Electronic Colloquium on Computational Complexity - Reports Series 1996 - available via:

P FTP: ftp.eccc.uni-trier.de:/pub/eccc/
Revision 01 of
S0 O 0 WWW: http://www.eccc.uni-trier.de/eccc/

ECCC TR96'055 Email: ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

Worst-case hardness suffices for derandomization: a new
method for hardness-randomness trade-offs

Alexander E. Andreev Andrea E. F. Clementi* José D. P. Rolim
University of Moscow University of Rome University of Geneva

(Extended Abstract)

Abstract

Up to know, the known derandomization methods have been derived assuming average-case
hardness conditions. In this paper we instead present the first worst-case hardness conditions
sufficient to obtain P = BPP.

Our conditions refer to the worst-case circuit complexity of Boolean operators computable in
time exponential in the input size. Such results are achieved by a new method that departs
significantly from the usual known methods based on pseudo-random generators. Indeed, we prove
new particular bounds on the circuit complexity of partial Boolean functions which are then used
to derive efficient constructions of hitting set generators. As recently proved, such generators can
derandomize any BPP-algorithm.

Our method also gives a worst-case hardness condition for the circuit complexity of Boolean
operators computable in NC (with respect to their output size) to obtain an efficient reduction from
any two-side error NC algorithm into a zero-error NC algorithm thus obtaining ZNC = BPNC.

*Contact author: Dip. di Scienze dell’Informazione, Universitd di Roma “La Sapienza”, Via Salaria 113, 00198 Roma.
E-mail: clementi@dsi.uniromal.it

1 Introduction

1.1 Motivations and previous results. A major goal in complexity theory is the study of the
real power of randomized algorithms, that is algorithms that make decisions based on the output of
a random source of bits. To this aim, several recent works have been focused on the design of general
methods that decrease (or remove) the amount of random bits used by these algorithms. A central
question in this area is the relationship between the existence of computationally-hard functions and
the existence of efficient derandomization methods. Yao [19], and Blum and Micali [8] introduced the
concept of Pseudo-Random Generator (PSRG), any Boolean operator G = {G,, : {0,1}*™ — {0,1}",
n > 0}, (denoted by G : k(n) — n) that, for a.e. n and for any Boolean function f : {0,1}" — {0,1}
whose circuit complexity L(f) is at most n, satisfies: |[Pr(f(7) =1)— Pr(f(G,(Z))=1)| < 1/n
(where 77 is chosen uniformly at random from {0,1}", and Z from {0,1}*("™). The output sets of
PSRG’s are also called discrepancy sets for circuits of linear size.

According to the definition used in [14], a Boolean operator Op : k(n) — n is quick if it can be
computed in time polynomial in n (note in passing that if k(n) = O(logn) then the “quick” condition
is equivalent to assume that Op belongs to EXP). It is not hard to show [14] that the existence
of a quick PSRG G : k(n) — n with k(n) = O(logn) implies P = BPP. Nisan and Wigderson
[14] showed a method to construct guick PSRG’s based on the existence of Boolean functions in
EXP that have exponential hardness [14]. The hardness condition used by Nisan and Wigderson
requires the existence of a function in EXP that not only has a hard worst-case circuit complexity!
but also a hard average-case circuit complexity. More formally, a function f : {0,1}" — {0,1} is
(¢, L)-hard if, for any circuit C of size at most L, |Pr (C(Z) = f(Z)) — 1/2| < €/2. Given a Boolean
function F = {F,, : {0,1}" — {0,1}, n > 0}, the hardness at n of F (denoted as Hp(n)) is defined
as the maximum integer h,, such that F,, is (1/hy,h,)-hard. Then, F has exponential hardness if
Hp(n) > 2%, Nisan and Wigderson showed a fundamental “Hardness vs Randomness” result.

Theorem 1.1 [1}] If a Boolean function F ezists such that i) F € EXP, and ii) F has ezponential
hardness, then there exists a quick PSRG G : k(n) — n where k(n) = O(logn), and consequently
P =BPP.

The hardness required by Nisan and Wigderson’s construction of quick PSRG’s thus refers to
average-case complexity. Then a consequent and natural question is the following: Does any “worst-
case” hardness assumption on the circuit complexity of Boolean functions computable in time exponen-
tial in the input size exist which allows to derive an efficient derandomization method (in particular,
to obtain P = BPP)? A good point to motivate this question is to consider the novelty and the
potentiality of any eventual precise relationship between one of the most studied problems in com-
plexity theory, that is finding lower bounds for the worst-case circuit complexity of classes of recursive
Boolean functions, and that of investigating the real computational power of randomness.

We give two answers to this question. Both answers make use of a new method (informally
described in Section 1.3) that relies on a particular class of Boolean operators (different from PSRG’s),
denoted as Hitting Set Generators, which have been recently introduced in [5]. Let L(f) denote the
circuit complexity of a finite function f : {0,1}" — {0,1} and, given any positive number dp, the term
Lgy(f) denotes the minimum size of circuits of depth dp which are able to compute f.

! As circuit complexity of a finite Boolean function f, we will always mean the size of the smallest circuit that computes

f.

Definition 1.1 Let e(n), f(n), and y(n) be polynomial-time computable functions such that for any
n>1:0<en) <1, n<pP(n) <27 and y(n) > logn. Then, a Boolean operator H : k(n) — n
is an (e(n), B(n),v(n))-Hitting Set Generator (in short, (e(n),5(n),v(n))-HSG) if, for any Boolean
function f such that L) (f) < B(n) and Pr(f = 1) > e(n), H is required to provide one “ezample” if

for which f(¥) =1, i.e., there ezists d € {0, 1}k(") such that f(H,(@)) = 1. When no depth constraint
v(n) is imposed, we will use notation (e(n),B(n))-HSG.

By making a simple comparison between the definition of discrepancy sets and that of hitting sets
it should be clear that HSG’s satisfy a property significantly weaker than that of PSRG’s (see [5]
for more discussions on the differences between PSRG’s and HSG’s). Nevertheless, Andreev et al [5]
proved that, given any BPP-algorithm A, the output of any quick HSG can be transformed into an
ad hoc discrepancy set for A by means of a deterministic polynomial-time algorithm.

Theorem 1.2 [5] Let k(n) = O(logn) and let € be any constant such that 0 < € < 1. If there ezists
a quick (e,n)-HSG H : k(n) — n then P = BPP.

1.2 Our results. We give two worst-case hardness conditions which are sufficient to construct quick
HSG’s that satisfy Theorem 1.2 thus obtaining P = BPP. The circuit complexity of a Boolean
operator H will be denoted as L°?(H). Observe that if L°(k,n) denotes the worst-case circuit
complexity of Boolean operators H : k(n) — n, then it is known [11, 18] that, for any logn < k < n,
LP(k,n) = (1 + 0(1))(2%n)/(k + logn). Furthermore, for a.e. Boolean operator H : k — n, we have
L°P(H) = ©((2%n)/(k + logn)). The first condition deals with the worst-case circuit-complexity of
characteristic functions of sets generated by Boolean operators.

Theorem 1.3 Let ¢ be such that 0 < é < 1/2, and let k(n) = (1 4+ ©(1)) logn. If there exists a quick
operator H : k(n) — n such that the characteristic function of its output sets

FH = {FF . {0,1}" = {0,1} , where FF(¥)=1 if 3§€ {0,1}*Mst. H,(§) = %, n >0}

satisfies

L(F)) 2 (1/2 +6)(2"n)/(k(n) + logn),

then it is possible to construct a quick operator H' : k'(n) — n where k'(n) = ©(logn) such that H' is
an (e,n)-HSG for some constant 0 < € < 1, thus obtaining P = BPP.

Another way to state the above theorem is the following. Assume that there exists a sparse
language S = {S, C {0,1}",n > 0} that can be generated by an uniform algorithm which runs in
time polynomial in n, and such that the worst-case circuit complexity of deciding S is not smaller (up
to some constant factor) than the worst-case circuit complexity of generating languages S’ having the
same sparsity factor of S. Then P = BPP.

The second sufficient condition to obtain a quick HSG refers directly to the worst-case circuit
complexity of Boolean operators instead of the characteristic functions of their output sets.

Theorem 1.4 Let k(n) = O(logn). Let H : k(n) — n be a quick operator such that for a.e. n,
LP(Hy) > L% (k,n) — (25) /(k(n)?).

Then, for any constant 0 < € < 1, and for any positive integer q, it is possible to construct a quick
(1 —€,n?)-HSG H' : k'(n) = n, where k'(n) = O(logn), thus obtaining P = BPP.

Unfortunately, Andreev et al’s algorithm which gives Theorem 1.2 seems to be very hard to par-
allelize [5]. It turns out that we are not able to obtain worst-case hardness conditions for Boolean
operators sufficient to derandomize any BPNC algorithm (i.e. to obtain BPNC = NC). However we
show that, under hardness worst-case conditions comparable to that in Theorem 1.3, it is possible to
construct an HSG for the class of Boolean circuits having linear size and polylogarithmic depth that
can be used to define an “oracle” machine for approximating the fraction of the accepting computa-
tions of any BPNC algorithm. This oracle machine has the following property: either it returns a
“failure” answer (this happens with small probability) or it gives a correct value. Hence, if we con-
sider the three probabilistic parallel complexity classes, ZPNC (i.e. zero error probability NC), RNC
(i.e. one side error probability NC), and BPNC (two side bounded error probability NC), we obtain an
interesting collapsing result?.

Theorem 1.5 A constant 0 < ¢y < 1 ezists such that if an operator H : k(n) — n with k(n) =
O(logn) ezists such that 1) H is an NC operator, and 2) for any d > 1 there ezists a constant c
with 0 < cg < ¢ < 1 such that the characteristic function FH of its output sets satisfies Llogdn(F,,{{) >

c(2¥™n)/(k(n) + logn), then ZNC = BPNC.

1.3 The interest in our method and further connections with other works. All of our
proofs share a common method based on the following fact. There is a precise trade-off between the
worst-case circuit complexity of partial Boolean functions and the number of 1’s in their outputs. In
particular, we formalize the intuitive fact that a partial Boolean function having a hard worst-case
circuit complexity cannot return 0 for a “large” number of inputs. This property is used to construct
the preliminary versions of our HSG’s which are then combined with a convenient use of the properties
of expanders graphs [3] (to obtain Theorem 1.3) and with a new analysis of the performances of the
already mentioned Andreev et al’s algorithm [5] (to obtain Theorem 1.4). A similar framework has
been developed to derive the collapsing result in Theorem 1.5.

It is interesting to observe that our method could yield weaker hardness conditions sufficient to
construct efficient HSG’s provided that a better and/or more general analysis on the above trade-offs
will be individuated. In particular, the hardness conditions in Theorems 1.3 and 1.4 could be made
weaker if new asymptotical relationships will be found between three main aspects of the complexity
of a generic subset from {0,1}": the size (i.e. the sparsity factor) of the subset, the worst-case circuit
complexity of its characteristic function, and the worst-case circuit complexity of Boolean operators
that are able to cover the subset. In fact, hitting sets are not required to be generated but just covered
since any set that contains a hitting set is still a hitting set (observe that this monotone property does
not hold for discrepancy sets). Concerning Covering generators for Boolean subsets, new promising
trade-offs results have been recently proved in [7].

Finally, we emphasize that the combination of another circuit-complexity bound and the properties
of HSG’s represents also the key ingredient in the proof of the polynomial-time simulation of BPP-
algorithms using very weak random sources (see for example [16, 17]), a new result obtained in [6].
Again this witnesses the potentiality of the technique introduced in our paper.

Due to the lack of space, proofs will be only sketched and some of them will be given in the
Appendix.

?Observe that ZNC C RNC C BPNC.
3With “NC operator”, we will always mean an operator which is computable in NC with respect to the size of its
output

2 Preliminary results on the circuit complexity of partial Boolean

functions
In this section we show some new precise bound on the Shannon function describing the trade-offs
between the worst-case circuit complexity of partial Boolean functions and the number of inputs on
which they output 1.
Let F(n, N,m) be the set of all partial Boolean functions f(z1,...,z,) defined on N < 2" inputs
and assuming 1 on m < N inputs. Furthermore, L(n, N,m) denotes the worst-case circuit complexity
of functions from F(n, N,m), and Lgepn(n, N, m) denotes the maximum value Lgepip(f) among all

functions f from F(n,N,m). Lupanov proved the following result for the case of total Boolean
functions.

Theorem 2.1 [11] Let L'**(n,m) = L(n,2",m). Then

Lt n,m) = (1+o(1)) <1og< fZ)) / <1oglog< 2mn)) .

The following corollary is implicit in Lupanov’s proof.

Corollary 2.1 A constant ¢ > 0 exists such that

Liolf)g(mn)(n’m) = (1+o(1) <log (3::)) / (10g10g (32 >> .

However, in order to construct quick HSG’s we need that Lupanov’s results hold also for partial
Boolean functions. In particular, the generalization of the upper bounds implicitly given in Theo-
rem 2.1 and in Corollary 2.1 cannot be derived directly from the proofs in [11]. Then we give a
reduction from general Boolean functions to the restricted case of total Boolean functions which is
based on a probabilistic construction of suitable linear operators (the reduction is described in the

Appendix).
Lin,N,m) = (1+0(1) (log(N)) <1oglog< N)) +om).

Furthermore a constant ¢ > 0 exists such that

Leiogn(n, Nym) = (14 0(1)) (log(Z)) (loglog(Z)) + O(n) .

3 Hard characteristic functions and HSG’s

Theorem 2.2

The following theorem provides a first trade-offs between the hardness of characteristic functions of
Boolean subsets and their hitting properties®.

“BEach result will be given in both sequential and “parallel” version. The latter will be included in square brackets.

Theorem 3.1 Let 0 < ¢ < 1 be a constant [and d > 1], and let S, C {0,1}" be any subset such that
|Sn| < by, where by, = n®M) Suppose that for the characteristic function F,, of S, we have

bun bon

i) L(F,) >

[i) Llogd+1n(Fn) >

@ log b, + logn “ log b, + logn

Then, for any constant c1, such that 0 < ¢; < ¢z, for any Boolean function f(z1,...,z,) such that
ii) Pr(f=1)>1- 2er=0n - and i) L(f) < by [411) Llogdn(f) < by |,
there ezists @ € Sy, for which f(a) = 1.

Sketch of the proof. Suppose, by contradiction, that f satisfies conditions i) and i) but for any
a € S, we have f(d@) = 0. Let Z C {0,1}" be the subset of all inputs on which f = 0. Clearly, we
have S, C Z C {0,1}". Then consider the partial Boolean function g(z1,...,z,) defined as follows:
gl@d)=1ifde Sy, g(@ =0ifd e Z\ Sy, and g(d@) is not defined if @ € {0,1}" \ Z. Since |Z| < 297
and |S,| < by, from Theorem 2.2, we have

9cin 9c1mn
L(g) < (1+0(1)) (log (b)) / <loglog (b)) +0(n) < (1 +0(1))ec1(bpn)/(log by +1logn) .
From S, C Z, it is easy to prove that, given any @, Fy,(&@) can be computed® as g(@) A —f(&@). Hence

bun b,n

L(F,) < L(g) + L(f)+ O(1) < (1+0(1))ex +b, +0(1) < (14 0(1))

log b, + logn “ log b, + logn’

For sufficiently large n, this last upper bound is in contradiction with hypothesis (i) of our theorem.
The “parallel” version of the theorem can be easily derived using the same contradiction argument.
O

In which follows, we will consider HSG’s which always have a monotone function prize k(n) such
that, for any n > 0, k(n+ 1) — k(n) <1 and n® > k(n) > logn where 0 < o < 1. Let H : k(n) —» n
be a Boolean operator with k(n) = ©(logn), and let F# = {FH : {0,1}" — {0,1}, n > 0} be the
corresponding family of the characteristic functions.

Corollary 3.1 Suppose that a quick [NC] operator H : k(n) — n ezists such that k(n) = (1 +
O(1))logn and a constant 0 < ¢y < 1 exists such that, for a.e. n, L(F™) > c3(2¥Mn)/(k(n) + logn)
[Lypga-+1 S(FH) > c9(25M™n) [(k(n) +logn) for some d > 1]. Then, for any positive constant g and for
any constant ¢y such that 0 < ¢1 < cg, it is possible to construct a quick [NC) operator H' : k'(n) — n
with k' (n) = ©(logn) and such that H' is an (1—21~Y" n9)_-HSG [H' is an (1—2(<~D" n log?n)-
HSG .

Sketch of the proof. Since k(n) = (14 ©(1))logn, we can assume that k(n) = (1 + §) logn for some
constant § >. Define s(n) = [27;‘1 logn]. Given any @ € {0,1}", [d],, ;, denotes the substring d@;,, . .., ;,-

We consider the new quick operator H' : k'(n) — n where k'(n) = k(2°(™n) 4 s(n) defined as follows:

5Here we assume that 0A? = 0.

= =

H',(d@,b) = [H,gsm) (@)}, 4, » wherety =n(¢(b) —1), andty =1, +n—1

(observe that a € {0, 1}k(2(s(n)"), b e {0,1}*™ and ¢(b) is the decimal representation of b). Consider
a Boolean function f(zy,...,z,) such that Pr(f =1) > 1 — 21" and L(f) < n?. Then for

2s(n)
(@1, Tsmyy,) = \/ f(m(t—l)n+1a$(t—1)n+2a---aItn)7
t=1

it is easy to prove that Pr(f*=1) >1— 2(01_1)25(")”, and

L(f*) < 25™ 4 25 L(£) < (14 0(1))25™n? < (1 + 0(1))25™255®) < (1 4 0(1)) (23<”>n)1+%.

. 1+4 k 2S(TL) . .
Thus for sufficiently large n we have L(f*) < (25(”)n) < 2k(2*™n) By applying Theorem 3.1 with
by, = 2k(2°n) e have that there exist @ € {0, l}zs(n)" and ¢ € [1,...,2%(™)] such that
F*((Hosn @) (1—1)nm) = 1. Tt follows that there exist @ € {0,1}** ™ and § € {0,1}°™ such that
1.

f(H;(@,b) =
O

3.1 Improved HSG’s using expanders

Corollary 3.1 gives a quick HSG for the class of polynomial size circuits (functions) C that have a very
large fraction of 1’s, i.e. Pr(C =1) > 1 — 27" for some positive constant smaller than 1. However,
this hitting property does not suffice to derandomize BPP-algorithms (see Theorem 1.2). It is in fact
required to hit all linear-size circuits having “only” a constant fraction of 1’s. To this aim, we will
combine the HSG in Corollary 3.1 with a random walk on expanders, a tool that has been often used
in decreasing randomness in probabilistic algorithms.

An undirected graph G(V, E) is a (d, ¢)-ezpander if the maximum degree of a vertex is d, and for
every set W C V of cardinality |W| < |V|/2, the inequality |[N(W) — W| > ¢|[W| holds, where N (W)
denotes the set of all vertices adjacent to some vertex in W. The expanding properties of a graph can
be established by determining the value of its second largest eigenvalue (see for example [3]). Indeed,
if A is an upper bound on the second largest eigenvalue of any d-regular graph G(V, E), then G is a
(d,c)-expander for ¢ = (d — A)/2d. Expander graphs have the following important “hitting” property
proved by Ajtai et al [1] (for a proof of this fact see for example Theorem 2.7 - p.124 - of [3]).

Theorem 3.2 Let G(V, E) be a d-regular graph, and assume that its second largest eigenvalue is at
most A > 0. Given any subset W CV such that |W| = an (o < 1). Then, for everyt > 0, the number
of walks of length t in G that avoid W is at most n(1 — a)/2((1 — a)d? + N2)¥/2,

In [9], a polynomial-time algorithm is presented that, given n > 0, and d < n, constructs a d'-
regular expanders G such that d' = O(d), |V| = O(n), and its second largest eigenvalues A > 0 is such
that A < 2v/d — 1 (such graphs are called Ramanujan graphs).

For any n > 0, consider a d-regular Ramanujan expander EP, = (V,, X,,) where 2" < |V,,| < 2n+!
[9]. Observe that the Boolean strings with last component equal 0 correspond to the input set of the

function we want to hit. This assumption is required when E P, cannot be constructed on vertex sets
whose size is exactly a power of 2. Let [= [logd]. We suppose that d is a large but constant value.

Then, we consider the operator EPR,, ; : {0, 1}”+l'(2t_1)+t — {0,1}", such that
EPRyy(@,ily,... dx_1,5), d€{0,1}", i €{0,1}', §€{0,1}",

are the first n components of the ¢(5)-th vertex of the EP,-walk of length 2! which starts from
vertex (d@,0) and is uniquely determined by the sequence of edge choices in the neighborhood of each
vertex: ¢(u1),...,¢(tyt_1). Observe that if £ = ©(logn), the operator EPR, ; can be computed in
time polynomial in n. Consider now a Boolean function g(z1,...,z;), and the operator EPR,’;,t

{0, 1}”+l'2t — {0,1} that performs the OR among the values of g computed on the input points
visited by a fixed EP,-walk of length 2¢, i.e.,

EPR;} (@,i1,...,dx) = \/ g(EPRu(@,d,... a0 1,5)) - (1)
5c{0,1}*

As consequence of Theorem 3.2, we can prove the following bound (for the proof see the Appendix).
2t—2
Lemma 3.1 IfPr(g=0) <c< 3, then Pr (EPR,’;,,: = O) < (c + %) .

Theorem 3.3 Assume that there ezists a quick operator H : k(n) — n, such that k(n) = (1 +
©(1)) logn and the characteristic functions of its output sets satisfies

L(F,") 2 ((log(4X)/(log d) + 6)(2*n) /(k(n) + logn)

for some constant § > 0. Then it is possible to construct a quick operator H" : k"(n) — n with
k"(n) = ©(logn) and such that H" is an (1 —€,n)-HSG for some constant 0 < e < 1, thus P = BPP.

Sketch of the proof. By applying Corollary 3.1 with co = ((log(4\/logd) + §) we have that, for any
positive integer g, a quick operator H' : k’'(n) — n exists such that &'(n) = ©(logn) and H' is a quick
(1 — 2(er=1)n 19)-HSG, where ¢; = (log(4))/logd) +6/2 < ca. Let | = [logd] and t(n) = [2logn].
Then we define the new quick operator H” : k”(n) — n, such that

= =,

HY(@,5) = BP Ry (H' i1y (@), 5) , where K(n) = n+1- (2 — 1) 4 t(n) .

From the construction of Ramanujan expanders shown in [9], we can assume that % <A<2y/d-1.
Define € = A\/(2d) (observe that for a sufficiently large constant d we can assume that 0 < e < 1) and
consider any Boolean function g(z1,...,z,) such that Pr(¢g =1) > 1 —¢, and L(g) < n. Then, we
define f = EPR? t(n) Where N =n 1. (24" — 1) (see Eq. 1). Clearly, f has polynomial-size circuit,
thus we can choose ¢ in the definition of H' such that L(f) < NY. Lemma 3.1 implies that

log(2X\)—logd log(4X) 1

2t(n) _9
Pr(f =0) = Pr(EPR],, =0) < (e+ 3) < 9 ogdrr (N=n=2) < oS)N

(observe that the last inequality holds for a.e. m). By definition, we know that H’ hits function f,
i.e., there exists @ € {O 1}k’(”+l (2"=1) such that f(H! (26—)(&')) = 1. From the definition of f,

there exists b € {0, 1}) such that g(H!(@,b)) = 9(EPR,) (@, b))

O

4 Hitting Set Generators for BPNC

Ramanujan’s graphs cannot be used to derive NC Hitting Set Generators since no efficient parallel
method to perform random walks on such graphs is presently available. However, Zuckermann [20]
recently introduced an NC construction of samplers [20] which can replace the role of expanders in
our construction. In particular, we can use the following result.

Theorem 4.1 [20] Any BPNC algorithm that uses n random bits and has error probability bounded
by 1/3 can be simulated by a BPNC algorithm that uses r(n) = O(n) random bits and has error
probability bounded by (1/2)™.

Informally speaking, this result allows us to consider only “parallel” circuits having a fraction of 1’s
not smaller than 1 —27" for some fixed constant 0 < ¢ < 1. By using the same method of Section 3.1,
we can combine Corollary 3.1 and Theorem 4.1 to obtain the following result

Theorem 4.2 A constant 0 < ¢, < 1 exists such that the following holds. Assume that there exists
an NC operator H : k(n) — n with k(n) = (1 + ©(1))logn and such that, for any constant d > 1,
the characteristic functions of its output sets satisfy Ly, a+1 J(FH) > §(2FMn/(k(n) +logn), for some
constant § > c,. Then it is possible to construct an NC operator H' : k'(n) — n with k'(n) = ©(logn)
and such that H' is an (1 — €,n,log?n)-HSG for any constant 0 < e <1 and d > 1.

Corollary 4.1 A constant 0 < ¢, < 1 exists such that if an NC operator H : k(n) — n ezists that
satisfies the same conditions of Theorem 4.2 then ZNC = BPNC.

Sketch of the proof. A generic computation of a BPNC-algorithm on a fixed input of size m can
always be seen as a Boolean circuit f : {0,1}" — {0,1} (where n = n(m) is some polynomial in m)
with complexity Ljoga,(f) < n for some fixed d > 1; n is the number of random bits used by the
algorithm for inputs of length m. The thesis will be proved by showing a ZNC algorithm that gives
with high probability a good approximation of the value E = Pr (f = 1); Consider a random table of
inputs for f, i.e., T = (dy,...d,), (where inputs are chosen from {0,1}" independently with uniform
distribution). Note that we can generate this table by a simple ZNC-algorithm. For any & € {0,1}",
we define function Med(f,T,a) = (1/r) > ;—; f(d; ® &). Then from Chernoff’s bound it is not hard
to show that for any random table T of size r > n3, the probability that

Vae{0,1}" |Med(f,T,a) - B| < (1/n) (2)

is at least 1 — 1/n.

The key idea of our simulation is to use the HSG, given by Theorem 4.2, as a “Verifier” oracle to
check the condition in Eq. 2. Indeed, using the NC (1 — ¢,n,log?n)-HSG H with € < 1/7 given by
Theorem 4.2, we compute in parallel the following parameters

dmm(fa Ta H) = 76{0,?;}6%0’")) Med(fa T’ [Hl(f,n)]l’n (7))
dmaz (fa T, H) = max Med(f, T, [Hl(f,n)]l,n (’Y))

76{0,1}k(l(f,m))

where [(f,n) is a fixed polynomial in n easily derived from the proof of Lemma 6 of [5]. Further, from
this lemma we can prove that since H is a (e, n,log? n)-HSG then

dpin(f,T,H)—€ < Pr(f(z1,...,2,) =1)=E < dpna(f,T,H) +€. (3)

The claim given by Eq. 2 implies that dey — dmin < 2/n with probability at least 1 — (1/n).
Hence the ZNC-algorithm simply checks condition daz — dmin < 2/n. If this inequality is true then
the ZNC-algorithm just check the value d;,q; — dinin/2 and decide whether to accept or not. If instead
the inequality is not true then it will answer a ‘failure’ answer. The correctness of the algorithm is
then a consequence of Eq. 3.

O

5 Hitting sets from hard Boolean operators

The construction of an efficient HSG from a Boolean operator which has hard circuit-complexity is
based on the following “contradiction” argument. Suppose that a Boolean operator T' : {0,1}"™ —
{0,1}" is not a HSG for a certain class of circuits defined by the parameters €(n) and 3(n) (see Def. 1.1).
Roughly speaking, this negative fact implies that the output sequence of T' can be represented by a
new binary sequence which contains a “large” number of 0’s (this number depends on €(n) and £(n)).
Then, using Andreev et al’s technique shown in [5], it is possible to compress this new binary sequence
in order to prove an upper bound on the circuit complexity of T'. This bound is obtained by a new
analysis of the compression rate achieved by this technique and by applying the upper bound for the
Shannon function L(n, N,m) in Theorem 2.2. If T is supposed to have a hard circuit complexity, we
get a contradiction.

5.1 Compressing Boolean operators

Let T : {0,1}"" — {0,1}" and C(z1,...,z,) be a circuit with n inputs. Given @ € {0,1}", consider
the function Med(f,T,d&) =27 Y5101y~ C(T(@) @ @) (as in the proof of Corollary 4.1). It is easy
to prove that E (Med(C,T,d)) = Pr(C(z1,...,z,) = 1) where the expected value is computed with
respect to &. We briefly describe here the Andreev et al’s technique introduced in [5]. Let & and @s
be two different elements in {0,1}". Define d; = Med(C,T,d1) and dy = Med(C,T,d3) and assume
that D = dy — d; > 0. The j-th component of @ will be denoted as [@)/. Since we are considering the
case in which D > 0, we can assume that there exists an index s for which [@1]® # [@2]®*. Consider
the operator T# : {0,1}™ — {0,1}" defined as follows T# (%) = T(i) ® ([T(@)]* - (@1 ® da)) where
the operation “” is the standard scalar product. The s-th component of T# (i) satisfies the following
equations:

[T#(@)° = [T(@)]° & (T(@)]° - ([61)° @ [G2])) = [T(@)° ® [T(@)]° -1 =0. (4)

Observe also that the set {T# (@) ® ay, T# (i) ® do} is equal to the set {T'(@) @ &1 , T(&) @ ds}.
Let

N(o,p1,¢2) = {u : [T(@))’ =0, C(T(d) ®a1) = ¢1 and C(T(d) & da) = P2} - (5)

We can now introduce the function which approximates the s-th component of 7'(%). Consider the
function () defined as follows:

z if T F#y

1 if z=y=0 and N(1,0,0) > N(0,0,0)
QN(U,¢1,¢2)(:E,y) = 0 if z=y=0 and N(1,0,0) < N(0,0,0)

1 if z=y=1 and N(1,1,1) > N(0,1,1)

0 if z=y=1 and N(1,1,1) > N(0,1,1)

In which follows we will consider the function N as a fixed parameter, and thus we will omit
the index N(o,¢1,¢2) in the definition of Q). Then the approximation function for the s-th bit of
T (@) is Z(@) = Q(C(T# (@) ® @), C(T# (i) ® ds)), i = 1,...,m. Our next goal is to estimate the
number of errors generated by Z(#). Let ND(o,¢1,¢2) be the number of inputs @ such that the
following conditions are satisfied:) [T'(%)]°* @ Z(u@) = 1 (i.e. there is an error); 1) [T'(2)]® = o; i)
C(T (i) ® dr) = ¢;) C(T(U) @ G2) = .

The following Lemma gives an upper bound on the number of errors in approximating the s-th bit
of T'(w).

Lemma 5.1 [5] Z(J,¢1,¢2)€{0,1}3 N-D(O-a ¢1,¢2) S m (% - @) :

5.1.1 Some new hardness-compression trade-offs

Using Lemma 5.1, we are now able to give an useful bound on the circuit complexity of T". Observe
that function U(@) = [T'(4@)]* & Z(@) with @ € {0,1}™, singles out the positions in T for which an
error occurs. The following Lemmas are easy consequences of Lemma 5.1, and our Theorem 2.2 (the
proofs are sketched in the Appendix).

Lemma 5.2 L(T) < L°?(m,n—1)+ L(U) + O(L(C)) + O(n) .

Lemma 5.3 If for some constant ¢y we have that D > ¢y, then there exists a constant co < 1 such
that L(U) < c2(2™/m).

5.2 The Hitting Set Generator

In order to derive our HSG, we will make use of the following result given by Lupanov (see also [18]).
Let L°P(k,n) denote the worst-case circuit complexity of Boolean operators having k variables and n
outputs.

Theorem 5.1 [11] L°P(k,n) = (1 + o(1))(2¥n)/(k + logn).

Theorem 5.2 Assume that a quick operator H : k(n) — n ezists such that k(n) = (1 + ©(1))logn,
and for a.e. n L°P(H,) > L(k(n),n) — (2¥(™)/(k(n)?). Then, it is possible to construct a (1/2,n)-
HSG H': K'(n) = n such that k¥'(n) = ©(logn). Hence, P = BPP.

Sketch of the proof. Let k'(n) = k(n + 24™) + t(n) where t(n) = [2logn], and define, for any
ae {0, l}k("”t(n)) and b € {0,1}"™, H! (@,b) = H .\ 6 (@), where ¢(b) denotes the standard decimal
representation of b (note that if the length of @ is greater than k(n + ¢(b)), we simply ignore the last

bits of @). From the assumption on k(n), it is not hard to check that there exists a constant § > 0 such

10

that, for any sufficiently large n, two distinct integers ny, ny exist such that n < ny < ng < n + 24",
ng = [(1 4+ dn1)] and k(n1) = k(ng).
Let thus k = k(n1) = k(ng). From Theorem 5.1, we have

2kn, 2kn, ok

L (k,na) — L% (k,n1) ~ ~ (ng —m1)

k+logns k+logn; k+logng
and there exists ng, such that n, < ng < ng, for which
ok
L%®(k,ng + 1) — L?(k,n3) > (1 - 0(1))m : (6)
Suppose now that our generator does not hit a Boolean function f(z1,...,z,) such that Pr (f = 1)

> 1/2, and L(f) < n. Tt follows that for d = Med(f, Hp,11,0), we have d; = 0. But we also have that
an as € {0,1}" exists for which do = Med(f, Hn,41,2) > 3 . By applying Lemma 5.2 and Lemma
5.3, there exists a constant 0 < cp < 1 such that LP(H,, 1) < LP(k,n3)+c2(28/k)+O(L(f))+O(n),
and L°P(k,n3) > LP(Hy,41) —c2(28/k)— O(n). Since LP(H,,41) > L°P(k,n3+1) — (2% /k2), it follows
that LP(k,n3 + 1) < L°P(Hp,, 1) + (28 /%), and
2k 2k
L (ks + 1) L (kyns) < o + 2+ Ofn) (7)
The value ¢z < 1 depends only on D = dy — d; = 1/2, consequently is constant. Without loss of
generality, we can assume that k(n) > glogn, for some convenient big constant ¢ (it is sufficient to
consider the first n output bits of H,r , where r depends on ¢). Then, comparing Eq. 6 and Eq. 7, we
have a contradiction. It follows that H' is an (3,n)-HSG. O

Acknowledgements. We are grateful to Luca Trevisan for several interesting comments.

References

[1] Ajtai M, Komlos J, and Szemeredi E. (1987), Deterministic simulation in LOGSPACE, Proc. of
19th ACM STOC, 132-140.

[2] Alon N. (1986), “Eigenvalues and Expanders”, Combinatorica, 6, 83-96.
[3] Alon N. and Spencer J.H. (1992), The Probabilistic Method, Wiley-Interscience Publication.

[4] Andreev A., Clementi A., and Rolim J. (1996), “Optimal Bounds on the Approximation of
Boolean Functions, with Consequences on the Concept of Hardness”, in XIII STACS’96, LNCS,
1046, 319-329. Also available via ftp/WWW in the electronic journal ECCC (TR95-041).

[6] Andreev A., Clementi A., and Rolim J. (1996), “Hitting Sets Derandomize BPP”, in XXIII Inter-
national Colloguium on Algorithms, Logic and Programming (ICALP’96), LNCS. Also available
via ftp/WWW in the electronic journal ECCC (TR95-061)

[6] Andreev A., Clementi A., Rolim J., and Trevisan L.(1996), “Simulating BPP using very weak
random sources: a non oblivious approach”, unpublished manuscript.

11

[7] Andreev A., I. Vihlyantsev “On the circuit complexity of Covering Boolean Operators”, in prepa-
ration (1996).

[8] Blum M., and Micali S. (1984), “How to generate cryptographically strong sequences of pseudo-
random bits”, SIAM J. of Computing, 13(4), 850-864.

[9] A. Lubotzky, R. Phillips, and P. Sarnak. (1988), “Ramanujan graphs”, Combinatorica, 8(3):261-
277, 1988.

[10] Lupanov, O.B. (1956) “About gating and contact-gating circuits”, Dokl. Akad. Nauk SSSR 111,
1171-11744.

[11] Lupanov, O.B. (1965), “About a method circuits design — local coding principle”, Problemy
Kibernet. 10, 31-110 (in Russian).

[12] G.A. Margulis (1973), “Explicit Construction of Concentrators”, Problems of Inform. Transmis-
sion, 325-332.

[13] Nechiporuk E.I. (1965) , “About the complexity of gating circuits for the partial Boolean matrix”,
Dokl. Akad. Nauk SSSR, 163, 40-42.

[14] Nisan N., and Wigderson A. (1994), “Hardness vs Randomness”, J. Comput. System Sci. 49,
149-167 (also presented at the 29th IEEE FOCS, 1988).

[15] Sipser M. (1986), “Expanders, Randomness or Time vs Space”, in in the 1st Conference on
Structures in Complexity Theory, LNCS 223, 325-329.

[16] Srinvasan A., and Zuckermann D. (1994), “Computing with very weak random sources”, in 28th
IEEE FOCS, 264-275.

[17] Ta-Shma A. (1996), “On extracting randomness from weak random sources”, in 28th ACM STOC,

[18] Wegener, 1. (1987), The complezity of finite Boolean functions, Wiley-Teubner Series in Computer
Science.

[19] Yao A. (1982), “Theory and applications of trapdoor functions”, in 23th IEEE FOCS, 80-91.

[20] Zuckermann D. (1996), “Randomness-Optimal Sampling, Extractors, and Constructive leader
Election”, in 28th ACM STOC, 286-295.

12

A APPENDIX: The proofs

A.1 Proof of Theorem 2.2

Let F(n, N,m) be the set of all partial Boolean functions f(z1,...,z,) defined on N < 2" inputs
and assuming 1 on m < N inputs. Furthermore, L(n, N,m) denotes the worst-case circuit complexity
of functions in F(n, N,m), and Lgepn(n, N, m) denotes the maximum value Lgepe(f) among all func-
tions f from F(n,N,m). Lupanov [11] proved an optimal bound for L(n, N,m) when N = 2" (i.e.
for total functions). In order to use this bound in the construction of our HSG’s, we instead require
the precise bound for partial Boolean functions.

Theorem.

Further, there exists constant ¢ > 0 such that

log< m)
Lclogn(naNa m) = (1 +O(1))— + O(n) :

loglog(Z)

Proof. The method used to derive the above upper bound is based on a probabilistic construction of
linear operators having some new variants of the “well-distribution” property previously shown in [4]
to obtain optimal bounds on the circuit complexity of approximating Boolean functions.

A Boolean function [: {0,1}" — {0,1} is linear if it can be represented in the following way:

z1,-yzp) =121 D ... D anz, ® 0,

where a1, ..., a,, are Boolean constants. The set of all linear functions with n variables is denoted
as L,. Moreover, a vector function | = (Iy,lo,...,l5) € (£,)® (s > 1) is called linear operator. The
circuit complexity of linear operators has been studied in [13]. In particular, we will use the following
result [13]. For any linear operator I = (I1,...,15) € (£y)° (s > 1), we have

ns

L) = 0()—i—O(n). (8)

We are now ready to give the proof of our theorem. For the sake of brevity, we will only prove the
restricted case

logn

n'te <m < n°W® for some €> 0, and N = 2%(n)) (9)

which is what we need to construct our HSG’s in the next sections. The proof of the general case
will be given in the full version of this paper, but is not relevant for our goal. The proof consists of
a reduction from our case to that of total functions for which we can apply Theorem 2.1. Consider
a partial Boolean function f(z1,...,,), let M, be the set of vector @ € {0,1}" for which f(a@) = a.
We have |M1| = m and |[My| = N — m. Consider a randomly chosen linear operator (with uniform

distribution) I = (I4,...

€
choice of two fixed elemen b

It) € (Ln)* where k = [log N + logm] + 2. Then, observe that for any
d,b € {

€ {0,1}" such that @ # b, we have
Pr (i{a@) = 1{b)) =2
Consequently,
Pr(dae M, Fbe My : [{@)=1(8)) <|Mo|=|M|«27*<1/4.
Hence, for the negation of the above event we have
Pr(vaeM1 Vbe My : (@) #i(b)) >3/4 .
From the above probabilistic argument, we can state that there exists [€ (£,)* such that
V@ e My Vb e My : I(d@) # 1(b) (10)
We define the total Boolean function g(yi,...,yx) as follows
g(7) =1if 3@ € M; such that (@) =7 and g(7) =0 otherwise .

-

Note that if f is defined on @ then f(@) = ¢(I(@)); Then, From Eq. 8, we obtain that for some
constant c;

L2cl logn(f) S Lcl logn(f) + Lcl logn(g) S
< O(n(log N +logm +2)) + Le, togn(9) < O(n?) + Ley togn(9) -
Furthermore, Condition 9 implies that

log(m)
log(g) = (1+o(1))mlogN , and n? = o(

loglog< g)

Since g is a total function we can apply Theorem 2.1, i.e. for some constant cgy

log (m >
L, logn(g) < (1+0(1))

loglog(Z)

Without loss of generality we can suppose that ¢; > ¢o, and consequently

()
L2cl logn(f) S O(n2) + chlogn(g) S (1 + 0(1))

loglog< Z)

ii

The thesis is then proved by defining ¢ = 2¢;.

A.2 Proof of Lemma 3.1
Lemma. If Pr (g =0) < c < 3, then

Pr (EPR), =0) < (C N g)zt_z :

Sketch of the proof. Let 0 < a < 1, and let W C V,, be any subset such that |W| < an. From
Theorem 3.2, we know that the number of walks of length m in EP, that avoid W is at most

Val(1 —) Y2((1 — a)d? + X2)™?.

Furthermore, observe that the number of all walks of length in EP, is |V,|d™, and the value
Pr (g = 0) computed on the set of vertices representing strings with last components equal to 0 is at
most 2c. It follows that

A2\ 2! A\ 242
Pr (EPR), =0) < \/%<2c+ ﬁ) < (c+ E) .

A.3 Proofs of Lemmas 5.2 and 5.3

Lemma.
L(T) < L°’(m,n—1)+ L({U) 4+ O(L(C)) + O(n) .

Sketch of the proof. Observe first that [T'(@)]* = U (@) @ Z(4) = U(@) ® Q(C(T# (@) ® ar), C(TH (i) ®
as)). IConsequently, T' can be computed as follows

T(id) = T#(@) @ (& - (U(@) ® Q(C(T* (@) ® &), O(T* (i) @ ds))) (11)

where e € {0,1}" is the Boolean vector having only the s-th component equal to 1. From Eq. 4 we
have that [T#(i)]* = 0 for any i € {0,1}"", hence T has n — 1 output variables. It follows that the
thesis is an immediate consequence of Eq. 11. O

Lemma. If for some constant ¢; we have that D > ¢, then there exists a constant co < 1 such that
L(U) < c2(2™/m).

Sketch of the proof. Lemma 5.1 implies that the number of inputs @ € {0,1}"™ for which U(@) =1 is
at most 2™(1/2 — (da — dy1)/2). Then the thesis follows from the upper bound shown in Theorem 2.2.
O

iii

