The Graph Clustering Problem has a Perfect Zero-Knowledge Proof

Oded Goldreich
Department of Computer Science and Applied Mathematics
Weizmann Institute of Science, Rehovot, ISRAEL.
E-mail:oded@wisdom.weizmann.ac.il

November 3, 1996

Abstract

The Graph Clustering Problem is parameterized by a sequence of positive integers, \(m_1, \ldots, m_t \). The input is a sequence of \(\sum_{i=1}^{t} m_i \) graphs, and the question is whether the equivalence classes under the graph isomorphism relation have sizes which match the sequence of parameters. In this note we show that this problem has a (perfect) zero-knowledge interactive proof system.

Keywords: Graph Isomorphism, Zero-Knowledge Interactive Proofs.

1 Introduction

For many years, the Graph Clustering Problem (defined below), has been my favorite example for a concrete problem having low (but non-zero) knowledge-complexity (cf., [4, 3]). However, reconsidering the problem a few weeks ago, I’ve realized that current “state of the art” (specifically, the paper of De-Santis et. al. [1]) yields that this problem does have zero knowledge-complexity.

2 The Graph Clustering Problem

The Graph Clustering Problem (GCP) is parameterized by a sequence of positive integers, \(m_1, \ldots, m_t \). Let \(m \overset{\text{def}}{=} \sum_{i=1}^{t} m_i \). Fixing these parameters the problem is specified as follows:

input: \(m \) Graphs, denoted \(G_1, \ldots, G_m \).

Without loss of generality we may assume all have \([n] \overset{\text{def}}{=} \{1, \ldots, n\} \) as their vertex set.

question: Does there exist a partition, \(C_1, \ldots, C_t \), of \([m] \) so that \(|C_i| = m_i \) for \(i = 1, \ldots, t \) and

- For every \(i \in [t] \) and every \(j, k \in C_i \), the graphs \(G_j \) and \(G_k \) are isomorphic.
- For every \(i \neq j \in [t] \) and every \(k \in C_i \) and \(h \in C_j \), the graphs \(G_k \) and \(G_h \) are not isomorphic.

That is, \(C_1, \ldots, C_t \) are the equivalent classes under the graph-isomorphism relation and their sizes match the \(m_i \)'s.

Let us denote this problem by \(\text{GCP}_{m_1, \ldots, m_t} \). Note that \(\text{GCP}_2 \) and \(\text{GCP}_{1,1} \) correspond to the Graph Isomorphism and Graph Non-Isomorphism problems, respectively. Both are known to have perfect zero-knowledge proof systems [2].
3 The Zero-Knowledge Proof

The main tools we use are two results due to De-Santis et. al. [1]. In their paper the following problem parameterized by a Boolean formula Ψ and a language L is considered, where k denotes the number of variables in Ψ:

input: k instances, denoted x_1, \ldots, x_k.

question: Does $\Psi(\chi_L(x_1), \ldots, \chi_L(x_k)) = 1$ hold, where χ_L is the Characteristic function of L (i.e., $\chi_L(x) \overset{\text{def}}{=} 1$ if $x \in L$ and 0 otherwise).

Let us denote the above problem by $\mathcal{CL}_L.\Psi$. Also, let GI denote the set of pairs of isomorphic graphs. We use two of the results of [1]:

1. For every monotone formulae Ψ, the language $\mathcal{CL}_{GI}\Psi$ has a (perfect) zero-knowledge proof system.

2. For every integer u, the language \mathcal{CL}_{GI,T_u} has a (perfect) zero-knowledge proof system, where T_u is the threshold function which is 1 iff there are at most u 1’s in the input.

Our (perfect) zero-knowledge proof for $\text{GCP}_{m_1, \ldots, m_t}$ follows by the observation that this problem is reduced to the AND of two \mathcal{CL}_{GI} problems, one of Type (1) and the other of Type (2). Specifically, let $k = \binom{m}{2}$ and consider a standard enumeration of all k (unordered) pairs of distinct integers in $[m]$. Let $\{i_1, i_2\}$ be the i^{th} pair in this enumeration and define $x_i = (G_{i_1}, G_{i_2})$. Then

$$\text{GCP}_{m_1, \ldots, m_t}(G_1, \ldots, G_m) = \mathcal{CL}_{GI,\Psi}(x_1, \ldots, x_k) \wedge \mathcal{CL}_{GI,T_u}(x_1, \ldots, x_k)$$

where $u = \sum_{i=1}^{t} \binom{i}{2}$ and Ψ is an adequate monotone formulae. The obvious question is whether the adequate Ψ does exist. The answer is indeed in the affirmative: Ψ is the disjunction of formulae Ψ_{C_1, \ldots, C_t}, for all partitions C_1, \ldots, C_t of $[m]$ which satisfy $|C_i| = m_i$ for all $i = 1, \ldots, t$. The formulae Ψ_{C_1, \ldots, C_t} is true if the instances corresponding to pairs in any cluster are indeed in the Graph-Isomorphism language. That is

$$\Psi_{C_1, \ldots, C_t}(\sigma_1, \ldots, \sigma_k) = \bigwedge_{j \in [t]} \bigwedge_{i \in C_j} \sigma_{i_1, i_2}$$

The threshold formula T_u makes sure that there are no additional pairs of isomorphic graphs.

Comments: Reduction to Threshold formulae suffices as long as $m \leq 5$ (since each partition of such m’s into m_i’s has a distinct value for $\sum_{i=1}^{t} \binom{i}{2}$). But for $k = 6$ both $6 = 2 + 2 + 2$ and $6 = 3 + 1 + 1 + 1$ have the same value for $\sum_{i=1}^{t} \binom{i}{2}$ (i.e., 3). On the other hand, our result can be proven using other tools in [1]; for example, the analogous proof systems for closures of Graph Non-Isomorphism.
References

