactly as in the 1-way
case that the sequence M = (M;(a™),..., My(a*®)) of matchings that describe
the pairs of processors that communicate in each step is a 2-way gossip protocol.
Restriction (%)? is formulated in such a way that the argument from (a) carries
over without any difficulties. In part (c), the construction of the communication
protocol is exactly the same as in part (a) respectively (b). The only difference
in the proof is that since it is only required that P;, knows the result at the end,
we can only conclude that Kp(ip) = V, which means that we have constructed
an accumulation protocol for (. Then Fact 2.5 and the remark preceding it yield
(c).

Finally, we sketch the proof of part (d), for 1-way mode. Choose a™ and a such
that f(a™) # f(a) and ¢* and a differ only in the 7oth component. Computation
C,+ and (afterwards) computation C,, each with T steps, are fixed exactly as
in the proof of part (a); the sequence M = (M;(a™),..., Mr(a™)) is defined as
above. Consider the resulting sequence K(M) = (Ko,..., K7) (Definition 2.2).
The assertion

(A}) VieV]ip & Ki(i) = P; is in the same state after step ¢ of C,« and C,]

is proved by induction on ¢. Since all processors P; must be able to distinguish

15

a® and a after step T, we must have iy € K7(i) for all i € V, thus, M™* is a
broadcast protocol, which establishes the inequality 7" > b(G, io).]

4 Extensions and limitations

In this section, we consider possible extensions of the main result. First, we discuss
functions that do not necessarily have a critical input; next, multiple-output
functions are considered; finally, the situation of processor networks that do not
necessarily satisfy restriction (k) is discussed. The complexity of broadcasting a
bit in networks with an even more general communication mode is treated in
detail in Section 5.

4.1 Boolean functions without critical input

What can be said about functions that do not have a critical input? We can
use the approach taken in the proof of Theorem 3.2 to obtain the following.
Assume a network G = (V, E) computes a function f with global output, and
a® = (af,...,a’) is an arbitrary input. Define M* = (M},..., M) as before,
in accordance with an arbitrarily chosen computation on this input. Then it is
easily seen that assertion (Ar) still holds: for all inputs a and all j € V' we have
that if a; = a for all i € Kr(j), then f(a) = f(a*). This means that for each
processor P; the set Kp(j) must be a “certificate set” I« for the function value
f(a™), as in Definition 2.9(c). If we choose a™ to be an input with s(f) = s(f,a™),
we obtain that |Kr(j)| > s(f) for all 7 € V.

Definition 4.1 For 1 < s < n, let r(G,s) denote the minimum number of
rounds of a communication protocol for G that satisfies |Kr(j)| > s forall j € V.

While the message complexity of the problem to obtain at least s different
pieces of information was defined and investigated already in [26], its round com-
plexity r((, s) does no seem to have received much attention, with the following
exception: in the case of the complete network, in [4] it was established that the
technique of [8, 12, 23, 27] can quite easily be adapted to prove a lower bound of
about log,(s) for this case with p = 2(1 + V/5), which is about 1.44...log(s).

Alternatively, one can consider the critical complexity of f (Definition 2.9(b)).
Let a* be an input and I C V be a set of size ¢(f) such that for every : € I
there is an input a that differs from a™® only in the 7th component and satisfies
f(a) # f(a*). Then from (Ar) it is clear that the communication protocol defined
in the proof of Theorem 3.2 satisfies I C Kp(j) for all 7 € V. This relates to the
problem of broadcasting from k = ¢(f) fixed sources. Results for this problem for
specific networks and specific placement of these sources have been obtained by
Hoéltring in her diploma thesis [18].

16

4.2 Functions with multiple outputs

In applications, often functions f : Ay x --- x A, — By X -+ X B,, a —
(fi(a),..., fu(a)), must be computed in such a way that the jth component
fila) appears at processor P; at the end. In [8], matrix inversion, discrete Fourier
transform, and sorting are listed as examples. Our methods apply to this situ-
ation directly if there is one input ¢™ that is critical for all functions fi,..., fa.
This is the case, e. g., for the problem of sorting n numbers a4, ..., a, from the set
{1,...,m} with m > n+2, so that the number with rank j appears at processor
P; at the end, since the input (2,...,n + 1) is critical for all output positions.
In many important cases, though, no single input can be found that is critical
for all components of the output, e. g., for the problem of sorting n bits. For the
special case of the complete network, we still can obtain lower bounds in terms
of the sensitive complexity of fi,..., f, on specific inputs, in the following way.

Proposition 4.2 If the multiple-output function f : a — (fi(a),..., f.(a)) is
computed on the complete network in 1-way mode in T steps, under restriction
()Y, and a is any input, then

T > %-logp<< > s(fj,a)2> /n) 20.72...-10g<< > s(fj,a)2> /n>,

1<j<n 1<5<n
where p = (1 ++/5)/2.

Proof. (Sketch.) Fix any input a*. Just as in Section 4.1 we can see that the
communication protocol M™* induced by «* and the corresponding sequence
K(M*) = (Ki,..., Kr) must satisfy |K7(5)] > s(f;,a), for 1 < j < n. The
proof method from [8, 12, 23, 27] can be applied to show that 7" must satisty

vz (5 IGR)

1<j<n

Combining these inequalities and taking logarithms yields the result. |

Corollary 4.3 Sorting n bits in 1-way mode on a complete network with restric-
tion (*)' takes at least 1.44...1ogn — O(1) steps.

Proof. Assume the problem of sorting n bits can be solved in T' steps. The
function f; is the output bit that appears at processor P;. As input, we choose
a® =(0,...,0). Since f;(a) = 0 if and only if @ contains j zeroes, it is clear that

s(f;,a*) = j. By Proposition 4.2, T > %logp((zlggnﬂ)/n) =log,(n) —O(1). m

17

We leave it to the reader to find inputs for the other problems mentioned
(discrete Fourier transform or matrix inversion) that make it possible to show
that these problems have high complexity in complete processor networks.

In order to apply results from the gossiping framework to the computation of
multiple-output functions in other, sparse, networks, we would have to have more
information on partial gossiping in these networks, in particular, the complexity
of collecting any k input pieces or a predetermined set of k£ input pieces in every
node.

4.3 Networks without “predictable reception”

In this section, we show that Theorem 3.2 becomes false if the network algorithm
does not have to satisfy restriction (*) (“predictable restriction”) but still is fully
synchronous. In this case, we may collect information with a large fan-in, and
distribute information faster using the phenomenon of “transmitting information
by not sending a message”, cf. [3, 7, 9]. Then, we show that even such networks
cannot compute functions with a critical input in global output mode more than
four times faster than gossip protocols.

Let us start with two examples, the tree network and the complete network.

Proposition 4.4 Let d > 1, and let G be a full binary tree of depth d with root
Py. (Thus, G has 2%t — 1 nodes.) With synchronous algorithms in 1-way mode
(which do not satisfy restriction (x)'), in G

(a) the OR of n bits with local output at Py can be computed in d steps;

(b) @ bit b located initially at Py can be broadcasted to all nodes in d steps;

(c) the OR of n bits with global output can be computed in 2d steps.

Proof. (a) It is sufficient to note that the OR of 3 bits ay, az, and a3 can be
computed in 1 step, because then we can proceed iteratively, starting from the
leaves. In one step, P, [Ps] sends a message to P, if and only if a; = 1 [az = 1].
If P, gets any messages, the result is 1, otherwise it is equal to a;. — (b) Again,
we only have to show how this can be done for d = 1; in larger trees, we iterate,
starting from the root. P; informs both of its sons in one step as follows: if b = 0
then it sends a message to Py; it b = 1 then it sends a message to Ps. In each
case, the processor that did not get a message can derive b from just this fact.
(The contents of the message are irrelevant. Cf. [3, 9] for this trick.) — (c¢) Apply
(a) and (b) one after the other. n

The resulting running times should be contrasted with the fact that if G is the
binary tree of depth d with root Py then b(G, Py) = 2d and r(G) = 4d (cf. [20]).
In the complete network, the situation is slightly different.

Proposition 4.5 Let G be the complete network of size n. With synchronous
algorithms in 1-way mode (which do not satisfy restriction (*)'), in G

18

(a) the OR of n bits with local output can be computed in one step;

(b) a bit ¢ located initially at some node can be broadcasted to all nodes in
[logsn| ~ 0.63logn steps;

(c) the OR of n bits with global output can be computed in 1+ [logsn| steps.

Proof. (a) For 2 < i < n, processor P, sends a message to P; if and only if
a; = 1. If Py gets a message, the result is 1, otherwise it is a;. — (b) Using the
same trick as in the proof of the previous proposition, in one step a processor
that knows ¢ can inform two other processors of this value; thus, the number of
processors that know ¢ can be tripled in one step. — (c¢) Combine (a) and (b). m

The running times from this proposition should be compared with the values
a(G,1g) = b(G,10) = [logn] and r(G) = 1.44...1ogn + O(1) for G the complete
network. Next, we note that for computing nonconstant functions with global
output in any network (i, at least iT(G) steps are needed. This bound is tight,
as the example of the binary tree shows.

Proposition 4.6 If a nonconstant function f can be computed in T steps with
global output in the network G (without restriction (x)'), then b(G,1o) < 2T for
some ig, and r(G) < AT.

Proof. 'The main part of the proof is postponed to Section 5, where we char-
acterize the complexity of broadcasting a bit in synchronous networks that are
even stronger than those considered here in terms of a variant of the broad-
cast complexity of the underlying graph. Clearly, if a network G can compute
a function f that depends on input position 2o in T steps with global output,
then it can broadcast one bit from source P,, in T steps. In Section 5, we show
that broadcasting one bit from a node ig in GG takes at least by((G,1g) steps,
which is the number of rounds in an optimal “2-broadcast” protocol, in which
one node may send a message to two of its neighbors in one step. It is easy
to see that b(G, 1) < 2by(G,10), hence b(G, i) < 2T. By the trivial fact that
r(G) < 2b(GLig) (cf. [20]), we obtain r(G) < 4T.]

5 Broadcasting a bit in a synchronous network

In this section, we study the complexity of broadcasting one bit in a synchronous
network of processors that communicate by message passing, with hardly any
restriction on the communication mode excepting that a processor must not send
more than one message in one step. We show, in analogy to Theorem 3.2, that a
well-known complexity measure from the theory of broadcast protocols for atomic
pieces of information is appropriate for describing the complexity of this problem.

Note that the problem of broadcasting a bit captures the essence of all situ-
ations in which differences in the state of a single processor finally influence all
others.

19

We treat communication in 1-way mode and in 2-way mode separately (Sec-
tions 5.3 and 5.4, respectively). The results of this section can be applied to other
parallel models like EXCLUSIVE READ PRAMs and 1-ARBITRARY distributed
memory machines, as will be indicated in Section 5.4.

5.1 The general network model in 1-way mode

As before, we consider a network of n processors, connected by bidirectional links
according to a graph G = (V, E). First, we focus on 1-way communication. One
node P, is distinguished as the source of the broadcasting process, i.e., this
processor can be in either one of two different states initially, representing inputs
0 and 1; the other processors are in an initial state that is independent of the
input. In step ¢, a processor may send a message and receive several messages, as
specified by the following rules. Depending on its state after step ¢ — 1, processor
P; fixes a message m;; that it wishes to send, and aset V;; C {j | {¢,5} € E} of
possible recipients. (As in Section 2.2, the choice V;; = () indicates that P; does not
send a message at all; with |V;;| = 1 a unique recipient can be specified.) Further,
P; specifies a set W, C {5 | {¢,7} € F} of processors from which it wishes to
receive a message. Let Fy = {(¢,7) | 7 € Vis and i € W;,;}. Some set E] C FE; is
selected arbitrarily such that for each ¢ that occurs as a first component in FE;
there is exactly one j such that (¢, 5) € E}. Then, for each (¢, 5) € E}, message m; ;
is delivered to P;. Thus, a processor P; that has specified W;, # () may receive
messages from none, some, or all P; with 7 € W;,. On the basis of all messages
received P; changes its state. After step 7', all processors must know whether the
input bit was 0 or 1. (The reader is invited to check against his or her intuition
that alternative rules for dealing with surplus messages like buffering for later
delivery, combining, discarding, etc. are at most as strong as this scheme.)

Definition 5.1 The broadcast complexity TGJ-O of a processor network G in
l-way mode with source P, ts the smallest number of steps an algorithm for
broadcasting a bit from P, can have.

5.2 2-broadcast protocols

Turning now to communication networks, we generalize broadcast protocols (see
Section 2) to 2-broadcast protocols, in which one node may pass the information
it has to two of its neighbors in one step. (This modification is discussed as
“DMA-bound model” H2, an abbreviation for “half-duplex with outdegree 27,
in [8, 14]).) Our definition of 2-broadcast protocols differs only formally from the
standard definition.

Definition 5.2 Let G = (V, F) be a graph, and vy € V.

20

(a) A 2-broadcast protocol in 1-way mode with source node ig is a sequence M =
(My, ..., Mr) of sets My of directed edges with the following properties:

(i) if (¢,7) € My then {1,5} € F, for 1 <t < T,

(ii) ¢ occurs at most twice as a first component in My and at most once as
a second component in My, for each 1 € V and 1 <t <T.

(iii) if K(M) = (Ky,...,Krp) is as in Definition 2.2 then iqg € Krp(¢) for
allve V.

(b) The 2-broadcast complexity of G with source node 1y is the minimum T
such that there is a 2-broadcast protocol as in (a) with T rounds.

A 2-broadcast protocol can be used to broadcast a piece of information, ini-
tially located at node ¢, in the following obvious way: if edge (¢,) is in M; and
to € Ky(7), then in round t the piece of information is sent from ¢ to j. The defin-
ition makes sure that the node that has to send the piece of information actually
has received it before and that every processor sends the piece of information to
at most two of its neighbors in one step. As mentioned before, it is obvious that

b(G,10) < 2by(G,1p) for arbitrary networks G and nodes 7 in G.

5.3 Processor networks versus 2-broadcast networks

By using the trick described in the proof of Proposition 4.4(b) for sending one
bit to two recipients in one step, we can transform any 2-broadcast protocol for
a graph (G into a broadcast algorithm in 1-way mode for the processor network
with topology given by G.

Observation 5.3 TGJO < by(Gig).

Proof. Assume that a 2-broadcast protocol for G with T rounds is given, and
define K(M) = (My,..., My) as before. We obtain an algorithm for the network
as follows. If edges (¢,71) and (7, j2) are in E; and iy € Ky(7), then in step ¢
processor P; informs P; and Pj, of the value of b with the trick described in the
proof of Proposition 4.4(b). If there is only one edge leaving ¢ in E;, the trick can
be applied nonetheless. We note that in this way all processors can use the same

message in all steps. |

The purpose of this section is to show that this algorithm is optimal. This
may be intuitively plausible, but to the best of the knowledge of the author a
formal proof, especially for a network model as general as considered here, has
not been available so far.

Theorem 5.4 TGJO = by(G, 10).

21

Proof. In view of Observation 5.3 we must only prove that TG,Z-O > by(Glig). Let
a broadcast algorithm for the processor network ¢ in 1-way mode with source 2
be given that runs in 7' steps. We construct a 2-broadcast protocol with at most
T steps.

We proceed similarly as in the proof of Theorem 3.2. However, here compu-
tations Cy and 7 on inputs 0 and 1 are fixed simultaneously by induction on t.
Thus, assume that Cy and C; have been fixed up to step ¢t — 1. For 6 =0, 1, the
communication requests of the processors (as represented by the sets V;,(b) and
W +(b), for ¢ € V') induce a set Fy(b) of directed edges across which messages may
flow. We let £ = E,(0) N Fy(1) and choose a subset E! C E} so that if 7 appears
as a first component in E} then (7,j) € F; for exactly one j. Then, for b = 0,1
separately, a set F;(b) with E} C Ej(b) C FEy(b) is chosen with the property that
if ¢ appears as a first component in FE;(b) then (i,7) € E[(b) for exactly one j,
and in step t of C}, message m;, is delivered to P; for all pairs (7,75) € F}(b).

The intuition behind the next definition is that we try to “peel off” inessen-
tial parts of the two computations, i.e., to identify “meaningless” messages and
eliminate them. For this, we define a set g of labeled, directed edges that run
along some of the edges of (¢, and identify a 2-broadcast protocol as part of this
set.

e Edge (¢,7), with label ¢, for 1 <¢ < T isin Ey; if and only if there is some
b € {0,1} such that in computation (', the message m,; sent by processor
P; is delivered to P;, but in the other computation Cj no message or a
different one is sent from P; to P; in step ¢.

Note that parallel edges are possible, involving different time steps. Note also
that identical messages that are sent across the same edge in both Cy and 'y are
ignored in this definition, corresponding to the intuition that they are “meaning-
less”. The following simple observations are crucial.

Claim 1: Let ¢ # ig and j # ig. If (4,) with label ¢ is in FEg;, and no edge
(¢/,7) with a label ¢’ < ¢ is in Eg 1, then there must be some [€ V such that edge
(1,7) with label t" is in Eg; for some t" < t.

(Intuitively spoken, in order to send a meaningful message in step ¢, a pro-
cessor P; with ¢ # iy must either
¢ have received a meaningful message in an earlier step in the same computation,
or
e have noticed that a meaningful message that would have been due to arrive in
the other computation has not turned up, or
¢ be treated differently by the intended recipient of the message in the two com-
putations.)

Claim 2: 1f ¢ # 1o then there is at least one labeled edge that enters node .

(Intuitively, if P;, ¢ # o, never gets a meaningful message in either computa-
tion, it cannot know the input bit at the end.)

22

Proof of Claim 1: Assume for a contradiction that (z,7) with label ¢ is in
Eo 1, but that in Eq; there is neither an edge (i, 7) nor an edge (I,7) with a
label t” < t. By symmetry, we may assume without loss of generality that in
computation Cy processor P; sends a message m;, which is delivered to P;, but
that this message does not flow from P; to P; in (. This means that (¢, 7) € E(0),
hence we have j € V;;(0) and ¢ € W;4(0). The last two assumptions imply that
processor P;, which does not know b initially since ¢ # 7, has received exactly the
same messages in each of the steps 1,...,7 — 1 in both computations, and that
the same is true for P;. This entails that P; and P; both are in the same state
after step t — 1 in Cy and Cp, hence j € V;,(1) and 7 € W, (1), which implies
(i,7) € Fy(1), and P, sends message m,; in C; as well. By the definition of F/,
edge (7, j) appears in this set. In computation Cy edge (¢, 7) is used for delivering
m;, which implies (7,7) € Ej. Hence, (¢,7) € E}(1) as well, which means that
message m;, is delivered to P; in C; as well, a contradiction.

Proof of Claim 2: If no labeled edges enter ¢, then all messages received by
P; in steps t, 1 <t < T, are identical in Cy and C;. Thus, since ¢ # g, in both
computations P; will be in the same state at the end of step T'. This contradicts
the requirement that at the end all processors must know b.

Next, we eliminate some of the labeled edges, as follows. All labeled edges
that enter i are removed; all labeled edges that enter ¢ # ¢y excepting that one
with the smallest label ¢ are also removed. (This operation corresponds to the
intuition that once a processor has received a meaningful message, or noted that
it did not arrive at its due time, it knows b, and later messages are irrelevant.)
The resulting edge set is called E(;k,l- The digraph G* = (V, ESkJ) has the following

two properties.

(i) All nodes excepting ig have indegree 1 in G*.

(ii) If (¢,7) with label ¢ is in [, then either ¢ = 4o or the (unique) edge that
enters ¢ in G* has a label ¢/ < t.

(Property (i) is immediate from Claim 2 and the definition of E;l. Property (ii)
is a consequence of Claim 1 and the definition of E(;k,l- Indeed, if (7, j) with label
t is in E(;k,p then there cannot be an edge (i',7) in Fo1 with an “earlier” label
t' < t, and j # 1. We may assume that ¢ # i, and apply Claim 1 to conclude
that there is an edge in FEg; that enters ¢ and has a label t” < ¢. Again by the
definition of Egjl, the label of the unique edge (/,¢) € Egjl that enters ¢ must have
a step number which is at most ", thus, smaller than ¢.)

Properties (i) and (ii) taken together say that G* is a directed spanning tree
for V with root i, and that the labels along directed paths in G* are strictly
increasing with respect to their ¢-parts. Moreover, for each node and each t there
can be at most two edges leaving ¢ that are labeled with ¢. From this it easily
follows that we obtain a 2-broadcast protocol for G with at most T rounds by
defining E; = {(¢,7) | (¢,7) € E(;k,l and (7,7) has label t }, for 1 <t < T. [|

23

5.4 Broadcasting in 2-way mode and in other
parallel models

The complexity of broadcasting a bit on EREW PRAMs has been determined
in [3]. Let us recall briefly how such a parallel model works. It consists of pro-
cessors (Jy,...,Q), and cells Cy, ..., C,. In one step, a processor reads from a cell,
performs some internal computation, and writes to a cell. It is forbidden that
in any step more than one processor reads from the same cell or more than one
processor writes to the same cell. Initially, one cell contains a bit, the others have
a neutral content. EREW algorithms can be regarded as algorithms for processor
networks with n = p+ r processors. Each PRAM processor and each PRAM cell
are represented as a network processor. A write phase is represented as a step
in which all PRAM processors are senders (with 0 or 1 possible recipients) and
all cells are recipients (specifying all PRAM processors as possible senders). A
read phase is represented as a step in which all PRAM processors are recipients
(specifying 0 or 1 cell as possible sender). If we apply the technique from the
previous section, we obtain a 2-broadcast tree in which levels alternately consist
of PRAM cells and PRAM processors. It is not hard to show that the numbers
g; of the cumulative size of the levels 1 through ¢ of processors and the numbers
¢; of the cumulative size of the level 1 through ¢ of cells satisty the recurrence
inequalities

c = 1,

po = 0,

Pt < pi-1+ G,
¢ < co1+2p;

(cf. [3]). This implies that for all p processors to be informed of the bit, log,, 5 p+
O(1) steps must be made. Incidentally, we note that the EXCLUSIVE WRITE
rule is not needed in this argument; rather concurrent writing with any conflict
resolution rule may be permitted.

We want to generalize this lower bound to a PRAM in which concurrent
read accesses or write accesses are not forbidden but rather are resolved by the
ARBITRARY rule.

ARBITRARY READ: If in a step several processors try to read from the same cell,
an arbitrary one of them is given the contents of the cell, the other ones
receive a negative acknowledgement (“reading failed”);

ARBITRARY WRITE: If in a step several processors write to the same cell, an
arbitrary one of them succeeds and is given an acknowledgement (“writing
successful”), the other ones are given a negative acknowledgement (“writing

failed”).

24

The reader should note that for reading, this is an unusual rule in the context
of PRAMs. It has only been proposed in the context of distributed memory
machines (DMMs) as a relaxation of the COLLISION access rule, see [11, 24]. The
DMM with COLLISION access rule, also known as OCPC, has been unter intensive
investigation in recent years, and it has been shown that such machines are very
strong in a randomized setting; in particular they are able to perform routing
and simulate PRAMs in sublogarithmic time [15, 16, 24]. Here, we show that the
deterministic version of the model has a significant weakness: the elementary task
of broadcasting one bit to p processors takes Q(log p) steps.

If we try to translate the rules for such ARBITRARY-READ ARBITRARY-
WRITE PRAMs into communication rules for a network as above for the EREW
PRAM, we note that this time we must take 2-way communication into account,
because of the acknowledgements received by the processors that write. Thus,
we must describe communication rules for processor networks without restriction
(%)% but allowing full-duplex use of links in one step. The rules for step ¢ in such
a network are as follows. Depending on its state after step ¢ — 1, each processor
P, fixes a message m;; and a set V;; C {j | {¢,7} € F} of possible partners. Let
Vi={ieV|Vi,#0}and E;, = {{i,j} | i € V;, and j € V;}, and consider the
graph G; = (V,, E;). A maximal (i.e., not extendible) matching M, C E; is chosen
arbitrarily, and for each edge {¢,j} € M; message m;, is delivered to P; and m;,
is delivered to F;. Processors that have received a message change their state
based on this message; processors that have not received anything change their
state based on this knowledge. At the beginning, i.e., before step 1, processor P,
knows the bit b; after step T, all processors must know bit b no matter in which
way the sets M; were chosen.

Definition 5.5 The 2-way broadcast complexity fém of a processor network G
with source P;, is the smallest number of steps a 2-way algorithm for broadcasting
a bit from P, can have.

Remark 5.6 In analogy to Remark 2.8 we note that this kind of algorithm can be
performed on an asynchronous network without deadlocks and without processors
waiting indefinitely for messages that will not arrive. As in the case of algorithms
that obey restriction (*)%, in its local step ¢ processor P; places its message m;
and the list V;; of its possible partners into a global buffer, together with a time
stamp t. Whenever the buffer contains a matching pair of processors (i.e., i € V},
and j € V;,), after some finite delay the system delivers the messages m,; and m;,
and removes the communication requests. Ties are broken arbitrarily. Whenever
it happens that P; has submitted a list V4, but all P; with 7 € V,, either have
specified V;; = 0 or have already found other partners for communicating in step
t, the system informs P; that its communication attempt in step ¢ has failed and
P; proceeds to step t + 1. It is easily seen that the set {{i,j} | P exchanges
messages with P; in step t} is a maximal matching M, in E;, as required.

25

The 1-way algorithm of Observation 5.3 can also be run in 2-way mode, since no
concurrent writing is used. Thus, we have the following.

Observation 5.7 fém < by(Gl o).]

However, one can also prove the (again intuitively obvious) fact that for the
broadcast problem 2-way communication does not help.

Theorem 5.8 fém = by(G, o).

Proof. (Sketch) We must only prove that by(G, i) < fém Let a 2-way
algorithm be given that performs broadcast from P;,. We proceed similarly as
in the proof of Theorem 5.4, and only indicate the changes. First, we consider
undirected edges. Computations (g and C are fixed simulataneously by induction
on t. If Ey(b) = {{r,7} |7 € Vis(b) and 5 € V;4(b)}, for b € {0, 1}, is the collection
of possible pairs of processors to communicate in step t, we first fix a maximal
matching F] in £} = E;(0) N E,(1) and then let E/(b) O FE be a maximal
matching in Fy(b), for b = 0, 1. Next, we choose labeled edges. Edge {,} is put
into Fo1 with label ¢ if there is some b € {0, 1} such that in C} this edge is used
for exchanging messages m; +(b) and m;,(b) but in the other computation Cj this
edge either is not used or different messages flow across it. We need the following
observations.

Claim 1: It ¢ # iy and j # 1o, and {¢,7} has label ¢, then there is some
[€ V such that either {l,2} or {l,5} is in Ey; with a label ¢’ < ¢.

Claim 2: If ¢ # 19, then node ¢ is incident with some labeled edge.

The proofs of these claims are similar as in the 1-way case. Now, we eliminate
some labeled edges as follows. For each node ¢ # 1, choose the unique incident
labeled edge with the smallest label, and direct this edge towards 2. The resulting
set of n — 1 directed edges is called E(;k,r Using Claim 1, is easily seen that if
(i,7) € E(;k,1 with label ¢, then either ¢ = i or there is an edge (I,7) € Egjl with
label t" < t. This implies that E(;k,1 forms a directed spanning tree of G with root
29. Again, by the definition of Ey 1, at most two directed edges with the same time
stamp can leave any node. This means that from E;l we obtain a 2-broadcast
protocol by defining Fy = {(¢,7) | (¢,7) € Egjl and (7, 7) has label t}.]

We leave it to the reader to work out the details of the following argument. We
wish to apply Theorem 5.8 to PRAMs with ARBITRARY READ and ARBITRARY
WRITE with acknowledgement. To this end, we model both processors and cells as
processors in a network. The aim is to inform all p processors of one bit initially
located in one cell. If we carry out the construction of the edge set E:J as in
the previous proof, it turns out that the resulting tree splits into levels, which
alternatingly correspond to PRAM processors only and to PRAM cells only. Due
to the special properties of the read operation there can be at most one edge

26

with time stamp ¢ running from a “cell node” to a “processor node” at a higher-
numbered level, whereas from a “processor node” two edges with the same time
stamp may emanate. This implies that the recurrence inequalities mentioned at
the beginning of this section also hold here. In this way we obtain the following
generalization of the main result from [3].

Theorem 5.9 Broadcasting a bit from one cell to all p processors in a PRAM
with the ARBITRARY READ rule and the ARBITRARY WRITE rule with acknow-
ledgement takes log,, sp =+ O(1) steps. The same bound holds for broadcasting a
bit on a DMM with p processors and p memory modules.]

References

[1] A. BaGcHl, E. F. SCHMEICHEL, AND S. L. HAKiwmI, Parallel information
dissemination by packets, SIAM J. Comput. 23 (1993) 355-372.

[2] A. BArR-Nov, S. KipNIS, AND B. SCHIEBER, An optimal algorithm for

computing census functions in message-padding systems, Parallel Processing
Letters 3 (1993) 19-23.

(3] P. BEaME, M. KuTYtOowWsKI, AND M. KiIK, Information Broadcasting by
exclusive-read PRAMs, Parallel Processing Letters 1 & 2 (1994) 159-169.

[4] G. BELTING, Untere Schranken fir die Berechnung von Booleschen Funk-
tionen in vollstindigen Prozessornetzwerken im Telefon- und Telegraf-
Modus, Diplomarbeit, Universitat—Gesamthochschule-Paderborn, Pader-
born, 1994.

[5] J. BRuck AND C.-T. Ho, Efficient global combine operations in multi-port
message-passing systems, Parallel Processing Letters 3 (1993) 335-346.

[6] S. BuBLITZ, U. SCHURFELD, I. WEGENER, AND B. VOIGT, Properties of
complexity measures for PRAMs and WRAMSs, Theoret. Comput. Science
48 (1986) 53-73.

[7] S. Cook, C. DWORK, AND R. REISCHUK, Upper and lower time bounds

for parallel random access machines without simultaneous writes, STAM J.
Comput. 15 (1986) 87-97.

8] D.W. KRUMME, G. CYBENKO, AND K.N. VENKATAMARAN, Gossiping
in minimal time, SIAM J. Comput. 21 (1992) 111-139.

[9] M. DIETZFELBINGER, M. KUTYLOWSKI, AND R. REISCHUK, Exact time
bounds for computing Boolean functions on PRAMs without simultaneous
writes, in: Proc. 2nd Annual ACM Symp. on Parallel Algorithms and Archi-
tectures, 1990, pp. 125-135.

27

[10]

[11]

[12]

[13]

[14]

[15]

[18]

[19]

[20]

M. DIETZFELBINGER, M. KUTYLOWSKI, AND R. REISCHUK, Exact lower
bounds for computing Boolean functions on CREW PRAMs, J. Comput.
Syst. Sci. 48 (1994) 1231-254.

M. DIETZFELBINGER AND F. MEYER AUF DER HEIDE, Simple, efficient

shared memory simulations, in: Proc. 5th ACM Symp. on Parallel Al-
gorithms and Architectures, 1993, pp. 110-118.

S. EVEN AND B. MONIEN, On the number of rounds necessary to dis-
seminate information, in: Proc. ACM Symp. on Parallel Algorithms and

Architectures, 1989, pp. 318-327.

F. FicH, The complexity of computation on the parallel random access
machine, in J.H. Reif (ed.), Synthesis of Parallel Computation, Morgan
Kaufmann, San Mateo, 1994, pp. 843-899.

P. FRAIGNIAUD AND E. LAZARD, Methods and problems of communication
in usual networks, Discrete Applied Math. 53 (1994) 79-134.

L. A. GOLDBERG, M. JERRUM, T. LEIGHTON, AND S. RAO, A doubly
logarithmic communication algorithm for the completely connected optical

communication parallel computer, in: Proc. 5th Annual ACM Symp. on Par-
allel Algorithms and Architectures, 1993, pp. 300-309.

L.A. GOLDBERG, Y. MATIAS, AND S. RAO, An optical simulation of

shared memory, in: Proc. 6th Annual ACM Symp. on Parallel Algorithms
and Architectures, 1994, pp. 257-267.

S. M. HEDETNIEMI, S. T. HEDETNIEMI, AND A. L. LIESTMAN, A survey of
gossiping and broadcasting in communication networks, Networks 18 (1986)

319-349.

I. HOLTRING, Broadcast und Gossip in parallelen Netzwerken, Diplomarbeit,
Universitat—Gesamthochschule-Paderborn, Paderborn, 1994.

J. HRomKoOVIC, C.-D. JESCHKE, AND B. MONIEN, Optimal algorithms for
dissemination of information in some interconnection networks, Algorithmica

10 (1993) 24-40.

J. HRoMKOVIC, R. KLASING, B. MONIEN, AND R. PEINE, Dissemina-
tion of information in interconnection networks (broadcasting & gossiping),

in: D.-Z. Du and D.F. Hsu (eds.), Combinatorial Network Theory, Kluwer
Academic Publishers, Amsterdam, 1996, pp. 125-212.

28

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

R.M. KARP AND V. RAMACHANDRAN, Parallel algorithms for shared-
memory machines, in J. van Leeuwen (ed.), Handbook of Theoretical Com-

puter Science, Vol. A, Algorithms and Complexity, Elsevier, Amsterdam,
1990, pp. 869-941.

R. KrLASING, B. MONIEN, R. PEINE, AND E. STOHR, Broadcasting in
butterfly and deBruijn networks, Discrete Applied Math. 53 (1994) 183-197.

R. LABAHN AND I. WARNKE, Quick gossiping by multi-telegraphs, in:
R. Bodendiek and R. Henn (eds.), Topics in Combinatorics and Graph The-
ory, Physica-Verlag, Heidelberg, 1990, pp. 451-458.

F. MEYER AUF DER HEIDE, C. SCHEIDELER, AND V. STEMANN, Exploit-
ing storage redundancy to speed up randomized shared memory simulations,
in: E. W. Mayr and C. Puech (eds.), Proc. 12th Annual Symposium on Theor-
etical Aspects of Computer Science (STACS 95), Lecture Notes in Computer
Science 900, Springer, Berlin, 1995, pp. 267-278.

N. NisaN, CREW PRAMs and decision trees, SIAM J. Comput. 20 (1991)
999-1007.

D. RICHARDS AND A.L. LIESTMAN, Generalizations of broadcasting and
gossiping, Networks 18 (1988) 125-138.

V.S. SUNDERAM AND P. WINKLER, Fast information sharing in a complete
network, Discrete Applied Math. 42 (1991) 75-86.

G. TEL, Topics in Distributed Algorithms, Vol. 1 of Cambridge International

Series on Parallel Computation, Cambridge University Press, Cambridge,
1991.

G. TEL, Introduction to Distributed Algorithms, Cambridge University
Press, Cambridge, 1994.

U. VISHKIN AND A. WIGDERSON, Trade-offs between depth and width in
parallel computation, SIAM J. Comput. 14 (1985) 303-314.

29

