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Abstract

We present the first worst-case hardness conditions on the circuit complexity of EX P functions
which are sufficient to obtain P = BPP. In particular, we show that from such hardness conditions
it is possible to construct quick Hitting Sets Generators with logarithmic prize. As proved in [8§],
such generators can efficiently derandomize any BPP-algorithm.
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1 Introduction

- Motivations and previous results. A major goal in complexity theory is the study of the real
power of randomized algorithms. To this aim, several recent studies have been devoted to the area of
derandomization, i.e., the design of general methods that permit an efficient deterministic simulation
of algorithms which make use of random bits. A central question in this area is the relationship
between the existence of computationally-hard functions and the existence of efficient derandomization
methods. Yao [26], and Blum and Micali [10] introduced the concept of Pseudo-Random Generators
(PSRG’s), boolean operators that stretch a short truly random sequence of bits into a long string of
bits that “looks” random to any machine which has limited computational power. More formally, A
PSRG is a boolean operator

G ={G,: {0,1})™ 5 {0,1}" ,n>0},

denoted by G : k(n) — n, that, for a.e. n and for any boolean circuit C : {0,1}" — {0, 1} whose size
is at most n, we have:

Pr(C() = 1) — Pr (C(Ga(#)) = 1)| < %

(where 7 is chosen uniformly at random in {0,1}", and # in {0,1}*). According to the definition
used in [23], a boolean operator Op : k(n) — n is quick if it can be computed in time polynomial in n
(note in passing that if k(n) = O(logn) then the “quick” condition implies that Op belongs to EXP).
Nisan and Wigderson [23] showed a method to construct guick PSRG’s based on the existence of
boolean functions in EXP that have exponential hardness [22, 23]. The hardness condition used by
Nisan and Wigderson requires the existence of a function in EXP that not only has a hard worst-
case circuit complexity! but also a hard average-case circuit complexity. More formally, a function

f:{0,1}" — {0,1} is (e, L)-hard if for any circuit C of size at most L
[Pr(C(z) = f(Z)) — 5I<

N | —
N

Given a boolean function F = {F, : {0,1}" — {0,1}, n > 0}, the hardness at n Hp(n) of F' is
defined as the maximum integer h,, such that F,, is (1/hy,, h,)-hard. Then, F' has exponential hardness
if Hp(n) > 2", Nisan and Wigderson [23] showed the following fundamental result.

Theorem 1.1 If a boolean function F exists such that i) F € EXP, and ii) F has exponential
hardness, then there exists a quick PSRG G : k(n) — n where k(n) = O(logn), and consequently
BPP =P.

The above theorem provides an explicit result on the “hardness vs randomness” trade-offs. Fur-
thermore, more recent results on the hardness of boolean functions [2, 6] led to a rather general opinion
that the class EXP actually contains functions having exponential hardness, thus providing positive
indications on the Nisan and Wigderson’s conjecture claiming that the gap between deterministic
and randomized computational power is not large at least in a pure theoretical framework. As ob-
served above, the hardness required by Nisan and Wigderson’s construction of quick PSRG’s refers
to average-case complexity. The research over the last ten years suggests that determining strong

! As circuit complexity of a finite boolean function f, we will always mean the size of the smallest circuit that computes

f.



hardness results on the average-case complexity for uniform, recursive languages seems to be a much
harder task than that in the case of worst-case complexity (it is sufficient to observe, for instance,
the enormous difference between the number of known NP-hard problems and the number of known
RNP-hard problems [15, 14, 11]). This paper thus investigates the following central question: which
“worst-case” hardness assumption should a function satisfy in order to yield an efficient derandomiza-
tion method (i.e. to obtain P = BPP)? We give two answers to this question. Both answers make
use of a general method to derandomize algorithms (different from PSRG’s) that has been recently
introduced by Andreev et al in [7]. This method is based on quick Hitting Set Generators ([24, 16, 5]).

Definition 1.1 Let e(n) and S(n) be polynomial-time computable functions such that, for any n > 1,
0<e(n)<1andn < p(n) <2". Then, a boolean operator H : k(n) — n is an (e(n), 3(n))-Hitting
Set Generator (in short, (e(n),5(n))-HSG) if, for any boolean circuit C such that L(C) < B(n) and
Pr(C =1) > €(n), H is required to provide one “example” § for which C(§) = 1, i.e., there ezists
@ € {0, 1}*") such that C(H,(@)) = 1.

Observe first that any quick PSRG is also a quick (1/n,n)-HSG but the converse is not true.
Informally speaking, a PSRG provides a precise approximation of the value Pr (C (%) = 1), i.e., the
fraction of 1’s in the output of C, for any “small” circuit C'. Thus, if C' has a large fraction of 1’s in
its output then the PSRG must generate an input space for which this fraction has about the same
large size (see also the definition of Discrepancy Sets [9]). On the other hand, HSG’s are not required
to have this property: a HSG provides, for any “small” circuit C having a “large” number of 1's in its
output, only a witness of the fact that C is not a null function (for a further analysis of the differences
between HSG’s and PSRG'’s see [7]). In particular, Andreev et al proved the following result.

Theorem 1.2 Let k(n) = O(logn) and € be any constant such that 0 < € < 1. If there ezists a quick
(e,n)-HSG H : k(n) — n then BPP = P.

- Our results. Given any boolean sequence 7 € {0,1}", we will use the term complezity of T to refer
to the circuit complexity of the corresponding boolean function z : {0, 1}1°6™+D1 _ 0,1} where z(i)
is the i-th bit of Z. The circuit complexity of a finite function f (a finite sequence Z) will be denoted
as L(f) (L(Z)). The circuit complexity of a boolean operator H will be denoted as L°P(H).

In this paper, we give two worst-case complexity conditions which are sufficient to construct
quick HSG’s that satisfy Theorem 1.2, thus obtaining P = BPP. The first condition deals with
the worst-case circuit-complexity of characteristic functions of sets generated by boolean operators.
The construction of this quick HSG envolves the use of ezpanders graphs [3, 17, 20]. An undirected
graph G(V, E) is a (d, ¢)-ezpander if the maximum degree of a vertex is d, and for every set W C V
of cardinality |W| < |V'|/2, the inequality |[N(W) — W| > ¢|W| holds, where N (W) denotes the set of
all vertices adjacent to some vertex in W. Expanders share many of the properties of sparse random
graphs, and have been strongly used in several applications. The expanding properties of a graph can
be established by determining the value of its second largest eigenvalue (see for example [4]). Indeed,
if A is an upper bound on the second largest eigenvalue of any d-regular graph G(V, E), then G is a
(d,c)-expander for ¢ = (d — \)/2d.

In [17], a polynomial-time algorithm is shown which, given n > 0, and d < n, constructs a d'-
regular expanders G such that d' = O(d), |V| = O(n) and its second largest eigenvalues A > 0 is such
that A < 2v/d — 1 (such families of graphs are called Ramanujan graphs).

Using the expanding properties of Ramanujan graphs, we can demonstrate the following result.



Theorem 1.3 Let d and X be as in the above definition of Ramanujan graphs. Let & be any positive
constant and let k(n) = (1 + ©(1)) logn. If there ezxists a quick operator

H= {H, : {0,1}*" 5 {0,1}", n=1,2,..} ,
such that the characteristic function of its output sets
FH = {FH . {0,1}" = {0,1} , where FE(z) =1 iff 3§ €{0,1*Ms.t. H,(§) =7, n > 0}

satisfies

7

log(4)) 5) 2k(m)p,
k(

L(FH) >
() 2 ( logd n) + logn

then it is possible to construct a quick operator H' : {0, 1}k’(") — {0,1}" where k'(n) = ©(logn) and
H' is an (1 — €,n)-HSG for some positive constant 0 < € < 1, thus obtaining P = BPP.

Observe that if L°P(k,n) denotes the worst-case circuit complexity of boolean operators H : k(n) —
n, then it is known that [19, 25], for any logn < k < n,

2k,

L?(k,n) = (1+0(1)) i logn

Furthermore, for a.e. boolean operator H : k — n, we have L°?(H) = O((2Fn)/(k + logn)).

The second sufficient condition to obtain a quick HSG is stronger but refers directly to the worst-
case circuit complexity of a boolean operator instead of the characteristic functions of its ouput sets.

Theorem 1.4 Let k(n) = ©(logn). Let H : k(n) — n be a quick operator such that for a.e. n,

9k(n)

L(Hy) > L%(k,n)— B

Then, for any constant 0 < € < 1, and for any positive integer q, it is possible to construct a quick
(1 —€,n?)-HSG H' : k'(n) — n, where k'(n) = ©(logn), thus obtaining P = BPP.

Organization of the paper. In Section 2, we provide an asymptotically-optimal complexity bound for
partial boolean functions which depends on the number of inputs on which they ouput 1. This bound
is the generalization of Lupanov’s result [19] which holds only for total boolean functions. In Section 3,
we describe the construction of the HSG for proving Theorem 1.3. Finally, in Section 4 we describe
the construction of our second HSG that allows us to prove Theorem 1.4.

2 A preliminary result on the circuit complexity of partial boolean
functions
One of the key ingredients in deriving the HSG’s in both of our theorems consists of a new precise

bound on the Shannon function describing the trade-offs between the worst-case circuit complexity of
partial boolean functions and the number of inputs on which they ouput 1.



Let F(n, N,m) be the set of all partial boolean functions f(z1,...,z,) defined on N < 2" inputs
and assuming 1 on m < N inputs. Furthermore, L(n, N,m) denotes the worst-case circuit complexity
of functions in F(n, N,m). Lupanov [19] proved an optimal bound for L(n, N,m) when N = 2" (i.e.
for total functions). In order to use this bound in the construction of our HSG’s, we instead require
the precise bound for partial boolean functions.

The method used to derive the above upper bound is based on a probabilistic construction of
linear operators having some new variants of the “well-distibution” property previously shown in [6]
to obtain optimal bounds on the circuit complexity of approximating boolean functions.

Definition 2.1 A boolean functionl : {0,1}" — {0,1} is linear if it can be represented in the following
way:
z1,...hzpn) =121 D ... Danz, ® 0,

where ay,...,an, 3 are boolean constants. The set of all linear functions with n variables is denoted
as L.

Moreover, a vector function I = (I1,la, ..., ls) € (£n)® (s > 1) is called linear operator. The circuit
complexity of linear operators has been studied in [21]. In particular, we will use the following result.

Theorem 2.1 [21] For any linear operator I = (l1,...,ls) € (Ln)* (s > 1), we have

ns

Ly = 0( )—I—O(n).

logn

Let F(n, N,m) be the set of all partial boolean functions f(z1,...,z,) defined on N < 2" inputs
and assuming 1 on m < N inputs. Furthermore, L(n, N,m) denotes the worst-case circuit complexty
of functions in F(n, N,m). Lupanov demonstrated the following result for the case of total boolean
functions.

Theorem 2.2 [19] Let L'**(n,m) = L(n,2",m). Then

()
log m
LY n,m) = (1+o0(1)——F—+ .

Theorem 2.3

log< m )
L(n,N,m) = (1+o0(l))——F——— < +0(n) .

log log< z )

Proof. For the sake of brevity, we will prove the theorem only in the restricted case

n't¢ <m <n°W for some €>0, and N = 2% (1)

that is what we need to contruct our HSG’s in the next sections. The proof of the general case will
be given in the full version of this paper.



The proof consists of a reduction from our case to that of total functions for which we can apply

Theorem 2.2. Consider a partial boolean function f(z1,...,zy), let M, be the set of vector @ € {0,1}"
for which f(@) = a. We have |M1| =m and |My| = N m. Con31der a randomly chosen linear operator
(with uniform distribution) I = (Iy,.. lk) € (£ )" where k = [log N +logm] + 2. Then, observe

that for any choice of two fixed elements a@,b € {0,1}" such that @ # b, we have
Pr (i) = 1{5)) = 27* .
Consequently,
Pr(Jde My 3be Mo : [{@) =1(5) ) < |Mo|  [My|x27% < 1/4.
Hence, for the negation of the above event we have
Pr(vde My Vb€ My : I{@) #1(5) ) > 3/4.
From the above probabilistic argument, we can state that there exists e (En)'c such that
V@ e My Vb e My : I(d@) # 1(b) (2)
We define the total boolean function g(yi,...,yx) as follows
g9(§) =1 iff 3 @€ M; such that I(@) =

Note that if f is defined on @ then f(@) = g(I(@)); Then, using Theorem 2.1, we obtain
L(f) < L() + L(g) < O(n(log N + logm +2)) + L(g) < O(n®) + L(g) .

Furthermore, Condition 1 implies that
lo N
&\ m

N
log< m ) = (1+0(1))mlogN , and n? = o(———2—).
loglog< Z )

Since g is a total function we can apply Theorem 2.2, i.e.

and consequently

log < m )
L(f) < O(n?) + L(g) < (1+0o(1))

loglog< iX )

Note for the general case. If we remove Condition 1, a harder proof is required since we need to
derive a stronger bound on the circuit complexity of [. For general linear operators this is not possible
and we have to show a new special probabilistic construction. O



3 Hard characteristic functions and HSG’s

The following theorem provides a first trade-offs between the hardness of characteristic functions of
boolean subsets and their hitting properties.

Theorem 3.1 Let 0 < ¢y < 1 be a constant, and let S, C {0,1}" be any subset such that |S,| < by,
where b, = n®W) . Suppose that for the characteristic function F, of S, we have

b,n

i) L(F,) >

“logby +logn

Then, for any constant c¢1, such that 0 < ¢1 < ¢z, for any boolean function f(z1,...,z,) such that
i) Pr(f=1)>1-2@"" " and iii) L(f) < b, ,

there exists @ € Sy, for which f(a) = 1.

Proof. Suppose, by contradiction, that f satisfies conditions 7i) and %ii) but for any @ € S, we
have f(@) = 0. Let Z C {0,1}" be the subset of all inputs on which f = 0. Clearly, we have
Sn € Z C {0,1}". Then consider the partial boolean function g(z1,...,z,) defined as follows:
1 ifaes,
g(@) = 0 ifaeZ\S,
not defined otherwise

Since |Z] < 29" and |S,| < by, from Theorem 2.3, we have

L(g) < (1+0(1)) +0(n) < (1+0(1))

cin
log log ( 2b >

From S, C Z, it is easy to prove that Ff = g.—f. It follows that

bon

“ logb, +logn

bnpn

L(F) < o) + L()+001) < (14 o(D)erp st

+b,+0(1) <

bon
< (1+ 0(1))01M

For sufficiently large n, this last upper bound is in contradiction with hypothesis (i) of the theorem.
O

In which follows, we will consider HSG’s which always have a monotone function prize k(n) such
that, for any n > 0,

kE(n+1) —k(n) <1 and n®* > k(n) > logn where 0 < a < 1.

Let H : {0,1}¥(™ — {0,1}" be a boolean operator with k(n) = ©(logn), and let F¥ = {FH
{0,1}" — {0,1}} be the family of the characteristic functions of the output sets of H. Given any

d € {0,1}", [d];, ;, denotes the substring @, , ..., di,.



Corollary 3.1 Suppose that a quick operator
H = {H, : {0,1}*" 5 {0,1}" , n=1,2,..} ,
ezists such that k(n) = (1 + ©(1)) logn and, for a.e. n,

2k(n)p,

m for some constant 0 < cy < 1.

C2

L(F) >

Then, for any positive constant q and for any constant ¢y such that 0 < ¢1 < cg, it is possible to
construct a quick operator H' : k'(n) — n such that k'(n) = ©(logn) and H' is a (1—-2(1=D" nd).HSG.

Proof. Since k(n) = (1+06(1)) log n, we can assume that k(n) = (14 6) log n. Define s(n) = [%q logn].
We consider the quick operator H' : k'(n) — n where k'(n) = k(25(™n) + s(n), defined as follows:

=, -,

H',(d,b) = [H,psm) (@);, 4, » wherety =n(¢(b) —1), andty =t +n—1

n

(observe that @ € {0, 1}k(2(s(n)"), be {0, 1}3("), and ¢(b) is the decimal representation of b). Consider a
boolean function f(z1,...,z,) such that Pr(f =1) > 1—2© 1" and L(f) < nf. Then for function

2s(n)
Fr @1, mpmn) =V F(@a—1nt1, Ba—1)nt2, o Ttn) 5
t=1

it is easy to prove that
—1)28(n)
Pr(f*=1)21—2(cl 1)2 n’

and
L(f*) < 22 1 25 L) < (14 0(1))25™nd < (1 + 0(1))25M235() <

|

< (1+ 0(1))(25(”)n)1+2

Thus for sufficiently large n, we have

L(f*) < (2:09n) 7 < ghr )

By applying Theorem 3.1 with
b — ok(2°(™n)
n =

bl

we have that there exist @ € {0, 1}25(n)” and ¢t € [1,...,2%™)] such that

(oo @] 1ynpm) = 1-

It follows that there exists

=,

@€ {0, 13" and Be{0,1}°™ such that f(H.(@,b)) =1 .



3.1 Improved HSG’s using expanders

We will use the following important “hitting” property of expander graphs proved by Ajtai et al [1]
(for a proof of this claim see for example Theorem 2.7 - p.124 - of [4]).

Theorem 3.2 Let G(V, E) be a d-regular graph, and assume that its second largest eigenvalue is at
most A > 0. Given any subset W C V such that |W| = an (o < 1). Then, for everyt > 0, the number
of walks of length t in G that avoid C is at most

n(l—a)?((1 — a)d® + N2 .

As mentioned in the Introduction, there exists a polynomial-time algorithm that, given n > 0,
and d < n, constructs an d'-regular expanders G such that d = O(d), |V| = O(n), and its second
largest eigenvalues A > 0 is such that A < 2v/d — 1 [17] (such families of graphs are called Ramanujan
graphs).

For any n > 0, consider a d-regular Ramanujan ezpander EP, = (V,, X,,) where 2" < |V,,| < 2n+!
[17]. Observe that the boolean strings with last component equal 0 correspond to the input set of the
function we want to hit. This assumption is required when F P, cannot be contructed on vertex sets
whose size is exactly a power of 2. Let [ = [logd|. We suppose that d is a large but constant value.

Then, we consider the operator EPR,, ; : {0, 1}"+l'(2t71)+t — {0,1}", such that
EPR,4(@.d,... 4 1,5), dae{0,1}", @ e{0,1}', §e{0,1}",

are the first n components of the ¢(5)-th vertex of the EP,-walk of length 2! which starts from
vertex (d@,0) and is uniquely determined by the sequence of edge choices in the neighborhood of each
vertex: ¢(u1),...,P(Ust 1). Observe that if t = O(logn), the operator EPR,, ; can be computed in
time polynomial in n. Consider now a boolean function g(z1,...,z,), and the operator EPRfL,t

{0, 1}”+l'2t — {0,1} that performs the OR among the values of g computed on the input points
visited by a fixed EP,-walk of length 2¢, i.e.,

EPR} (@, dy,...,dx) = \| g(EPRny(@d1,... 1 1,5)) . 3)
5e{0,1}¢

Lemma 3.1 IfPr(g=0) <c <3, then
A\ 22
Pr (EPR), =0) < (c + 5) .

Proof. Let 0 < a < 1, and let C C V,, be any subset such that |C| < an. From Theorem 3.2, we know
that the number of walks of length m in EP, that avoid C is at most

Val(1 — ) Y2((1 — a)d® + X2)™.

Furthermore, observe that the number of all walks of length in EP, is |V,|d™, and the value
Pr (g = 0) computed on the set of vertices representing strings with last components equal to 0 is at
most 2c¢. It follows that

A2\ ¥t A 262
Pr (EPR, =0) < \/%<2c + ﬁ) < (c + E) .



Theorem 3.3 Assume that there ezxists a quick operator H = {H, : {O,l}k(") — {0,1}", n =
1,2,...} , such that k(n) = (1 + ©(1)) logn and the characteristic functions of its output sets satisfies

log(4)) 2k(m)p,
D2 (ed ) i+ togn
LET) = logd +o k(n) +logn

for some constant § > 0. Then it is possible to construct a quick operator
H" = {H", : {0,1}*™ 5 {0,1}" , n=1,2,..},
such that k" (n) = ©(logn) and H" is an (1 —€,n)-HSG for some constant 0 < € < 1, thus P = BPP.

Proof. Corollary 3.1 implies that, for any positive integer ¢, a quick operator H' : {0, 1}’“'(") — {0,1}"
such that &'(n) = ©(logn) and H' is a quick (1 — 2(c1=1)" n9)-HSG, where

~ log(4X) 0

logd 2

Let | = [logd| and ¢(n) = [2logn]. Then we define a new quick operator H” : {0, l}k”(”) —
{0,1}", such that

=,

pmy 1)(@);0) , where K"(n) =n+1- (2" —1) +t(n) .

From the construction of Ramanujan expanders shown in [17], we can assume that 3 < A <

2v/d — 1. Define € = % and consider any boolean function g(z1,...,z,) such that Pr(g =1) > 1 —e¢,
and L(g) < n. Then, we define f(zi,...,zn) = EPRZ,t(n) where N = n 41 - (24®) — 1) (see
Eq. 3). Clearly, f has polynomial-size circuit, thus we can choose ¢ in the definition of H' such that
L(f) < N9 Lemma 3.1 implies that

H\(@,5) = EPRy, o) (H,

A 2t(n) 2
Pr(f=0) = Pr(EPR],, =0) < (e+3) <

log(2)\)—log d log(4)) log(4))
<9 oglogd+—f5 (an72)2(13§d+171)(N*7L*2) < 2(—01%gd 71)N

(observe that the last inequality holds for a.e. mn). By definition, we know that H' hits function f,
i.e., there exists @ € {0, 1}k’("+l'(2t(n)_1) such that f(H:’L—i—l(Qt(")—l) (@)) = 1. From the definition of f,
there exists b € {0,1}'™ such that

=, =

g(H';LI(a'a b)) = g(EPRn,t(n)(aa b)=1.



4 Hitting sets from hard boolean operators

The construction of an efficient HSG from a boolean operator which has hard circuit-complexity is
based on the following “contradiction” argument. Suppose that a boolean operator T : {0,1}" —
{0,1}" is not a HSG for a certain class of circuits defined by the parameters €(n) and 3(n) (see Def. 1.1).
Roughly speaking, this negative fact implies that the output sequence of T' can be represented by a
new binary sequence which contains a “large” number of 0’s (this number depends on €(n) and 3(n)).
Then, using the Andreev et al's technique shown in [7], it is possible to compress this new binary
sequence in order to prove a new upper bound on the circuit-size complexity of the output sequence.
This bound is obtained by a better analysis of the compression rate achieved by this technique and by
applying our new result on the Shannon function L(n, N,m) (Theorem 2.3). Thus, we get an upper
bound on the circuit complexity of T. If T is supposed to have a hard circuit complexity, we have a
contradiction.

4.1 Compressing boolean operators

Let T : {0,1}" — {0,1}" and C(z1,...,%,) be a circuit. Given & € {0,1}", consider the function

Med(C,T,&) = 2™ Y C(T(d)®ad).
@e{0,1}™

Note that it is immediate to prove that, for any @ € {0,1}",
E(Med(C,T,&)) = Pr(C(z1,...,z,) =1) .

We describe here the Andreev et al’s technique introduced in [7]. Let &; and & be two different
elements in {0,1}". Define

d1 = Med(C, T, &1) and d2 = Med(C, T, &2)

and assume that D = dy — d; > 0. The j-th component of @ will be denoted as [@)7. Since we are
considering the case in which D > 0, without loss of generality, we can assume that there exists an
index s for which [@]* # [@2]®. Consider the operator T# : {0,1}™ — {0,1}" defined as follows

T#(@) = T(@) @ ([T(@))° - (a1 & d))

where the operation “@®” between two boolean vectors is performed component by component and

the operation “” is the standard scalar product. The s-th component of T# (i) satisfies the following
equations:

[T# (@) = [T(@)] & (T@)] - (@] @ [@)°) = T@] & [T@] -1 =0. (4)

Observe also that the set {T# (@) @ @y, T# (i) ® do} is equal to the set {T'(@) @ &1 , T(i) @ da}.

Let
N(o,¢1,¢2) = {2 : [T(@)] =0, C(T(d) & a1) = ¢1 and C(T(d) & da) = ¢o}| - (5)

We can now introduce the function which approximates the s-th component of 7'(%). Consider the
function () defined as follows:

10



if z#Y
if z=y=0 and N(
if 2=y=0 and N(
if z=y=1 and N(
if z=y=1 and N(

QN(0,p1,00)(2,Y) =

O~ O~ 8

In which follows we will consider the function N as a fixed parameter, and thus we will omit the
index N (o, ¢1,p2) in the definition of (). Then the approximation function for the s-th bit of T'() is

Z(@) = Q(C(T*(@) ® 1), C(TH (@) ®dy)), i=1,...,m .

Our next goal is to estimate the number of errors generated by Z(@). Let ND(o, ¢1,¢2) be the
number of indexes 7 such that the following conditions are satisfied:

i) [T(@)]° ® Z(if) =1 (i.e. there is an error);
i) [T(2)]° = o;

iil) C(T(@) ® &) = ¢1;

iv) C(T(i) ®dy) = ¢o.

The following Lemma gives an upper bound on the number of errors in approximating the s-th bit
of T'(1).

Lemma 4.1 [7]

S oz (-0

\ 2~ 2
(U)¢1 ’¢2)E{0’1}

4.1.1 Some new hardness-compression trade-offs

Using Lemma 4.1, we are now able to perform a better analysis of the circuit complexity of T. Observe
that the function
U@) = [T(@)] ® Z(a) , @ €{0,1}™

singles out the positions in the operator 7" in which an error occurs. We thus have that
[T(@)) = U(@) @ Z(@) = U(a@) ® Q(C(T*(@) ® a1), C(T* () @ ).

Lemma 4.2
L(T) < L(m,n—1)+ L(U) + O(L(C)) + O(n) .

Proof. Observe first that 7" can be represented as

T(7) = T*(@) @& - (Q(C(T* (@) ® é1), C(T* (@) @ dz)) @ U(a)) (6)

where e? € {0,1}" is the boolean vector having only the s-th component equal to 1. Furthermore, the
operator T# (i) satisfies Eq. 4. It follows that the thesis is an immediate consequence of Eq. 6. O

Furthermore, the circuit complexity of U satisfies the following upper bound.

11



Lemma 4.3 If, for some constant c¢1, we have that D > c1, then there exists a constant ca < 1 for
which

< —_—.
L(U) < CQm

Proof. Let |U| denote the the number of 1’s in U; then, from Lemma 4.1, we have that

1 do—dy
U < 2™(=-— . 7
vl < (525 g
Finally, the thesis follows from the upper bound shown in Theorem 2.3. O

4.2 The Hitting Set Generator

In order to derive our HSG, we will make use of the following result given by Lupanov (see also [25]).
Let L°P(k,n) denote the worst-case circuit complexity of boolean operators having k variables and n
outputs.

Theorem 4.1 [19]
2kn,

LP(k,n) = (1 +o(1))m

?

Theorem 4.2 Assume that a quick operator
H = {H, : {0,1}*" 5 {0,1}" , n=1,2,..} ,
ezists such that k(n) = (1 + ©(1)) logn, and for a.e. n

9k(n)

L°°(H,) > L(k(n),n)— Rt -

Then, it is possible to construct a (3,n)-HSG H' : k'(n) — n such that k'(n) = ©(logn). Hence,
P = BPP.

Proof, Let K'(n) = k(n +2/) + #(n) , where ¢(n) = [2logn], and define, for any @ € {0, 1}
and b € {0,1}"™)

where ¢(b) denotes the standard decimal representation of b (note that if the length of @ is greater

-

than k(n + ¢(b)), we simply erase the last bits of @). Observe that there exists a constant § > 0 such
that, for any sufficiently large n, two distinct integers ni, no exist such that

n<n <ng<n+2"  ny=[(1+6n)] and k(ny) = k(ns) .
Indeed, if this would be false then

n42t(n)

1
—n >k 1)-1

k(n 4 26™)) > k(n) + ;
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but for small § this bound will be more than k(n + 24™). Let k = k(n;) = k(ng). From Theorem 4.1,
we have
2kn2 2kn1 ( ) 2k
— ~ (no —nq)——
k+logns k+logng 27 "k Y logn,

L% (k,ng) — L (k,n1) ~
and there exists ng, such that n, < ng < ng, for which

2lc

LOp(k,’l'L3 + ].) — LOp(k,TL3) Z (]_ — O(].))ﬁogn1 .

Suppose now that our generator does not hit a circuit C(z1,...,z,) such that

Pr(C=1)> - ,and L(C)<n.

N | =

It follows that for d; = Med(f, Hn3+1,6), we have d; = 0. But we also have that an ay € {0,1}"
exists for which do = Med(f, Hpy41,00) > % . By applying Lemma 4.2 and Lemma 4.3, there exists
a constant 0 < ¢y < 1 such that

2k
L (Hpg+1) < L% (k,n3) + c2— + O(L(C)) + O(n) ,

and )
2
LP(k,n3) > LP(Hp,41) — CQZ —O(n) .
Since
(o] (4] 2k

L p(Hng—I—l) 2 L p(kan3 + 1) - ﬁ )

it follows that .
2

L%(k,n3 +1) < L% (Hng41) + 15

and
2k 2k
LP(k,n3g + 1) — LP(k,n3) < =) + CQE + O(n) . (9)

The value ¢z < 1 depends only on D =ds — d; = %, consequently is a constant. Whithout loss of
generality, we can assume that k(n) > glogn, for some convenient big constant ¢ (it is sufficient to
consider the first n output bits of H,r , where r depends on ¢). Then, comparing Eq. 8 and Eq. 9, we
have a contradiction. It follows that H' is an (3,n)-HSG. O
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