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Abstract

In this paper, we consider the question of determining whether a function f has property P or is
e-far from any function with property P. A property testing algorithm is given a sample of the
value of f on instances drawn according to some distribution. In some cases, it is also allowed to
query f omn instances of its choice. We study this question for different properties and establish
some connections to problems in learning theory and approximation.

In particular we focus our attention on testing graph properties. Given access to a graph G
in the form of being able to query whether an edge exists or not between a pair of vertices, we
devise algorithms to test whether the underlying graph has properties such as being bipartite, k-
colorable, or having a p-clique (clique of density p w.r.t the vertex set). Our graph property testing
algorithms are probabilistic and make assertions which are correct with high probability, utilizing
only a constant number of queries into the graph. Moreover, the property testing algorithms can
be used to efficiently (i.e., in time linear in the number of vertices) construct partitions of the graph
which correspond to the property being tested, if it holds for the input graph.
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Chapter 1

Introduction

We are interested in the following general question of Property Testing:

Let P be a fixed property of functions, and f be an unknown function. Our goal is to
determine (possibly probabilistically) if f has property P or if it is far from any function
which has property P, where distance between functions is measured with respect to
some distribution D on the domain of f. Towards this end, we are given examples of
the form (z, f(z)), where z is distributed according to D. We may also be allowed to
query f on instances of our choice.

The problem of testing properties emerges naturally in the context of program checking and
probabilistically checkable proofs as applied to multi-linear functions or low-degree polynomi-
als [BLR93, Lip89, BFL91, BFLS91, FGL*91, GLR*91, RS96, AS92, ALM*92, BGLR93, BS94,
BCH?*95, BGS95]. Property testing per se was considered in [RS96, Rub94]. Our definition of prop-
erty testing is inspired by the PAC learning model [Val84]. Tt allows the consideration of arbitrary
distributions rather than uniform ones, and of testers which utilize randomly chosen instances only
(rather than being able to query instances of their own choice).

We believe that property testing is a natural notion whose relevance to applications goes beyond
program checking, and whose scope goes beyond the realm of testing algebraic properties. Firstly,
in some cases one may be merely interested in whether a given function, modeling an environment,
(resp. a given program) possess a certain property rather than be interested in learning the function
(resp. checking that the program computes a specific function correctly). In such cases, learning the
function (resp., checking the program) as means of ensuring that it satisfies the property may be an
over-kill. Secondly, learning algorithms work under the postulation that the function (representing
the environment) belongs to a particular class. It may be more efficient to test this postulation first
before trying to learn the function (and possibly failing when the postulation is wrong). Similarly,
in the context of program checking, one may choose to test that the program satisfies certain
properties before checking that it computes a specified function. This paradigm has been followed
both in the theory of program checking [BL.R93, RS96] and in practice where often programmers
first test their programs by verifying that the programs satisfy properties that are known to be
satisfied by the function they compute. Thirdly, we show how to apply property testing to the
domain of graphs by considering several classical graph properties. This, in turn, offers a new
perspective on approximation problems as discussed below.

THE RELEVANT PARAMETERS. Let F be the class of functions which satisfy property P. Then,
testing property P corresponds to testing membership in the class F. The two parameters relevant



to property testing are the permitted distance, €, and the desired confidence, §. We require the tester
to accept each function in F and reject every function which is further than e away from any function
in F. We allow the tester to be probabilistic and make incorrect positive and negative assertions
with probability at most §. The complexity measures we focus on are the sample complezity (the
number of examples of the function’s values that the tester requires), the query complexity (the
number of function queries made — if at all), and the running time of the tester.

1.1 Property Testing and Learning Theory

As noted above, our formulation of testing mimics the standard frameworks of learning theory. In
both cases one is given access to an unknown target function (either in the form of random instances
accompanied by the function values or in the form of oracle access to the function). A semantic
difference is that, for sake of uniformity, even in case the functions are Boolean, we refer to them
as functions rather than concepts. However, there are two important differences between property
testing and learning. Firstly, the goal of a learning algorithm is to find a good approximation to
the target function f € F, whereas a testing algorithm should only determine whether the target
function is in F or is far away from it. This makes the task of the testing seem easier than that
of learning. On the other hand, a learning algorithm should perform well only when the target
function belongs to F whereas a testing algorithm must perform well also on functions far away
from F. Furthermore, (non-proper) learning algorithms may output an approximation f of the
target f € F so that f & F.

We show that the relation between learning and testing is non-trivial. On one hand, proper
(representation dependent) learning implies testing. On the other hand, there are function classes
for which testing is harder than (non-proper) learning, provided NP ¢ BPP. Nonetheless, there
are also function classes for which testing is much easier than learning. Further details are given
in Subsection 2.2. In addition, the graph properties discussed below provide a case where testing
(with queries) is much easier than learning (also with queries).

1.2 Testing Graph Properties

In the main technical part of this paper, we focus our attention on testing graph properties. We
view graphs as Boolean functions on pairs of vertices, the value of the function representing the
existence of an edge. We mainly consider testing algorithms which use queries and work under the
uniform distribution. That is, a testing algorithm for graph property P makes queries of the form
“is there an edge between vertices u and »” in an unknown graph G. It then decide whether G has
property P or is “e-away” from any graph with property P, and is allowed to err with probability
1/3. Distance between two N-vertex graphs is defined as the fraction of vertex-pairs which are
adjacent in one graph but not in the other.

We present algorithms of poly(1/¢) query-complexity and running-time' at most exp(é(l/eS))
for testing the following graph properties:

k-Colorability for any fixed k& > 2. (Here the query-complexity is poly(k/e), and for k = 2 the
running-time is O(1/€%).)

p-Clique for any p > 0. That is, does the N-vertex graph has a clique of size pN.

! Here and throughout the paper, we consider a RAM model in which trivial manipulation of vertices (e-g.,
reading/writing a vertex name and ordering vertices) can be done in constant time.



p-CUT for any p > 0. That is, does the N-vertex graph has a cut of size at least pN?. A
generalization to k-way cuts works within query-complexity poly((logk)/e).

p-Bisection for any p > 0. That is, does the N-vertex graph has a bisection of size at most pNZ.

Furthermore:

e For all the above properties, in case the graph has the desired property, the testing algorithm
outputs some auxiliary information which allows to construct, in poly(1/€) - N-time, a partition
which approximately obeys the property. For example, for p-CUT, we can construct a partition
with at least (p — €)N? crossing edges.

e Except for Bipartite (2-Colorability) testing, running-time of poly(1/e€) is unlikely, as it will
imply NP C BPP.
e None of these properties can be tested without queries when using o(v/N) random examples.

e The k-Colorability tester has one-sided error: it always accepts k-colorable graphs. Furthermore,
when rejecting a graph, this tester always supplies a poly(1/¢)-size subgraph which is not k-
colorable. All other algorithms have two-sided error, and this is unavoidable within o( N') query-
complexity.

e QOur algorithms for k-Colorability, p-Clique and p-Cut can be easily extended to provide testers
with respect to product distributions: that is, distributions 1T : V(G)? — [0,1] of the form
M(u,v) = 7(u) - 7(v), where 7 : V(G) +— [0,1] is a distribution on the vertices. In contrast,
it is not possible to test any of the graph properties discussed above in a distribution-free man-
ner.

GENERAL GRAPH PARTITION. All the above property testing problems are special cases of the
General Graph Partition Testing Problem, parameterized by a set of lower and upper bounds. In this
problem one needs to determine whether there exists a k-partition of the vertices so that the number
of vertices in each side as well as the number of edges between each pair of sides falls between the
corresponding lower and upper bounds (in the set of parameters). We present an algorithm for
solving the above problem. The algorithm uses é(k2/e)k+o(1) queries, runs in time exponential
in its query-complexity, and makes two-sided error. Approximating partitions, if existing, can be
efficiently constructed in this general case as well. We comment that the specialized algorithms
perform better than the general algorithm with the appropriate parameters.

OTHER GRAPH PROPERTIES. Going beyond the general graph partition problem, we remark
that there are graph properties which are very easy to test (e.g., Connectivity, Hamiltonicity, and
Planarity). On the other hand, there are graph properties in AP which are extremely hard to test;
namely, any testing algorithm must inspect at least Q(N?/log N) of the vertex pairs. In view of the
above, we believe that providing a characterization of graph properties according to the complexity
of testing them may not be easy.

OUurR TECHNIQUES. Our algorithms share some underlying ideas. The first is the uniform selection
of a small sample and the search for a suitable partition of this sample. In case of k-Colorability
certain k-colorings of the subgraph induced by this sample will do, and are found by k-coloring a
slightly augmented graph. In case of the other algorithms we exhaustively try all possible partitions.
This is reminiscent of the ezxhaustive sampling of Arora et. al. [AKK95], except that the partitions
considered by us are always directly related to the combinatorial structure of the problem. We
show how each possible partition of the sample induces a partition of the entire graph so that the



following holds. If the tested graph has the property in question then, with high probability over
the choice of the sample, there exists a partition of the sample which induces a partition of the
entire graph so that the latter partition approximately satisfies the requirements established by the
property in question. For example, in case the graph has a p-cut there exists a 2-way-partition of
the sample inducing a partition of the entire graph with (p — €)N? crossing edges. On the other
hand, if the graph should be rejected by the test, then by definition no partition of the entire graph
(and in particular none of the induced partitions) approximately obeys the requirements.

The next idea is to use an additional sample to approximate the quality of each such induced
partition of the graph, and discover if at least one of these partitions approximately obeys the
requirements of the property in question. An important point is that since the first sample is small
(i.e., of size poly(1/¢€)), the total number of partitions it induces is only exp poly(1/e€)). Thus, the
additional sample must approximate only these many partitions (rather than all possible partitions
of the entire graph) and it suffices that this sample be of size poly(1/e¢),

The difference between the various algorithms is in the way in which partitions of the sample
induce partitions of the entire graph. The simplest case is in testing Bipartiteness. For a partition
(S1,S2) of the sample, all vertices in the graph which have a neighbor in S; are placed on one
side, and the rest of the vertices are placed on the other side. In the other algorithms the induced
partition is less straightforward. For example, in case of p-Clique, a partition (S;,S») of the sample
S with [S;| & p|S|, induces a candidate clique roughly as follows. Consider the set T of graph
vertices each neighboring all of S;. Then the candidate clique consists of the pN vertices with
the highest degree in the subgraph induced by T. In the Bisection and General Partition testing
algorithms, auxiliary guesses which are implemented by exhaustive search are used.

1.3 Testing Graph Properties and Approximation

The relation of testing graph properties to approximation is best illustrated in the case of Max-
CUT. A tester for the class p-cut, working in time T'(¢, N), yields an algorithm for approximating
the maximum cut in an N-vertex graph, up to additive error ¢N?, in time L - T(e, N). Thus, for
any constant € > 0, we can approximate the size of the max-cut to within e/ N? in constant time.
This yields a constant time approximation scheme (i.e., to within any constant relative error) for
dense graphs, improving on Arora ef. al. [AKK95] and de la Vega [dIV94] who solved this problem
in polynomial-time (O(N'/<")~time and exp(O(1/(¢?)))- N> time, respectively). In both works the
problem is solved by actually constructing approximate max-cuts. Finding an approximate max-
cut does not seem to follow from the mere existence of a tester for p-cut; yet, as mentioned above,
our tester can be used to find such a cut in time linear in N (O(1/€%) - N 4 exp(O(1/€®))-time).
One can turn the question around and ask whether approximation algorithms for dense instances
can be transformed into corresponding testers as defined above. In several cases this is possible. For
example, using some ideas from our work, the Max-CUT algorithm of [dIV94] can be transformed
into a tester of complexity comparable to ours. We do not know whether the same is true with
respect to the algorithms in [AKK95]. Results on testing graph properties can be derived also from
work by Alon et. al. [ADL*94]. That paper proves a constructive version of the Regularity Lemma
of Szemerédi, and obtains from it a polynomial-time algorithm that given an N-vertex graph, ¢ > 0
and k > 3, either finds a subgraph of size f(e, k) which is not k-colorable, or omits at most e N? edges
and k-colors the rest. Noga Alon has observed that the analysis can be modified to yield that almost
all subgraphs of size f(e, k) are not k-colorable, which in turn implies a tester for k-Colorability.
In comparison with our k-Colorability Tester, which takes a sample of O(k?logk/€*) vertices, the
k-colorability tester derived (from [ADL*94]) takes a much bigger sample of size equaling a tower



of (k/€)* exponents (i.e., log” f(e, k) = (k/€)*°).

A DIFFERENT NOTION OF APPROXIMATION FOR MAX-CLIQUE. Our notion of p-Clique Testing
differs from the traditional notion of Max-Clique Approximation.? When we talk of testing “p-
Cliqueness”, the task is to distinguish the case in which an N-vertex graph has a clique of size pN
from the case in which it is e-far from the class of N-vertex graphs having a clique of size pN. On
the other hand, traditionally, when one talks of approximating the size of Max-Clique, the task is
to distinguish the case in which the max-clique has size at least pN from, say, the case in which
the max-clique has size at most pN/2. Whereas the latter problem is NP-Hard, for p < 1/64 (see
[BGS95, Sec. 3.9]), we've shown that the former problem can be solved in exp(O(1/€?))-time, for
any p,e > 0. Furthermore, Arora ef. al. [AKK95] showed that the “dense-subgraph” problem,
a generalization of p-cliqueness, has a polynomial-time approximation scheme (PTAS) for dense
instances, and our General Partition algorithm (with the appropriate parameters) improves on
their result.

TESTING k-COLORABILITY VS. APPROXIMATING k-COLORABILITY. Petrank has shown that it
is NP-Hard to distinguish 3-colorable graphs from graphs in which every 3-partition of the vertex
set violates at least a constant fraction of the edges [Pet94]. In contrast, our k-Colorability Tester
implies that solving the same promise problem is easy for dense graphs, where by dense graphs we
mean N-vertex graphs with Q(N?) edges. This is the case since, for every € > 0, our tester can
distinguish, in exp(k?/€*)-time, between k-colorable N-vertex graphs and N-vertex graphs which
remain non-k-colorable even if one omits at most e N? of their edges.?

We note that deciding k-colorability even for N-vertex graphs of minimum degree at least I]z%‘;’ -N
is NP-complete (cf., Edwards [Edw86]). On the other hand, Edwards also gave a polynomial-time
algorithm for k-coloring k-colorable N-vertex graphs of minimum degree at least aN, for any

constant o > %

1.4 Other Related Work

PROPERTY TESTING IN THE CONTEXT OF PCP: Property testing plays a central role in the
construction of PCP systems. Specifically, the property tested is being a codeword with respect
to a specific code. This paradigm explicitly introduced in [BFLS91] has shifted from testing codes
defined by low-degree polynomials [BFLS91, FGL*91, AS92, ALM*92] to testing Hadamard codes
[ALM*92, BGLR93, BS94, BCH*95], and recently to testing the “long code” [BGS95]. See also
discussion in [RS96, Kiw96].

PROPERTY TESTING IN THE CONTEXT OF PROGRAM CHECKING: There is an immediate analogy
between program self-testing [BLR93] and property-testing with queries. The difference is that in
self-testing, a function f (represented by a program) is tested for being close to a fully specified
function g, whereas in property-testing the test is whether f is close to any function in a function
class G. Interestingly, many self-testers [BLR93, RS96] work by first testing that the program
satisfies some properties which the function it is supposed to compute satisfies (and only then
checking that the program satisfies certain constraints specific to the function). Rubinfeld and
Sudan [RS96] defined property testing, under the uniform distribution and using queries, and related

?In fact, our notion is analogous to dual approximation where one secks a “super optimal” solution which is
“almost feasible”; cf., [HS87, HS88].
? As noted by Noga Alon, similar results, alas with much worse dependence on ¢, can be obtained by using the

results of Alon et. al. [ADL194].



it to their notion of Robust Characterization. Rubinfeld [Rub94] focuses on property testing as
applied to properties which take the form of functional equations of various types.

PROPERTY TESTING IN THE CONTEXT OF LEARNING THEORY: Departing from work in Statistics
regarding the classification of distributions (e.g., [HW58, Cov73, ZK91]), Ben-David [BD92] and
Kulkarni and Zeitouni [KZ93] considered the problem of classifying an unknown function into one
of two classes of functions, given labeled examples. Ben-David studied this classification problem
in the limit (of the number of examples), and Kulkarni and Zeitouni studied it in a PAC inspired
model. For any fixed €, the problem of testing the class F with distance parameter € can be casted
as such a classification problem (with F and the set of functions e-away from F being the two
classes). A different variant of the problem was considered by Yamanishi [Yam95].

TESTING GRAPH PROPERTIES. Qur notion of testing a graph property P is a relazation of the
notion of deciding the graph property P which has received much attention in the last two decades
[LY91]. In the classical problem there are no margins of error, and one is required to accept all
graphs having property P and reject all graphs which lack it. In 1975 Rivest and Vuillemin [RV76]
resolved the Aanderaa—Rosenberg Conjecture [Ros73], showing that any deterministic procedure
for deciding any non-trivial monotone N-vertex graph property must examine Q(N?) entries in the
adjacency matrix representing the graph. The query complexity of randomized decision procedures
was conjectured by Yao to be Q(N?). Progress towards this goal was made by Yao [YaoS87],
King [Kin91] and Hajnal [Haj91] culminating in an Q(N*3) lower bound. Our results, that some
non-trivial monotone graph properties can be tested by examining a constant number of random
locations in the matrix, stand in striking contrast to all of the above.

APPROXIMATION IN DENSE GRAPHS. As stated previously, Arora ef. al. [AKK95] and de la Vega [dIV94]
presented PTAS for dense instances of Max-CUT. The approach of Arora ef. al. uses Linear Pro-
gramming and Randomized Rounding, and applies to other problems which can be casted as a
“smooth” Integer Programs.* The methods of de la Vega [dIV94] are purely combinatorial and ap-
ply also to similar graph partition problems. Following the approach of Alon et. al. [ADL*94], but
using a modification of the regularity Lemma (and thus obtaining much improved running times),
Frieze and Kannan [FK96] devise PTAS for several graph partition problems such as Max-Cut
and Bisection. We note that compared to all the above results, our respective graph partitioning
algorithms have better running-times. Like de la Vega, our methods use elementary combinatorial
arguments related to the problem at hand. Still our methods suffice for dealing with the General
Graph Partition Problem.

* In [AFK96], the approach of [AKK95] is extended to other problems, such as Graph Isomorphism, using a new
rounding procedure for the Assignment Problem.



Chapter 2

General Definitions and Observations

2.1 Definitions

Let F = {F,} be a parameterized class of functions, where the functions' in F, are defined over
{0,1}" and let D = {D,} be a corresponding class of distributions (i.e., D, is a distribution on
{0,1}"). We say that a function f defined on {0,1}" is e-close to F,, with respect to D, if there
exists a function g € F, such that

Proby.p,[f(z) # g(z)] < €. (2.1)

Otherwise, f is e-far from F, (with respect to D,).
We shall consider several variants of testing algorithms, where the most basic one is defined as
follows.

Definition 2.1.1 (property testing): Let A be an algorithm which receives as input a size param-
eter n, a distance parameter 0 < € < 1, and a confidence parameter 0 < 6 < 1/2. Fizing an
arbitrary function f and distribution D, over {0,1}", the algorithm is also given access to a se-
quence of f-labeled examples, (z1, f(z1)), (%2, f(z2)), ..., where each ; is independently drawn from
the distribution D,,. We say that A is a property testing algorithm (or simply a testing algorithm)
for the class of functions F if for every n, € and 6 and for every function f and distribution D,
over {0,1}" the following holds

o if f € F, then with probability at least 1 — & (over the examples drawn from D, and the
possible coins tosses of A), A accepts [ (i.e., outpuls 1);

o if f ise-far from F, (with respect to D, ) then with probability at least 1 — ¢, A rejects f (i.e.,
oulputs 0).

The sample complexity of A is a function of n,e and § bounding the number of labeled examples
examined by A on input (n,€,9).

Though it was not stated explicitly in the definition, we shall usually also be interested in
bounding the running time of a property testing algorithm (as a function of the parameters n,d, €,
and in some case of a complexity measure of the class F).

We consider the following variants of the above definition:

! The range of these functions may vary and for many of the results and discussions it suffices to consider Boolean
function.



1. D, may be a specific distribution which is known to the algorithm. In particular, we shall be
interested in testing with respect to the uniform distribution.

2. D, may be restricted to a known class of distributions (e.g., product distributions).

3. The algorithm may be given access to an oracle for the function f, which when queried on
z € {0,1}", returns f(z). In this case we refer to the number of queries made by A (which is
a function of n, €, and ¢), as the query complexity of A.

4. In some cases the algorithm might have the additional feature that whenever it outputs fail
it also provides a certificate to the fact that f ¢ F. Certificates are defined with respect to
a verification algorithm which accepts a sequence of labeled examples whenever there exists
[ € F, which is consistent with the sequence. (We do not require that the algorithm reject
each sequence which is not consistent with some f € F,.) A certificate for f ¢ F, is an
[-labeled sequence which is rejected by the verification algorithm.

5. The algorithm is given two distance parameters, ¢; and €, and is required to pass with high
probability every f which is €;-close to F,, and fail every f which is €,-far from F),.

2.2 On the Relation between Property Testing and PAC Learning

A Probably Approzimately Correct (PAC) learning algorithm [Val84] works in the same framework
as that described in Definition 2.1.1 except for the following (crucial) differences:

1. Tt is given a promise that the unknown function f (referred to as the target function) belongs

to F;

2. It is required to output (with probability at least 1 — ¢) a hypothesis function h which is
e-close to f, where closeness is as defined in Equation (2.1) (and € is usually referred to as
the approzimation parameter).

Note that the differences pointed out above effect the tasks in opposite directions. Namely, the
absence of a promise makes testing potentially harder than learning, whereas deciding whether a
function belongs to a class rather than finding the function may make testing easier.

In the learning literature, a distinction is made between proper (or representation dependent)
learning and non-proper learning [PV88]. In the former model, the hypothesis output by the
learning algorithm is required to belong to the same function class as the target function f, i.e.
h € F, while in the latter model, no such restriction is made. We stress that a proper learning
algorithm (for F) may either halt without output or output a function in F, but it may not output
functions not in F.? There are numerous variants of PAC learning (including learning with respect
to specific distributions, and learning with access to an oracle for the target function f). Unless
stated otherwise, whenever we refer in this chapter to PAC learning we mean the distribution-free
no-query model described above. The same is true for references to property testing. In addition,
apart from one example, we shall restrict our attention to classes of Boolean functions.

TESTING IS NOT HARDER THAN PROPER LEARNING.

2We remark that in case the function is F have an easy to recognize representation, one can easily guarantee that
the algorithm never outputs a function not in F. Standard classes considered in works on proper learning typically
have this feature.

10



Proposition 2.1 If a function class F has a proper learning algorithm A, then F has a property
testing algorithm A’ such that ma(n,€e,6) = ma(n,€/2,6/2) + O(log(1/6)/¢). Furthermore, the
same relation holds between the running times of the two algorithm.

Proof: In order to test if f € F or efar from it, we first run the learning algorithm A with
confidence parameter §/2, and approximation parameter ¢/2. If A does not output a hypothesis,
then we reject f. If A outputs a hypothesis ~ (which must be in F since A is a proper learning
algorithm), then we approximate the distance between h and f by drawing an additional sample
of size O(log(1/6)/¢). If the approximated distance is less than 3¢/4 then we accept, otherwise we
reject.

In case f € F, with probability at least 1 — §/2, h is €/2-close to f, and a simple Chernoff
bound tells us that with probability at least 1 — §/2 over the additional sample, we shall not reject
it. In case fis e-far from F, any hypothesis h € F is at least e-far from f, and with probability at
least 1 — §/2 over the additional sample, f is rejected. W

In particular, the above proposition implies that if for every n, F,, has polynomial (in n) VC-
dimension [VC71, BEHW89]?, then F has a tester whose sample complexity is polynomial in n, 1/e,
and log(1/é). The reason is that classes with polynomial VC-dimension can be properly learned
from a sample of the above size [BEHWS89]. However, the running time of such a proper learning
algorithm, and hence of the resulting testing algorithm might be exponential in n.

Corollary 2.2 FEvery class which is learnable with a poly(n/e) sample (and thus has a poly(n) VC
dimension [BEHWS89]) is testable with a poly(n/e) sample (in at most exponential time).

TESTING MAY BE HARDER THAN LEARNING. In contrast to Proposition 2.1 and to Corollary 2.2,
we show that there are classes which are efficiently learnable (though not by a proper learning
algorithm) but are not efficiently testable. This is proven by observing that many hardness results
for proper learning (cf. [PV88, BR89, PW93]) actually establish the hardness of testing (for the
same classes). Furthermore, we believe that it is more natural to view these hardness results
as referring to testing and derive the hardness for proper learning via Proposition 2.1. Thus, the
separation between efficient learning and efficient proper learning translates to a separation between
efficient learning and efficient testing.

Proposition 2.3 If NP ¢ BPP then there exist function classes which are not poly(n/e)-time
testable but are poly(n/e€)-time (non-properly) learnable.

Proof: The proposition follows from the fact that many of the representation dependent hardness
results (¢f. [Gol78, Ang78, PV88, BR89, PW93]) have roughly the following form. An NP-complete
problem is reduced to the following decision problem: Given a set S of labeled examples, does there
exist a function in F which is consistent with 57 A learning algorithm is forced to find a consistent
function if one exists by letting the support of the distribution D (which is allowed to be arbitrary)
lie solely on S, and setting € to be smaller than 1/|S|. Actually, since the consistency problem is
that of deciding if there exists a consistent function and not necessarily of finding such a function,
it follows that the corresponding testing problem (using the same D and ¢) is hard as well. Details
follow.

Let F be a fixed class of functions and suppose that the following decision problem is NP-complete

® The Vapnik Chervonenkis (VC) dimension of a class F, is defined to be the size d of the largest set X € {0,1}"
for which the following holds. For each (of the 2¢) partitions (Xo, X1) of X there exists a function f € F, such that
for every z € Xo, f(z) =0, and for every z € X1, f(z) = 1. A set X that has this feature is said to be shattered by
Fn.
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input: a sequence (z1,01), ..., (2, 0,), where z; € {0,1}", 0; € {0,1}, and ¢ = poly(n).
question: is there a function f € F, so that f(z;) = o, for all ¢ € [t].

Assuming that there exists a property testing algorithm, denoted A, for the class F, we decide
the above problem. We invoke A with parameters n, € and é, where € < 1/m (say € = 1/2m)
and say § = 1/3. Suppose that A requires m ! ma(n,€,é) samples. We uniformly select m
indices, denoted iy, ..., %, (possibly with repetitions) out of [{] and feed A with the labeled sample
(z4,,04,), s (%4,,,0,, ). We decide according to A’s output.

We analyze the performance of our algorithm by relating it to the performance of the property
testing algorithm on the distribution, D,,, which is uniform on the set {z; : i € [{]}. Suppose first
that there exists f € F, so that f(z;) = o;, for all ¢ € [¢]. In this case, we provide A with a random
sample labeled by a function in F, and thus with probability at least 1 — § the test must accept.
Thus, our decision procedure accepts yes-instances with probability at least 1 — 6.

Suppose now that there exists no function f € F, such that f(z;) = oy, for all ¢ € [{]. This
def

implies that the function f defined by f(z;) = o;, for all i € [{] (and f(z) = 0 for z ¢ {=; : 1 €[t]}),
is at distance at least + > ¢ from F (with respect to the distribution D,). Since we provide A with
a random sample labeled by this f, the test must reject with probability at least 1 — 4. Hence, our
decision procedure rejects no-instances with probability at least 1 — 4.

This establishes, in particular, that testing the class of k-Term DNF (where k is a constant) is
NP-Hard (see [PV88]). On the other hand, k-Term DNF (for constant k) is efficiently learnable
(using the hypothesis class of £-CNF) [Val84, PV88]. W

We stress that while Proposition 2.1 generalizes to learning and testing under specific distributions,
and to learning and testing with queries, the proof of Proposition 2.3 uses the premise that the
testing (or proper learning) algorithm works for any distribution and does not make queries.

TESTING MAY BE EASIER THAN LEARNING. We start by presenting a function class which is easy to
test but cannot be learned®® with polynomial sample complexity, regardless of the running-time.

Proposition 2.4 There exist function classes F such that:
o F has a property testing algorithm whose sample complezity and running time are O(log(1/8)/¢);

o Any learning algorithm for F must have sample complexity exponential in n.

Proof: It is possible to come up with quite a few examples of functions classes for which the above
holds. We give one example below. For each n let F, include all functions f over {0,1}", such that
for every y € {0,1}*~!, f(1y) = 1 (and if the first bit of the input is 0 then no restriction is made).

Given m = O(log(1/é)/¢) examples, labeled by an unknown f and drawn according to an
arbitrary distribution D,, the testing algorithm will simply verify that for all examples z whose
first bit is 1, f(z) = 1. If f € F,, it will always accept it, and if f is e-far from F,, (with respect
to D,,) then the probability that it does not observe even a single example of the form (1y,0) (and
as a consequence, accepts f), is bounded by (1 — €)™ < é. On the other hand, the VC-dimension
of F, is 27! (since the set {0y : y € {0,1}"'} is shattered by F,). By [BEHW89], learning this
class requires a sample of size 2(27). W

The impossibility of learning the function class in Proposition 2.4 is due to its exponential VC-
dimension, (i.e., it is a pure information theoretic consideration). We now turn to function classes
of exponential (rather than double exponential) size. Such classes are always learnable with a
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polynomial sample, the question is whether they are learnable in polynomial-time. We present
a function class which is easy to test but cannot be learned in polynomial-time (even under the
uniform distribution), provided trapdoor one-way permutations exist (e.g., factoring is intractable).

Proposition 2.5 If there exist trapdoor one-way permulations then there exists a family of func-
tions which can be tested in poly(n/€)-time but can not be learned in poly(n/e)-time, even with
respect to the uniform distribution. Furthermore, the functions can be computed by poly(n)-size
circuits.

Proof: Let {p, : D, — D,} be a family of trapdoor permutations (see [Gol95, Sec. 2.4]).
We first assume, for simplicity, that D, = {0,1}/°l. Loosely speaking, this family should satisfy
three properties. Firstly, there exists a polynomial-time algorithm which given « and z outputs
po(z). Secondly, no polynomial-time algorithm can, given a and z, output p;'(z) with non-
negligible success probability (taken over all possible choices of a,2 € {0,1}"). Thirdly, for each
a € {0,1}* (equivalently, for each p,) there exists a poly(|a|)-size circuit which inverts p,. We let

OW = {OW,.}, where OW,, consists of the multi-valued functions f,, so that f,(z) < (a,p7'(z))
for every a,z € {0,1}".

To test if f € OW, we merely examine sufficiently many f-labeled examples. For each labeled
example, (z,(a,y)),if p.(y) # = then we reject f. In addition we also reject if we see two examples,
(z1,(a1,y1)) and (22, (a2, ¥y2)), so that a; # as. Otherwise we accept f. Note that this test works
for any distribution on the examples and so the class OW is efficiently testable. On the other
hand, it is infeasible to learn the class OW under the uniform distribution (since any such learning
algorithm yields an algorithm for inverting the one-way permutations.

In general the D,’s may be arbitrary, but there exists a probabilistic polynomial-time sampling
algorithm, S, that on input « selects at random an element in D,. Let S(a,r) denote the output
of the sampling algorithm 5, on input a and coin tosses r. The construction of OW is modified in
the natural manner; that is, f,(r) < (a,p7'(S(a,7))). W

The class presented in Proposition 2.5 consists of multi-valued functions. We leave it as an open
problem whether a similar result holds for a class of Boolean functions.

LEARNING AND TESTING WITH QUERIES (under the uniform distribution). Let the class of parity
functions, PAR = {PAR,}, where PAR, & {fs : § C [n]} and fs : {0,1}"* — {0,1} so that
fs(z) = Y ;cs2; mod 2. Work on linearity testing [BLR93, BFL91, FGL+91, BGLR93, BS94],
culminating in the result of Bellare et. al. [BCH*95], implies that there exists a testing algorithm
for the class PAR, under the uniform distribution, whose query complexity is O(log(1/6)/¢). The
running-time is a factor n bigger, merely needed to write down the queries. On the other hand,
any learning algorithm for this class must use at least n queries (or examples). The reason being
that any query (or example) gives rise to a single linear constraint on the coefficients of the linear
function, and with less than n such constraints the function is not uniquely defined. Furthermore,
every two linear functions disagree with probability 1/2 on a uniformly chosen input.

An example of a testable (with queries) class which is not learnable even with poly(n) queries
is the class of multi-variate polynomials. Specifically, let POLY = {POLY,}, where POLY,
consists of n-variate polynomials of total degree n over the field GF(¢), where ¢ is the first prime
in the interval [n*, 2n*]. Work on low-degree testing [BFL91, BFLS91, GLR*91], culminating in
the result of Rubinfeld and Sudan [RS96], implies that there exists a testing algorithm for the class
POLY, under the uniform distribution, whose query complexity is O(min{n?, 2} -log(1/6)). The
running-time is a factor O(nlogn) bigger, merely needed to write down the queries and do some
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simple algebra. It is not hard to show that one cannot possibly learn POLY,,, under the uniform
distribution, using only poly(n) queries. Again, the reason is that any query (or example) gives rise
to a single linear constraint on the coefficients of the polynomial. Since there are exponentially (in
n) many coefficients, this leaves the polynomial not uniquely defined. Finally, one invokes Schwarz’s

Lemma [Sch80], by which two such degree n polynomials can agree on at most % < L fraction of

the domain. "

AGNOSTIC LEARNING AND TESTING. In a variant of PAC learning, called Agnostic PAC learn-
ing [KSS92], there is no promise concerning the target function f. Instead, the learner is required to
output a hypothesis k from a certain hypothesis class H, such that h is e-close to the function in H
which is closest to f. The absence of a promise makes agnostic learning closer in spirit to property
testing than basic PAC learning. In particular, agnostic learning with respect to a hypothesis class
‘H implies proper learning of the class ‘H and thus property testing of H.

LEARNING AND TESTING DISTRIBUTIONS. A distribution learning algorithm for a class of distri-
butions, D = {D,}, receives (in addition to the parameters n, € and §) an (unlabeled) sample of
strings in {0, 1}", distributed according to an unknown distribution D € D,. The algorithm is
required to output a distribution D’ (either in form of a machine which generates strings according
to D', or in form of a machine that on input = € {0,1}"” outputs D’(z)), such that with probability
at least 1 — §, the variation distance between D and D’ is at most e. (For further details see
[KMR*94].) In contrast, a distribution lesting algorithm, upon receiving a sample of strings in
{0,1}" drawn according to an unknown distribution D, is required to accept D, with probability
at least 1 —6,if D € D, and to reject (with probability > 1—46) if D is e-far from D,, (with respect
to the variation distance).

The context of learning and testing distributions offers a dramatic demonstration to the im-
portance of a promise (i.e., the fact that the learning algorithm is required to work only when the
target belongs to the class, whereas the testing algorithm needs to work for all targets which are
either in the class or far away from it).

Proposition 2.6 There exist distribution classes which are efficiently learnable (in both senses
mentioned above) but cannot be tested with a subexponential sample (regardless of the running-
time).

Proof: Consider the class of distributions D = {D,} consisting of all distributions, D?, which
are generated by n independent tosses of a coin with bias p. Clearly, this class can be efficiently
learned (by merely approximating the bias p of the target distribution). However, a tester cannot
distinguish the case in which a sample of subexponential size is taken from the uniform distribution
D!/? (and thus should be accepted), and the case in which such a sample is taken from a ‘typically
bad’ distribution B which is uniform over S C {0,1}", where |S| = 2"~!. Formally, we consider
the behavior of the test when given a sample from DL/? versus its behavior when given a sample
from BZ, where S is uniformly chosen among all subsets of size 27~1. W

Observing that the above proof holds for any distribution class which contains the uniform distri-
bution and is far from distributions such as the BY’s, we feel discouraged to continue the study of
testing distributions.

2.3 Other Observations

PROPERTY TESTING MAY BE VERY HARD.
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Proposition 2.7 There exists a function class F = {F,} for which any testing algorithm must
inspect the value of the function at a constant fraction of the inputs (i.e., on Q(2") inputs). This
holds even for lesting with respect to the uniform distributions, for any distance parameter ¢ < 1/2
and confidence parameter 6 < 1/2, and when allowing the algorithm to make queries and use
unlimited compuling time.

Proof: Suppose for simplicity that e = 1/4 and § = 1/5. We will use the Probabilistic Method to
demonstrate the existence of a function class, F = {F,}, satisfying the claim so that F, consists
of 275°2" Boolean functions operating on {0,1}". We'll show that there exists a class F so that a
uniformly selected function is both far from it and indistinguishable from it when observing o(2")
values.

First we show that, with high probability, a uniformly selected function g : {0,1}" — {0,1}

1€l

is e-far from any set, F,, of 212" functions. Let N 4 9 and Uy be uniformly distributed on
{0,1}". Then,
Prob,[3f € F, s.t. g(z) # f(z) for more that eN z’s]

<
< | F,| - Prob[Uy has at most €N 17s]
S 2N/10'26_N/8

Prob,[g is e-close to F,,]

= exp(—Q(N))

Thus, with overwhelmingly high probability (over the choices of g) the function g is e-far from the
class F,.

We now consider any fixed sequence, 5, of T ! N/20 inputs and compare the values assigned
to them by g versus the values assigned to them by a uniformly chosen function in F,. Clearly,
in the first case the values are uniformly distributed. Let d5(F,) denote the statistical difference
between the uniform distribution and the distribution of function-values induced by a uniformly
selected function in F,. That is,

def

0s(Fn) = Z |Probiesr, [f(S)=a] —277|

«€{0,1}T
where f({i1,...,%}) = f(i1)--- f(¢;). We consider the probability, taken over all possible choices of
F,, (consisting of 275°2" functions), that 65(F,) > 1/2. We get
Probgz, [65(F,) > 1/2] < Probz [Ja € {0,1} s.t. |Probses, (f(S)=a) - 277| > 27(T+1)]

< 91 . 9e=1(3) 27| Ful

N | —

_ 1 50.05N
2N/100 .9 13 2

— exp(—27)

Summing the probabilities over all possible (Jq\f) sequences we conclude that with overwhelmingly
high probability, over the choice of F,, all §5’s are bounded above by 1/2. Consequently, the
difference between the acceptance probability of a truly random g and the acceptance probability
of a uniformly selected f € F, is at most 1/2. This does not allow to both accept every f € F,
with probability at least 0.8 and accept a random g with probability 0.21 (the extra 0.01 over-
compensates for the case that a random g is e-close to ). W

THE ALGEBRA OF PROPERTY TESTING. Suppose that two function classes are testable within
certain complexity. What can we of their INTERSECTION, UNION and COMPLEMENTATION? Un-
fortunately, in general, we can only say that their union is testable within comparable complexity.
That is,
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Proposition 2.8 Let F' = {F]} and F" = {F!} be function classes testable within complexities
d(n,e.d) and ¢'(n,e,6). Then, the class F = {F,}, where F, = F, U F/, is testable within
complezities ¢(n,€,26) = c'(n,€,8) + ¢"(n,€,6).

Proof: The testing algorithm for F consists of testing for membership in both F’ and F” and
accepting iff one of the tests has accepted. The validity of this test relies on the fact that if f is
e-far from F = F'U F" then it is e-far from both 7' and 7. N

The fact that an analogous claim does not hold for intersection is the reason that an analogous
tester does not work for the intersection class. That is, it may be the case that f is far from
F = F'nF" yet it is very close to both 7' and F”. Thus, if a function may be close to both F’
and F”, pass both the corresponding property tests, but still may be far from F. For example,
F' may contain functions which are pairwise far apart and 7" may consists of functions obtained
from F’ by very few modifications. An efficient algorithm accepting functions in F’ is likely to
accept also functions in F” and so will accept all functions in F'U F” although there are far from
F'NF" (which is actually empty). Finally, we observe that property testing is not preserved under
negation. That is,

Proposition 2.9 There exists a function class F = {F,} which is trivially testable so that the
class of functions not in F is not testable in subexponential complexity. We say that F is trivially
testable if for every € > 27" an algorithm which accepts every n-bit Boolean function satisfies the
tesling requirements with respect to F.

Proof: Consider the function class F used in the proof of Proposition 2.7. As shown there, this
class is not testable in subexponential complexity. Now, let H = {H,,} consists of all functions not
in F. It is easy to see that each function f:{0,1}" — {0,1} is at most 2="-far from H. Thus, as
long as € > 27", the trivial algorithm which accepts all functions constitutes a tester for H. W
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Chapter 3

Testing Graph Properties

In this chapter we concentrate on testing graph properties using queries and with respect to the
uniform distribution. In Subsection 3.7.1, we discuss some extensions beyond this basic model.

GENERAL GRAPH NOTATIONS. We consider undirected, simple graphs (no multiple edges or self-
loops). For a simple graph G, we denote by V(G) its vertex set and assume, without loss of
generality, that V(G) = {1,...,|V(G)|}. Graphs are represented by their (symmetric) adjacency
matrix. Thus, graphs are associated with the Boolean function corresponding to this matrix (i.e.,
the value of a pair (u,v) € V(G)? indicates whether (u,v) € E(G)). This brings us to associated
undirected graphs with directed graphs where each edge in the undirected graph is associated with
a pair of anti-parallel edges.! Specifically, for a graph G, we denote by E(G) the set of ordered
pairs which correspond to edges in G (i.e., (u,v) € E(G) iff there is an edge between u and v in G).
In the sequel, whenever we say ‘edge’ we mean a directed edge.

The distance between two N-vertex graphs, G; and Gs, is defined as the number of entries
(u,v) € [N]*([N] .., N}) which are in the symmetric difference of E(G) and E(Gs). Dividing
this quantity by N? we get

dist(Gy, Gy) % [(E(G1) \ E(Gz));(E(Gz) \E(G))]

This notation is extended naturally to a set, C, of N-vertex graphs; that is, dist(G,C) = mingec{dist(G, G')}.
Another notation used extensively in this chapter is the set of neighbors of a vertex v; that is,

I'(v) € {u: (v,u) €E(G)}. This notation is extended to sets of vertices in the natural manner; i.e.,
def

F(S) = Uvegf(v).

ORGANIZATION OF THIS CHAPTER: We present testers for Bipartiteness, k-Colorability (for k > 3),
p-Clique, Max-CUT (and Max-k-CUT), Bisection and the General Graph Partition property. The
latter generalizes all the former ones, but yields worse complexity bounds for the special cases.
Also, Max-CUT (resp., Max-k-CUT) generalizes Bipartiteness (resp., k-Colorability), yet it can
only be tested with two-sided error whereas the coloring properties have one-sided error testers. In
view of all the above, we chose to make the exposition in each section as self-contained as possible.
The only dependencies among the sections are the usage of Lemma 3.3.5 (stated for p-Clique) in
all subsequent sections, and the Bisection section which builds on the Max-CUT section.

! Our convention makes the correspondence between graphs and functions more evident. In some places it also
makes the analysis more natural; however, in other places it results in doubling certain quantities.
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3.1 Testing Bipartiteness

In this section we describe an algorithm for testing the class, B, of bipartite graphs. This is a
special case of testing k-Colorability, considered in the next subsection. We choose to present the
case of k = 2 separately because it is both simpler to describe, and it served as a good prelude to
the next section. Moreover, the algorithm presented here has lower query complexity (in terms of
its dependence on the distance parameter, €) than the one described in the next section.

We start by describing a testing algorithm whose query complexity is O(bgt#) We later
point out how this algorithm can be slightly modified so that its query complexity decreases to
0O (10g2£§/56)> )

Bipartite Testing Algorithm

log(;{(%))

1. Choose uniformly O( vertices. Let the set of vertices chosen be denoted by X.

2. For every pair of vertices vy, vy € X, query if (v1,v2) € E(G). Let Gx be the induced subgraph.
3. If Gx is a bipartite graph then output accept, otherwise output reject.

Before stating the main theorem of this section, we introduce the following definitions.

Definition 3.1.1 (violating edges and good partitions): We say that an edge (u,v) € E(G) is a
violating edge with respect to a partition (V1,Vs) of V(G) if either u,v € Vy or u,v € Vo. If a
partition (V1, V) has at most eN? violaling edges then we say that it is e-good. Otherwise, it is
e-bad. A partition that has no violating edges is called perfect.

Thus, if G is bipartite, then there exists a perfect partition of V(G), and if G is e-far from bipartite
then every partition of V(G) is e-bad.

Theorem 3.1 The Bipartite Testing Algorithm is a property testing algorithm for the class of bi-
partite graphs whose edge-query complexily and running time are O (lﬁgﬁe%@) Furthermore, if the
tested graph G is bipartite then il is accepted with probability 1, and, with probability at least 1 — ¢
(over the choice of the sampled vertices), it is possible to construct an e-good partition of V(G) in
time O (M . N),

3.1.1 Proof of Theorem 3.1

It is clear that if G is bipartite then any subgraph of G is bipartite and hence G will always be
accepted. Since it is possible to determine if Gx is bipartite by simply performing a breadth-first-
search (BFS) on Gy, the bound on the running time of the testing algorithm directly follows. Note
that if Gx is bipartite then the BFS provides us with a perfect partition of X, while if it is not
bipartite, then it gives a certificate that G ¢ B. This certificate is in form of a cycle of odd length
in Gy, (which is also a cycle in G'). Thus the heart of this proof is to show that if G is e-far
from bipartite then the test will reject it with probability at least 1 — §. To this end we prove
the counter-positive of the previous statement: For any graph G, if the Bipartite Testing Algorithm
accepts G with probability greater than § then V(G) must have an e-good partition.

We view the set of sampled vertices X as a union of two disjoint sets U and S, where ¢ ot |U| =
0 (ﬂ%@), and m & IS| = O (%ﬂ) The role of U, or more precisely of a given partition
(U4, U,) of U, is to define a partition of all of V(G). In particular, if the test accepts G, then we
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know that X has a perfect partition, and we shall be interested in the partition of U induced by this
perfect partition of X. The role of S is to test the partitions of V(G) defined by the partition of U in
the following sense. If a certain partition (V;,Vs) of V(G), defined by a partition (U, Us) of U, is
e-bad, then with very high probability there is no partition (S;,Ss) of S such that (U; US;, UsUS>)
is a perfect partition of X. We next make the above notions more precise.

Given a partition (Uy, U,) of U we define the following partition (Vy,Vs) of V(G): let V; &
I'(U,), and V, ef V(G)\T(Us,). That is, V; is the set of neighbors of Us,, and V; all neighbors of U,
(which are not neighbors of U,), as well as the rest of the vertices - namely those which do not have
a neighbor in U. Note that the partition of U is not relevant to the placement of vertices which
have no neighbor in U. Thus, we first ensure that most vertices in V(G) (or most “influential”
vertices in V(G)) have a neighbor in U.

Definition 3.1.2 (influential vertices and covering sets): We say that a vertex v € V(G) is influ-
ential if it has degree at least N . Recall that a degree of a vertex is the sum of its in-degree and
its out-degree (which is twice its degree in the undirected representation of the graph). We call U a
covering set for V(G) if all but at most N of the influential vertices in V(G) have a neighbor in U
(here each neighbor from which there is one outgoing edge, and one ingoing edge, is counted once).

Claim 3.1.3 With probability at least 1 — §/2, a uniformly chosen set U of size t = O (M)
is a covering set for V(G).

Proof: For a given influential vertex v, the probability that v does not have any neighbor in a
uniformly chosen set U of size ¢ is at most

(1—¢/6)" < exp(—t-¢/6) = O(6-¢) . (3.1)

Hence the expected number of influential vertices which do not have a neighbor in a random set U
is O(6-¢)- N, and by Markov’s inequality (using appropriate constants), the probability that there
are more than £N such vertices is less than 6/2. W

Given a covering set U and a partition of U, we can concentrate on the violating edges between
vertices in I'(U;), for ¢ = 1,2. The reason being that the total number of edges incident to vertices
not in I'(U) is small. This motivates the following definition.

Definition 3.1.4 (useful partitions): Let U C V(G). A partition (U;,Us) of U is called e-useful
(or just useful) if

{(v,v") € B(G) : Fi € {1,2} s.t. v,o' € T(U)}| < %-Nz. (3.2)
Otherwise il is e-unuseful.

In other words, a partition of U is unuseful if there are too many violating edges among the
neighbors either of U; or of U, in the corresponding partition defined on V(G). As the following
claim shows, if (U;, U,) is an unuseful partition, then with high probability we shall see evidence
to its unusefulness in the sample S. The evidence is in form of an edge (v,v') € S x S between
neighbors of vertices in, say, U;. Let u € Uy (resp., v’ € U;) be a neighbor of v (resp., v'). In case
uw = v’ there is a triangle in Gx (which means that the test would reject). In case u # u’ the edge
(v,v") forces to place u and u’ on opposite sides of any perfect partition of X = UU S.
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Claim 3.1.5 Let U be a set of size t and let (U, Uy) be a fized e-unuseful partition of U. Then
for a uniformly chosen set S C V(G) of cardinality m = O (%ﬂ)’

Probs [Yv, v’ € S,i € {1,2} s.t. (v,v') € B(G) N (T(U;) x T(U;))] < §-270+D

The claim says that if (Uy, Us) is an e-unuseful partition of U then with very high probability there
exists no partition of S so that the combined partition of X = U U S is a perfect partition of the
subgraph induced by X.

Proof: If (Uy,Us,) is an unuseful partition, then by Eq. (3.2):

Prob, ,/[3i € {1,2} s.t. (v,0") € E(G) N (T'(U;) x T(U;))] > ¢/3. (3.3)
Since S can be chosen by drawing %+ independent random pairs of vertices (v, '),

Probs[Vo, o' € S,i € {1,2) : (v,0) & E(G) N (D(U;) x T(U))] < (1— ¢/3)™/
= exp(—O(t +1log(1/6)))
< §.270FD

As a corollary to Claim 3.1.5, we have

Corollary 3.1.6 For every set U of size t, if all partitions of U are e-unuseful, then with probability
at least 1 — §/2 there is no perfect partition of X. (In such a case Gx is found to be non-bipartite,
and the test rejects G).

On the other hand, if U has a useful partition, denoted (U, Us,), and U is a covering set for V(G),
then we have the following lemma.

Lemma 3.1.7 For every graph G, if there exists a covering set U of V(G), which has an e-useful

partition (Uq,Us,), then G is e-close to bipartite. In particular, the following partition (Vi,V,) of
def

V(G) is e-good: V, < T(Us), Vo € V(G)\ T(1).
Proof: Let us count the number of violating edges with respect to the partition (V,V,):

e Edges incident to non-influential vertices: there are at most N such vertices and by definition
each has at most {NV incident edges, giving a total of N>

e Edges incident to influential vertices which do not have neighbors in U: there are at most £ N
such vertices and each has at most 2N incident edges, totaling to £N>.

¢ Violating edges which are incident to neighbors of U. We consider two cases

— Edges of the form (v,v") € E(G) N (V; x V;). Since V; = T'(U,), these edge have both
end-points in I'(U,).

— Edges of the form (v,v") € E(G)N (V4 X V,). By definition of Vs, both v and »" are not
in I'(U,). However, since u,u’ € I'(U) it follows that these edges have both end-points
in T(U,).

By the e-usefulness of (Uy, U,), there are at most $N? such vertices.
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Thus we have a total of at most e N? violating edges, as required. W

Combining Lemma 3.1.7 with Claim 3.1.3 and Corollary 3.1.6, we complete the proof of Theorem 3.1
as follows. If G is accepted with probability greater than ¢, then, by Claim 3.1.3, the probability
that G is accepted and U is a covering set is greater than §/2. Thus, there exists a covering set
U € V(G), such that if U is chosen, then G is accepted with probability greater than §/2 (where here
the probability is taken only over the choice of S). But in such a case it follows from Corollary 3.1.6
that (the covering set) U must have a useful partition, and we can apply Lemma 3.1.7 to show that
G must be e-close to bipartite.

Finally, let G be a bipartite graph, and let (V;,V,) be a perfect partition of V(G). Then, for
every covering set U of V(G) (where such a set is chosen with probability at least 1 — §/2), there
exists a partition (Uy, U,) of U, such that U; € V; and U, € V,. Thus, necessarily, (Uy, U,) is
a useful partition of U which by Lemma 3.1.7 defines an e-good partition of V(G). Furthermore,
given such a partition of a covering set U, for every set S there exists a perfect partition of U U S,
of the form (U; US;, U, US,). On the other hand, by Claim 3.1.5, for any set U, with probability
at least 1 — §/2 over the choice of S, there will be no perfect partition of U U S which induces an
unuseful partition of U. Therefore, with probability at least 1 — é over the choice of U and S, the
testing algorithm (using BFS) will find a perfect partition of UU S that induces a useful partition
of U, which can then be used to construct an e-good partition of V(G) (as defined in Lemma 3.1.7)
in time O(|U]| - N).

3.1.2 Remarks

IMPROVING THE QUERY COMPLEXITY. We can save a factor of 1/¢ in the query complexity of the
testing algorithm. This is done simply by observing that we do not need to perform edge-queries
for all pairs of vertices in S. Instead we can choose S to be a uniformly distributed random sample
of m /2 pairs of vertices. We then need only to query which of these 7. = O(ﬂgil) pairs are

edges, as well as query all m -1 = O(M:#l) pairs (u,v) where u € U and v € S. Note that
the proof of Theorem 3.1 does not refer to any edges between vertices in 5, except for the %+ pairs
mentioned above (which are used for establishing Claim 3.1.5).

IMPOSSIBILITY OF TESTING WITHOUT QUERIES. A natural question that may arise is if edge-
queries are really necessary for testing bipartiteness, or perhaps it might be possible to test this
property from a random labeled sample (of pairs of vertices) alone. We show that queries are in
fact necessary in the sense that any testing algorithm which uses only a random sample must have
very large sample complexity. More precisely:

Proposition 3.2 Any property testing algorithm for the class of bipartite graphs which observes
only a random labeled sample, must have sample complexity Q(v/ N ).

Proof: Consider the following two classes of graphs. G is the class of all complete bipartite graphs
G in which both sides are of equal cardinality. That is, V(G) = V, U Vs, [V4| = |V,| = N/2, and
E(G) = {(vi,v2) 1 vy € Vi, € V;, i # j}. G? is the class of graphs which consist of two disjoint
cliques of size N/2. That is, V(G) = V; U V,, [Vi| = [Vo| = N/2, and E(G) = {(v,') : v,v' €
Vi or v,v' € Vo}. Clearly, all graphs in G? are 1/2-far from bipartite. Note that all graphs in both
classes have the same edge density, since every vertex has degree N. What we would essentially
like to show is that if the edge-labeled sample is not large enough then a hypothetical property
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testing algorithm cannot distinguish between random samples labeled by graphs in G' and random
sample labeled by graphs in GZ.

For simplicity, let us fix § to be 1/4. Then, by definition, a property testing algorithm for the
class of bipartite graphs should accept each G € G' with probability at least 3/4, and should accept
each G € G? with probability less than 1/4. Therefore, the difference in acceptance probability
between an arbitrary G € G' and an arbitrary G € G? must be greater than 1/2. Since the above
should be true for any pair of graphs taken from the two classes, it should hold for a random pair of
graphs chosen from the two classes. Suppose we first draw an unlabeled random sample of m pairs
of vertices, and then label it by a graph G chosen randomly either from the class G! or from the
class G%. Assume first that the sample is such that no vertex appears in more than one pair in the
sample. Then, regardless of whether G was chosen uniformly in G! or in G2, each of the 2™ possible
labeling of the sample has equal probability. If the sample does include two pairs that share a
vertex, then we cannot make such a claim. Let us say in this case that the sample is informative.
However, the probability that a random sample of size m is informative is at most () - & < %2
By the argument made above on non-informative samples, the difference between the acceptance
probability of a random graph in G! and the acceptance probability of a random graph in G? is at
most the probability that a random sample is informative. But in order that this probability be

greater than 1/2, the size of the random sample must be Q(+v/N), W

3.2 Testing k-Colorability

In this subsection we present an algorithm for testing the k-Colorability property for any given k.
Namely, we are interested in determining if the vertices of a graph G can be colored by £ colors so
that no two adjacent vertices are colored by the same color, or if any k-partition of the graph has
at least eN? violating edges (i.e. edges between pairs of vertices which belong to the same side of
the partition).

The test itself is analogous to the bipartite test described in the previous section: We sample
from the vertices of the graph, query all pairs of vertices in the sample to find which are edges in
G, and check if the induced subgraph is k-Colorable. The edge-query complexity of the algorithm
is polynomial in 1/e, log(1/6) and k. In lack of efficient algorithms for k-Colorability, for & > 3,
we use the obvious exponential-time algorithm on the induced subgraph (which is typically small).
Note that the number of queries made is larger than in the Bipartite Tester (i.e., by a factor of
O(k*/eh)).
k-Colorability Testing Algorithm

1. Choose uniformly O (ﬁ%k—/él) vertices. Let the set of vertices chosen be denoted by X.

2. For every pair of vertices vy, vy € X, query if (v, v5) € E(G). Let Gx be the induced subgraph.
3. If Gx is k-Colorable then output accept, otherwise output reject.

Similarly to the bipartite case, we define violating edges and good k-partitions.?

Definition 3.2.1 (violating edges and good k-partitions): We say that an edge (u,v) € E(G) is
a violating edge with respect to a k-partition © : V(G) — [k] if n7(u) = n(v). We shall say that a

?k-partitions are associated with mappings of the vertex set into the canonical k-element set [k]. The partition
def def

associated with 7 : V(G) — [k] is (V1 = 7r_1(1), o, Vi
explicit partition notation (V1i,...,Vy), interchangibly.

77" (k)). We shall use the mapping notation x, and the
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k-partition is e-good if it has at most eN? violating edges (otherwise it is e-bad). The partition is
perfect if it has no violating edges.

Theorem 3.3 The k-Colorability Testing Algorithm is a property testing algorithm for the class
of k-Colorable graphs whose edge-query complexily is O (ﬁ%k—/él) and whose running time is

exp (O (ﬂl—i%m)) If the tested graph G is k-Colorable, then it is accepled with probability 1, and
with probability at least 1 — § (over the choice of the sampled vertices), it is possible to construct
an e-good k-partition of V(G) in time O (M . N).

Proof: If G is k-Colorable then every subgraph of G is k-Colorable, and hence G will always be
accepted. As in the bipartite case, the crux of the proof is to show that every GG which is e-far
from the class of k-Colorable graphs, denoted Gy, is rejected with probability at least 1 — 6. We
establish this claim by proving its counter-positive. Namely, that every G which is accepted with
probability greater than 8, must be e-close to G;. This is done by giving a (constructive) proof
of the existence of an e-good k-partition of V(G). Hence, in case G € G, we also get an efficient
probabilistic procedure for finding an e-good k-partition of V(G). Note that if the test rejects G
then we have a certificate that G ¢ G, in form of the (small) subgraph induced by X which is not
k-colorable.

We view the set of sampled vertices X as a union of two disjoint sets U and S, where U is a union
of ¢ (disjoint) sets U',..., U*, each of size m. The size of S is m as well, where m = O((£log(k/d))/e)
and ¢ = 4k/e. The roles of U and S are analogous to their roles in the bipartite case. The set U (or
rather a k-partition of U) is used to define a k-partition of V(G'). The set S ensures that with high
probability, the k-partition of U which is induced by the perfect k-partition of X = U U S, defines
an e-good partition of V(G).

In order to define a k-partition of V(G) given a k-partition of U, we first introduce the notion of
a clustering of the vertices in V(G) with respect to this partition of U. More precisely, we define the
clustering based on the k-partition of a subset U’ C U, where this partition, denoted (U7, ..., U%),
is the one induced by the k-partition of U. The clustering is defined so that vertices in the same
cluster have neighbors on the same sides of the partition of U’. For every A C [k], the A-cluster,
denoted Cy, contains all vertices in V(G) which have neighbors in U} for every ¢ € A (and do
not have vertices in the other U}’s). The clusters impose restrictions on possible extensions of the
partition of U’ to partitions (Vy,..., V) of all V(G), which do not have violating edges incident to
vertices in U’. Namely, vertices in C'4 should not be placed in any V; such that ¢ € A. As a special
case, Cy is the set of vertices that do not have any neighbors in U’ (and hence can be put on any
side of the partition). In the other extreme, Cp;) is the set of vertices that in any extension of the
partition of U’ will cause violations. For each ¢, the vertices in Cpy\ysy are forced to be put in V;,
and thus are easy to handle. In the bipartite case we focused on the clusters C'1y and Cy), where
vertices in C;; were forced to the side opposite to i. (The cluster Cjy was explicitly shown to be
unimportant and the cluster Cj5) was dealt with implicitly.) In the case of k-coloring the situation
is more complex. In particular, the clusters C'y where |A| < k — 1 do not force a placement of
vertices.

Definition 3.2.2 (clusters): Let U’ be a set of vertices, and let ' be a perfect k-partition of U’.

Define U & {4 €U : m'(v)=1}. For each subset A C [k] we define the A-cluster with respect to 7’

as follows:

€y (m rwn) \ (U rwn) . (3.4)

i€A idA
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The relevance of the above clusters becomes clear given the following definitions of extending
and consistent partitions.

Definition 3.2.3 (consistent extensions): Let U’ and n' be as above. We say that a k-partition ©
of V(G) extends a k-partition 7' of U’ if m(u) = 7'(u) for every u € U'. An extended partition 7 is
consistent with 7' if m(v) # 7'(u) for every w € U’ and v € I'(u) \ C), where Cyyy is the [k]-cluster
w.r.t .

Thus, each vertex v in the cluster C4 (w.r.t 7/ defined on U’) is forced to satisfy 7(v) € A < [k]\ 4,
for every k-partition m which extends 7’ in a consistent manner. There are no restrictions regarding
vertices in Cy and vertices in Cpy (the latter is guaranteed artificially in the definition and the
consequences will have to be treated separately). For v € Cz)—y;; the consistency condition forces
7(v) = 4, but unlike the bipartite case we cannot ignore the A-clusters with |A] < k — 1.

We now focus on the main problem of the analysis. Given a k-partition of U, what is a good
way to define a k-partition of V(G)? Our main idea is to claim that with high probability the set
U contains a subset U’ so that the clusters with respect to the induced k-partition of U’ determine
whatever needs to be determined. That is, if these clusters allow to place some vertex on a certain
side of the partition, then doing so does not introduce too many violating edges. The first step in
implementing this idea is the notion of a restricting vertex.

Definition 3.2.4 (restricting vertex): A pair (v,i), where v € C,, A # [k] and i € A is said
to be restricting with respect lo a k-partition ©' of U’ if v has at least $N neighbors in Up.i¢pCp.
Otherwise, (v,1) is non-restricting. A vertex v € C4, A # [k], is restricting with respect to 7’ if for

every i € A, the pair (v,1) is restricting. Otherwise, v is non-restricting. As always, the clusters
are with respect to .

Thus, a vertex v € C4 is restricting if for every i € A, adding v to U} (and thus to U’) will cause
may of its neighbors to move to a cluster corresponding to a bigger subset. That is, v’s neighbors in
the B-cluster (w.r.t (Uf,...,U})) move to the (B U {i})-cluster (w.r.t (U},..., Ui U {v},...,U})).

Given a perfect k-partition of U, we construct U’ in steps starting with the empty set. At step
j we add to U’ a vertex u € U/ (recall that U= U' U...U U’), which is a restricting vertex with
respect to the k-partition of the current set U’. If no such vertex exists, the procedure terminates.
When the procedure terminates (and as we shall see it must terminate after at most ¢ steps), we
will be able to define, based on the k-partition of the final U’, an e-good k-partition of V(G). The
procedure defined below is viewed at this point as a mental experiment. Namely, it is provided in
order to show that with high probability there exists a subset U’ of U with certain desired properties
(which we later exploit). We later discuss how to implement this procedure when we are actually
interested in choosing U’ for the purposes of partitioning all of V(G) efficiently.

Restriction Procedure (Construction of U’)
Input: a perfect k-partition of U = U?,..., U
1. U« 0.
2. For j = 1,2,...do the following. Consider the current set U’ and its partition 7’ (induced by
the perfect k-partition of U).
e If there are less than (¢/8)N restricting vertices with respect to 7’ then halt and output U’.

o If there are at least (¢/8)N restricting vertices but there is no restricting vertex in U/, then
halt and output error.
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e Otherwise (there is a restricting vertex in U’), add the first (by any fixed order) restricting
vertex to U’.

Claim 3.2.5 For every U and a perfect k-partition of U, after at most { = 4k/e iterations, the
Restriction Procedure halts and outputs either U’ or error.

Proof: If the procedure has not halted and output error, then in each iteration at least (¢/4)N
vertices in V(G) move to a cluster corresponding to a bigger subset. Since each vertex can be
moved at most k times (before it belongs to C), the maximal number of iterations before the
procedure halts is 4k/e. W

Before we show how U’ can be used to define a k-partition m of V(G), we need to ensure that with
high probability, the restriction procedure in fact outputs a set U’ and not error. To this end we
first extend the notion of covering set to the context of k-coloring. Though the notion here may
seem somewhat remote from the one used in the bipartite case, it can be shown that the two are
related.

Definition 3.2.6 (covering sets — for k-coloring): We say that U is a covering set for V(G), if for
every perfect k-partition of U, the Restriction Procedure, given this partition as inpul, halts with
an output U' C U (rather than an error message).

In other words, U is such that for every perfect k-partition of U and for each of the at most £
iterations of the procedure, if there exist at least (¢/8)N restricting vertices with respect to the
current partition of U’, then U’ will include at least one such restricting vertex.

Lemma 3.2.7 With probability at least 1—6 /2, a uniformly chosen set U of size {-m = O (M)
1S a covering set.

Proof: Let us first consider a single iteration of the Restriction Procedure. If there are at least
(¢/8)N restricting vertices with respect to the partition 7’ of the current U’, then the probability
that in a uniformly chosen sample of size m (dﬁf |U7]) there will be no restricting vertex with respect
to 7', is at most (1 — (¢/8))™. By our choice of m = O((£log(k/é))/¢), the latter is bounded by
%k‘l. Thus, the lemma reduces to proving that, for every j, the number of possible pairs (U’, 7’)
that we need to consider for the ;' iteration is at most k/~1.

We shall prove the above claim inductively. Let the set U’ in iteration j (before adding a new
restricting vertex to it) be denoted by U’(j), and let its partition be denoted by 7. For the base
case, j = 1, the set U’(1) is empty and the claim trivially holds. Assuming the claim holds for j,
we now prove it for j + 1. In the j*™ iteration, for each of the possible pairs (U’(j),7}), such that
there exist at least (¢/8)N restricting vertices with respect to 7}, the vertex u; € U/ which is the
first restricting vertex in U7, is uniquely defined®. Hence, for each such pair (U’(j),}), there is a
single possible extension U’(j + 1) of U’(j), namely, U'(j + 1) = U'(j) U {u;}. The new partition,
74, Which extends 7} can be one of at most k possibilities (depending only on 7}, (u;)). W

Definition 3.2.8 (closed partitions): Let U’ be a set and ' a k-partition of it. We call (U',x")
closed if there are less than (¢/8)N restricting vertices with respect to 7'.

It may be the case that no such restricting vertex exists in U7, but the probability for this event has been bounded
in dealing with the j™ iteration. Here we look at the j' iteration only to see which possible pairs could emerge from
it effecting the j + 1%t iteration.
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Clearly, if the Restriction Procedure outputs a set U’ then this set together with its its (induced)
partition are closed. If (U’, 7’) is closed, then most of the vertices in V() are non-restricting. Recall
that a non-restricting vertex v, belonging to a cluster C'y, A # [k], has the following property. There
exists at least one index i € A, such that (v,%) is non-restricting. It follows from Definition 3.2.4
that for every consistent extension of 7’ to m which satisfies 7(v) = ¢ there are at most $N violating
edges incident to v.* However, even if v is non-restricting there might be indices 7 € A such that
(v,1) is restricting, and hence there may exist a consistent extensions of 7’ to 7 which satisfies
m(v) = ¢ in which there are more than ${N violating edges incident to v. Therefore, we need
to define for each vertex its set of forbidden indices which will not allow to have w(v) = ¢ for a
restricting pair (v,1).

Definition 3.2.9 (forbidden sets): Let (U’,n’) be closed and consider the clusters with respect to
m'. For each v € V(G)\ U’ we define the forbidden set of v, denoted F,, as the smallest set satisfying

o I, D A, where v € Cy.

o For everyi € A, if v has at least (¢/4)N neighbors in the clusters Cp for which i ¢ B, then
1 isin F,.

For w e U', define F,, = [k] \ {7'(u)}.
Lemma 3.2.10 Let (U’,7’) be an arbitrary closed pair and F,’s be as in Definition 3.2.9. Then:
L Ho:(vg Cup) A(F, = [K])} < gN.

2. Let © be any k-partition of V(G)\ {v : F, = [k]} such that w(v) ¢ F,, for every v € V(G).
Then, the number of edges (v,v') € E(G) for which w(v) = n(v') is al most (¢/2)N2.

The lemma can be thought of as saying that any k-partition which respects the forbidden sets is
good (i.e., does not have many violating edges). However, the partition applies only to vertices for
which the forbidden set is not [k]. The first item tells us that there cannot be many such vertices
which do not belong to the cluster ;. We deal with vertices in () at a later stage.

Proof: The first item follows from the closeness of (U’, 7). Namely, if F,, = [k] and v ¢ Cp then
by the second item of Definition 3.2.9 it follows that for every i € A, vertex v has at least (¢/4)N
neighbors in clusters C'g such that i ¢ B. But in this case, it is a restricting vertex with respect to
7’. By Definition 3.2.8 as applied to (U’, '), there are at most (¢/8)N such vertices.

For the second item, consider a vertex v such that m(v) = ¢. All edges (v,u) and (u,v) such
that u € Cp and ¢ € B cannot be violating edges since ¢ € F,, (by the first item in Definition 3.2.9).
As for edges (v,u) and (u,v) where v € Cp and ¢ ¢ B, vertex v can have at most (¢/2)N such
edges (according to the second item in Definition 3.2.9). The total of violating edges is hence at
most (¢/2)N2. N

We next need to show that with high probability over the choice of S, the k-partition =’ of U’
(induced by the k-partition of UUS) is such that Cp) is small. This implies that all the vertices in
Cix) (which were left out of the partition in the previous lemma) can be placed in any side without
contributing too many violating edges (which are incident to them).

*First note that by definition of a consistent extension no vertex in cluster Cz, where 1 € B, can have n-value 3.
Thus, all violated edges incident to v are incident to vertices in clusters Cp so that i ¢ B. Using the definition of a
restricting vertex, we are done.
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Definition 3.2.11 (useful k-partitions): We say that a pair (U',7') is e-useful if |Cpy| < gN.
Otherwise il is e-unuseful.

The next claim directly follows from our choice of m and the above definition.

Claim 3.2.12 Let U’ be a fized set of size { and 7' be a fized k-partition of U’ so that (U',7’) is
e-unuseful. Let S be a uniformly chosen set of size m. Then, with probability at least gk—e} there
exists no perfect k-partition of U' U S which extends 7'.

By the same argument applied in the proof of Lemma 3.2.7, we have that the number of possible
closed pairs (U’,7') determined by all possible k-partitions of U is at most k*. Therefore we get
the following corollary to the above claim:

Corollary 3.2.13 If all closed pairs (U',7") which are determined by all possible k-partitions of U
are unuseful, then with probability at least 1 —8/2 over the choice of S, there is no perfect k-partition
of X=UUS.

We can now wrap up the proof of Theorem 3.3. If G is accepted with probability greater than
0, then by Lemma 3.2.7, the probability that it is accepted and U is a covering set is greater
than §/2. In particular, there must exist at least one covering set U, such that if U is chosen
then G is accepted with probability greater than ¢§/2 (with respect to the choice of S). That is,
(with probability greater than §/2) there exists a perfect partition of U US. But in such a case
(by applying Corollary 3.2.13), there must be a useful closed pair (U’,7’) (where U’ C U). If we
now partition V(G) as described in Lemma 3.2.10, where vertices with forbidden set [k] are placed
arbitrarily, then from the two items of Lemma 3.2.10 and the usefulness of (U’, 7’) it follows that
there are at most e N? violating edges with respect to this partition. This completes the main part
of the proof and the rest refers to the efficient procedure for finding e-good partitions.

Similarly to the bipartite case, if G € G, then with probability at least 1 —§ (over the choice of
U and S), the k-coloring of Gx (recall that X = U U S) is such that the induced (perfect) coloring
of U determines a useful pair (U’, 7’) which can be used to partition V(). Details are omitted.

Hence, as a final point, we address the question of efficiently implementing the Restricting
Procedure (i.e., constructing U’) and the definition of forbidding sets. We first observe, that in the
Restricting Procedure we do not actually need to determine (in each iteration) if there are more
or less than (€/8)N restricting vertices. Since we know that with high probability U7 contains a
restricting vertex if many such vertices exist, we need only scan U7 in search for such a vertex.
Note that no harm is done when despite the fact that there are too few restricting vertices in
iteration j nevertheless U/ contains one. This is true since the bound on the number of iterations
performed by the Restriction Algorithm, is unrelated to the actual number of restricting vertices
in each iteration. In order to recognize a restricting vertex, it suffices to uniformly choose a set
Y of poly(klog(1/6)/€) vertices and examine their neighborhood relation to the vertex and to the
current U’. We may sometimes take vertices which are very close to being restricting, but this does
not harm us either. A more subtle point is that with respect to this efficient implementation the
first restricting vertex in an iteration is not determined by the partition of U. However, once we
have chosen the additional sample Y, for each fixed partition of U, the first restricting (or “close to
restricting”) vertex is determined. Note that whenever a vertex u is added to U’, only the neighbors
of w might move to different clusters, and hence the process of updating the clusters takes time
O(L- N). As for implementing the definition of forbidden sets, here each vertex v must sample its
neighbors to determine F,. Wrong decisions in marginal cases (i.e., when the number of neighbors
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in relevant clusters is approximately $N) do not matter here either. Also, non-marginally wrong
decisions on few vertices do not matter. Hence the total running time is poly(klog(1/8)/€)- N.
B (Theorem 3.3)

3.3 Testing Max-Clique

Let w(G) denote the size of the largest clique in graph G, and C, LG :w(G) > p-|V(G)|} be the

set of graphs having cliques of density at least p. The main result of this section is:

Theorem 3.4 There exists a property testing algorithm, A, for the class C, whose edge-query com-

plexity s O (lﬁgﬂéﬁﬁﬁ) and whose running time is exp (O (lig%gﬁm)) In particular, A uniformly
selects O (Miﬁ—dﬁ) vertices in G and queries the oracle only on the existence of edges between
these vertices. In case G € C,, one can also retrieve in time O (M) \V(G)| a set of p-|V(G)|

vertices in G which is almost a clique (in the sense that it lacks at most € - |V(G)|* edges to being

a clique).

Theorem 3.4 is proven by presenting a seemingly unnatural algorithm /tester (see below). However,
as a corollary, we observe that “the natural” algorithm, which uniformly selects poly(log(1/é)/¢)
many vertices and accepts iff they induce a subgraph with a clique of density p — €/2, is a valid
C,-tester as well.

Corollary 3.5 Let m = poly(1/¢) and let R be a uniformly selected set of m vertices in V(G). Let
Gr be the subgraph (of G) induced by R. Then,

o if G €C, then Probr[w(Ggr) > (p — €/2) - m] > 2.

o if dist(G,C,) > € then Probr[w(Gr) < (p — €¢/2) -m] > 2.

Proof: The first item is quite obvious, provided m = Q(1/¢?). To prove the second item, we use
the algorithm A guaranteed by Theorem 3.4.5 Suppose that on density parameter p’ = p — ¢/2,
distance parameter ¢ = ¢/2 and confidence parameter ¢’ = 1/5, algorithm A takes a sample of
s = s(p',€,8") vertices and let m = O(s?). Let G be an arbitrary graph so that dist(G,C,) > e.
Observe that dist(G,C,) > €/2 (as otherwise there exists G’ € C, so that dist(G,G') < €/2
whereas dist(G’,C,) < pe/2 for all G’ € C,/). Now, on one hand, we know that for any G so that
dist(G,C,) > €, algorithm A (with parameters p’ = (p/, €',8')) accepts G with probability at most
1/5. That is,

ProblA(,G) = 1] <

On the other hand, assuming the second item is false (for G), we get

Proba[A(,Gr) = 1] > Probufue(Ga) > o/ -m] - min  {ProblA(y, ) = 1]}
w pl-m
> Lo oe
- 3 5 5 '

® Our presentation presupposes that A is given oracle access to a graph the vertices of which may be an arbitrary
subset of [V(G)]. If one insists that A only tests graphs with |[V(G)| vertices then another auxiliary trick is needed.
Instead of providing .A with oracle access to Gr we provide it with oracle access to a graph in which each vertex of
Gr is duplicated |V(G)|/|R| times and edges are duplicated in the natural manner.
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However, the statistical difference between a uniformly selected sample of s vertices from V(G) and

a uniformly selected sample of s vertices from a set R of size 10 - s?, uniformly selected in V(G),
is bounded by 0.05 (the difference being due to the difference in collision probabilities: (J) - & > 0
versus (5) - 1oz < 0.05). Thus, Prob[A(p’, G) = 1] and Probg[A(p/, Gg) = 1] cannot differ by more
than 0.05 and so contradiction follows. W

The rest of this section is devoted to the presentation and analysis of the algorithm, asserted in
Theorem 3.4, which we call the clique-degree tester. We start with a motivating discussion. Recall
that N = |V(G)| denotes the number of vertices in G.

3.3.1 The Clique-Degree Tester

Our first idea is to select at random a small sample U of V(G) and to consider all subsets U’ of size
£-]U| of U where |U| = poly(1/¢). For each U’ let T(U’) be the set of all vertices which neighbor
every vertex in U’ (i.e., T(U’) = NyewI'(u)). In the subgraph induced by T(U’), consider the set
Y(U’) of pN vertices with highest degree in the induced subgraph. Clearly, if G is e-far from C,,
then Y(U’) misses at least eN? edges to being a clique (for every choice of U and U’). On the
other hand, we show that if G has a clique C of size pN then, with high probability over the choice
of U, there exists a subset U’ C U such that Y(U’) misses at most (¢/3)N? to being a clique (in
particular, U C CN U will do).

Assume that for any fixed U’ we could sample the vertices in Y(U’) and perform edge queries
on pairs of vertices in this sample. Then, a sample of O(t/€?) vertices (where ¢ = |U]) suffices for
approximating the edge density in Y(U’) to within an ¢/3 fraction with probability 1 — O(27*). In
particular a sample can distinguish between a set Y(U’) which is far from being a clique and a set
Y(U’) which is almost a clique. The point is that we need only consider (Ilg’ll) < 2" possible sets
Y(U’), where ¢ is only a polynomial in 1/e.

The only problem which remains is how to sample from Y(U’). Certainly, we can sample
T = T(U’), by sampling V(G) and testing membership in T, but how do we decide which vertex is
among those of highest degree? The first idea is to estimate the degrees of vertices in T using an
additional sample, denoted W. Thus, instead of considering the pN vertices of highest degree in
T, we consider the pN vertices in T having the most neighbors in T N W. The second idea is that
we can sample T, order vertices in this sample according to the number of neighbors in TN'W, and
take the p fraction with the most such neighbors.

The resulting clique-degree tester is described in Figure 3.1. The sets W’ and S', defined in
Steps (1) and (2), correspond to samples of the set T(U’) = N,eu/I'(w). The set W' is used, in
Step (3), to approximate the degrees of vertices in the subgraph induced by T(U’). The set ccCy,
defined in Step (3), will be shown to be a good sample of the vertices with the highest such degrees.
Condition (b) in Step (4) is more query-efficient and easier to analyze than the obvious alternative
of checking all pairs of vertices in C.

ORGANIZATION OF THE PROOF OF THEOREM 3.4. We start by analyzing what happens, in case
G € C,, when one takes the pN vertices of about the highest degree in T(U’), where U is uniformly
chosen and U’ is in its intersection with a fixed clique of size pN in G. Loosely speaking, we show
that these vertices are likely to induce a subgraph which is close to a clique. We then turn to the
analysis of the actual clique-degree tester. This analysis also yields the algorithm for finding an
approximate pN-clique in G (as required in the last sentence of Theorem 3.4). Throughout the
analysis we assume that € < p? (as otherwise dist(G,C,) < p? < € for every graph G).
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Clique-Degree Tester for G

Let ¢ = O(c/p), t = © (108(1/(265))'1’)’ - @(log(l/;é)p)’ and m — ®(t+log2(1/6)).
Uniformly select three independent samples, U, W and S = {s1, ..., sm}, of sizes t, r and m, respectively.
For each U’ C U of cardinality £ -t, perform the following steps:

1. Let W' C W be the subset of vertices which neighbor all vertices in U’
(e, W E {veW: T(v) 2 U} = W (N0 T(W))).

2. Let S' C'S be the subset of vertices which neighbor all vertices in U’ (i.e., 8" = SN ([, ey T'(u))).
3. For each v € S/, compute CZ(U) dfy. |T(v) NW'|. Let C C S’ be a set of pm vertices of the highest
CZ() value in §'. (Ties are broken by lexicographic order, and in case |S'| < pm we let C&f S".)

4. If the following two conditions hold then accept and halt.
Condition (a): |6| > (p—e1)m.
Condition (b): |{i: (ssi—1,52%) € (Cx C)\E(G)}] < L. 2.

If none of these iterations made the algorithm accept G then it halts and rejects G.

Figure 3.1: Clique-Degree Tester

3.3.2 Yes Instances: Preliminaries

Let C be a clique of size pN in G (where N = |V(G)|). We say that a set U’ C C C V(G) is
€x-representative (w.r.t., C) if for all but e, N of the vertices, v € V(G),

if [T(v)NC|< (p—€)N then T(v)NTU £ T (3.5)
For every v € C the above condition holds for all €, > 0 (since I'(v) 2 C D U').

Lemma 3.3.1 lLelt = Q(W). Let U be a uniformly chosen set of { vertices in G. Then,
with probability at least 1 — 6/2, the set U contains an e;-representative subsel of size 5.

Proof: Using a multiplicative Chernoff Bound we obtain that |U N C| > %pt with probability
at least 1 — exp(—Q(pt)) > 1 — §/4. Let us now consider a uniformly selected subset U’ C C of

cardinality ¢ < £4. Then, by Chernoff Bound, we have for each v € V(G) \ C

Proby: [Eq. (3.5) does not hold for v] = (1 — 62)tl
662
4

where the last inequality is due to ¢ > pt/2 and the hypothesis regarding ¢. Thus, the expected
number of vertices which violate Eq. (3.5) is bounded by % - 6o N. Applying Markov’s Inequality
we conclude that with probability at least 1 — §/4 there are at most €, N vertices which violate
Eq. (3.5). The lemma follows. W

NotaTion: Let C% denote the class of N-vertex graphs consisting of a clique of size pN and
(1 —p) - N isolated vertices. In the sequel, we denote by dist(G’,C%) the relative distance (as a
fraction of N?) between a graph G’ and C%. In case G’ contains less than N vertices we augment
it by N — |V(G’)| isolated vertices. In all cases |V(G')| < N. With slight abuse of notation, for a
set X C V(QG), we let dist(X, Cy) denote the relative distance between the subgraph of G induces
by X and C%.
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Lemma 3.3.2 Lete; < €/p and e; = 5. Let U’ be e5-representative (w.r.t.,C) and T e Nueu I'(w).

Let o be such that aN is the degree of the (p — ¢;) - N'™ vertex of highest degree in T. (We stress
that we consider degrees in the subgraph of G induced by T.) Suppose that C C T has size p- N
and contains at least (p — 3¢1) - N wvertices of degree atl least (o — 2¢1) - N (in the subgraph induced

by T). Then, C satisfies dist(C, C%) = 14e;p.

def

Proof: Clearly T D C (as U’ is a subset of the clique C). Let H'= {v € V(G)\ C : [I'(v) N C| >
(p— &) - N} be the set of vertices outside of C having many neighbors in C. Let R % T\ (C U H)
(i.e., the rest of T'). Since U’ is e;-representative, it follows that |R| < €3N (since a vertex not in
C U H may enter T only if it neighbors all vertices in U’ whereas it neighbors less than (p — €3) N

vertices in C). Denoting by deg(v) the degree of vertex v in the subgraph induced by T we get
2

S dega(n) > [CF+2-[H]-(p= )N = pN - (pN +2- 11| - 2

veC

On the other hand, the maximum value degy(v) for v € C is bounded by 2|T| = 2(|C|+ [H|+|R]|) <
2(pN + |H| + €2 N). Applying Markov’s Inequality, we obtain, for every 7,

2 2 C
{v € C:degp(v) < <pN + 2|H| - %N) - <p + 26, + %) NH < %

Setting v = p/e1, we get |C|/7 = e N and v(p + 2¢5 + 22) < 5yp = 5e;. The latter follows from

o) S
€ < e /pand e;/p = €1 /p < €*/p* < p. Thus, at least (p — ¢;)- N vertices in C have degree (in the
subgraph induced by T) of at least pN + 2|H| — 2—;2 —b5e; N. Since 2% = 2%, € <5, and € < p?, we
have that a as defined in the lemma satisfies

2[H] (IT] = (R +[C])

T = pt 2 76, > ATl
N TP N “a sy

a > p+ —p—9¢ (3.6)

By the lemma’s hypothesis, we have |6| = p- N. Also, denoting by 7 C C the set of vertices v for
which degp(v) > (a —2¢;) - N, we have by the lemma’s hypothesis |Z| > (p —3¢;)- N. By Eq. (3.6)
we also have, for each v € 7,

degy(v) =2+ |T\ C|

[(2]T| = pN —9¢,N) — 26, N = 2[|T| = p- N]
= (p—1lg)-N

degy(v)

(AVANAV

Summing up the degrees (in 6) of all vertices in 6, we obtain

> deg(v) Y degg(v)

el Ve

1Z]-((p = 11e1) - N)
(p—3e)-(p—11¢) - N?
(p* = lderp) - N?

|C|? — 14€,p - N?

v

VoIV IV

It follows that C is 14€;, p-close to being a clique and so the subgraph induced by it satisfies the
claim of the lemma. W
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3.3.3 Analysis of the Clique-Degree Tester

Let U" C V(G), of cardinality ¢ > (p — €)t, be fixed throughout this subsection and let T =
def

T(U') = Nyew T(u). We first prove that degy.(-) (= d(+)) provides a good estimates of degy(-).

Claim 3.3.3 Letr = Q(Mge%l). Suppose that |T| > pN and that W is a uniformly selected subsel

of v vertices in V(G). Then, with probability at least 1 — %, all but an €, fraction of the vertices

v € V(G) satisfy

degwnr(v) _ degr(v)
r N

where deg,(v) is the degree of v in the subgraph of G induced by Q.

<€ (3.7)

Proof: By applying a multiplicative Chernoff Bound, we get

6
Probw [|Wﬂ T| < gr] = exp(—Q(pr)) < 3
We now consider a uniformly chosen W' C T of size ' > £r. By applying a (additive) Chernoff
Bound, we get for any fixed v € V(G),

)
> ] = esp(-(dom) <

degy (v) _ degy(v)

PI‘ObW/ [ N

Applying Markov’s Inequality, the claim follows. W

As a corollary to Lemma 3.3.2, we get

Corollary 3.3.4 Let C be a pN-cliqgue in G. Suppose that U' C C is ey-representative w.r.t. C,
and that W is such that for all but at most e, N wvertices Eq. (3.7) holds. Then, the set of pN
vertices of highest d(-) value (in T(U') D C) is 14e;p-close to being a pN-clique. Recall that

d(v) € 2 T(v) N W] = dy (v).

Thus, once we determine good subsets U’ and W', we can produce an approximate clique in time

poly(“EG) - .0

Proof: Let C be the set of pN vertices with highest a?() value in T = T(U’) (where ties are
broken arbitrarily). Let a be as defined in Lemma 3.3.2 (i.e., deg(v) > aN for at least (p — ;)N
vertices in T). By the hypothesis that Eq. (3.7) holds for all but ¢; N vertices, it follows that at
least (p — 2¢;)N of the vertices v of T satisfy

1. 1
;d(v) > WdegT(v) —€a > a—q
Since C contains vertices with highest Lf() value, it must contain at least (p — 2¢;)N vertices of
d(-) value at least (a — €;)r. Using the hypothesis regarding Eq. (3.7) again, we conclude that C
contains at least (p — 3e; )N vertices of deg,(-) value at least (a —2¢;)N. Using the hypothesis that
U’ is ey-representative w.r.t. C, we may now invoke Lemma 3.3.2 and the corollary follows. W

The correctness of the clique-degree algorithm now follows by two observations: (1) with high
probability there exist an iteration where the sets U’ and W' are as required in Corollary 3.3.4; and
(2) the set S is a “good” sample of T(U’). We start by formulating the second observation.

SNote that it is possible to find the pN vertices with highest CZ() value in time linear in N (as opposed to
O(Nlog N)) since the number of values ci() takes is only poly(miﬂl).
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Lemma 3.3.5 For a fized U and W, let T = T(U"), and let C be the set of min(pN,|T|) vertices
with highest d(-) value in T, where d(-) is defined with respect to W' =WnT. Let ¢, < €/(20p)
and S = {s1,..., S} be a uniformly selected set of size m = Q(H'lof#) Then

1. For any fized set A, Probg H% - %‘ > 61] < 2

2. Assume A~ > (p—2€)-N. Let C CS be the set of min(pm, |S']) vertices in S’ LSNT with
highest d(-) value. Then
> < b g
3 8

{5+ (s2121,00) € (C x ©) \ B(G}
m/2
Proof: Part (1) of the lemma follows from a simple application of Hoeffding’s Inequality (i.e., an
additive Chernoff bound).
Let Z be the set of min{(p — €;)N,|T|} vertices with highest d() value in T (or, equivalently
C). In proving Part (2), we assume that

7
ISNZ| = <|A—T|:l:€1)-m

By Part (1) this holds with probability at least 15—6 .2=t. Recall that C C SN T has size min{pm, [SN
T|} and takes elements in Z before taking elements in T\ Z. Thus, C contains all of § N Z.
Furthermore, |C \ Z| < 2¢,m.

For i = 1,2,...,m/2, let (; be random variable which is 1 if (s9;_1,89;) € (@
0 otherwise. Similarly, let & be random variable which is 1 if (s9;_1,89;) € (6 X
0 otherwise. Finally, let ¢ = (; if § = 1 and be determined arbitrarily (i.e.
otherwise. To prove Part (2) it suffices to prove

Probs [ — dist(C, C%)

x C)\ B(G) and
C)\ (Z x Z) and

, by an adversary)

§
< —.27 (3.8)

>e
8

m/2 7
Probg [ Liz G — dist(C, C%) 3

/

Clearly, Em/2 ¢ = E;n:/f(l —&)G + X, where X is determined by the adversary in the range
[O Zm/z ;]. By the above, with probability at least 1 — = - 27, we have |[(C x C)\ (Z x Z)| <
2-1C|-|C\ Z| < 2-pm-2¢;m. Conditioned on the above event, we may think of the ordering of

the vertices (in S) as being random and thus of the m/2 tested pairs as being chosen at random.
Applying a Chernoff bound, we get Prob[zznz/f ; > bepm] < % 27t Thus it is left to bound the
behavior of Zm/2(1 —&)G. Let x; E (1 —&)-¢. Note that the y; are independent 0-1 random
variables each being 1 iff (s5;_1,82;) € (Z x Z) \ E(G). Thus, their expected value is dist(Z,C’fVl)7
where p’ = |Z|/N. Recall that either |Z| = (p — ¢;)N or Z = C (and p’ < p — €). In the latter
case, we have dist(Z, CN) < dist(C,C%), and using the hypothesis IC] > (p — 2¢,)N, we have
dist(Z,C%) > dist(C,C%) — 2(p — p')p > dist(C,C%) — 4e;p. In the former case we also have
dist(Z,Cﬁ;) < dist(é,Cﬁ,), but here dist(Z,Cﬁ,’) > dist(é,Cﬁ,) — 2¢1p. Applying a Chernoff bound

we get

IN

m/2 3

< exp(—Q(e*m))

m/2
Probg [ uizi Xi _ dist(Z, C’p)

- 561/’]
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€

where the last inequality uses the hypothesis 5e;p < £. Using the bound on m, we bound
exp(—Q(e?m)) by & 27" and the lemma follows. W

Corollary 3.3.6 Lel ¢; = ﬁ and A be the algorithm of Figure 3.1.

1. If G € C, then Prob[A(G) = accept] > 1 — 6.
2. If dist(G,C,) > € then Prob[A(G) = accept] < 6.

The main part of Theorem 3.4 follows from Corollary 3.3.6. As for the construction of an approxi-
mate clique, it follows by using the sets U’ and W’ which made the tester accept in Corollary 3.3.4.

Proof: In proving Part (1), we let C be an arbitrary pN-clique in G. By Lemma 3.3.1, with
probability at least 1 — %, the set U contains an e;-representative (w.r.t. C) subset of size £¢. Let
us denote this subset by U’ and recall that U’ C C. We now consider the execution of Steps (1)—(4)
with this U’. By Claim 3.3.3, with probability at least 1 — %, the set W is such that Eq. (3.7)
holds for all but ¢; N vertices. Let C denote the set of pN vertices of highest d(-) value in T(U").
By Corollary 3.3.4 and 14¢,p = €/3, the set C is s-close to being a pN-clique. Applying Part (1)
of Lemma 3.3.5 to T, Condition (a) of Step (4) holds with probability greater than 1 — Z. ;From
Part (2) of that lemma, Condition (a) of Step (4) also holds with probability greater than 1 — &.

Summing up the error probabilities Part (1) of this corollary follows.

We now turn to prove Part (2) For any fixed choice of U’ and W, we consider the set, denoted 6,
of min(pN, |T(U")|) vertices of highest d(-) value in T(U"). If |C| < (p — 2¢;)N then necessarily
T = C applying Part (1) of Lemma 3.3.5 to T, Condition (a) of Step (4) is violated with probability
greater than 1 —27*-¢. Otherwise, we apply Part (2) of Lemma 3.3.5. Since dist(é, Cy) > €, with
probability greater than 1 — 2= . ¢, Condition (b) of Step (4) is violated. We conclude that for
every possible choice of U’ and W, Step (4) accepts with probability bounded by 27%6. Recalling
that U and W are selected at random and less than 2* possible U’ C U are tried, Part (2) follows.
|

3.4 Testing Max-CUT

For a given partition (Vy,V,) of V(G), let p(V;,V,) denote the edge density of the cut defined by
(V1,Vs5). Namely,

der [{(v,v") €B(G): for j#j',veV; &v €V}
pVa V) V@)

Let u(G) denote the edge density of the largest cut in G. The main results of this section are
summarized below.

Theorem 3.6

1. There exisls an algorithm that on inpult € and § and oracle access to a graph G, makes
0 (log(iﬂ) . edge-queries to G, and with probability at least 1—6, after time exp (O (%)),
outputs a value i such that | — u(G)| <.

2. There exists an algorithm thatl on input G, €, and §, runs in time
exp (O (ﬂ:f—fél)) +0 (@:3/_@)) - N and with probability at least 1 — & oulpuls a partilion
(V1,V3) of V(G) such that p(Vi,Vs) 2 u(G) — €.
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Item (1) yields a property tester for the class MC, o {G: (G) > p}, for every 0 < p < 1, with

query complexity O (lﬁgi%iﬁ), and running time exp (O (10 513 66‘))). A more natural property
tester follows as in previous cases:

Corollary 3.7 Let m = poly(log(1/6)/€) and let R be a uniformly selected set of m vertices in
V(G). Let Gg be the subgraph (of G) induced by R. Then,

o if G € MC, then Probg[u(Gg) > (p—€¢/2)] > 2.
o if dist(G, MC,) > € then Probg[u(Gr) < (p — €/2)] > 2.

Our algorithms can be easily generalized to approximate and test Max-k-way-CUT for k£ > 2.
Furthermore, since maximizing the density of cut edges effectively minimizes the density of edges
inside the different sides of the partition, the approximation algorithm for Max-CUT (and Max-k-
way-CUT) can be used to test Bipartiteness (and respectively k-Colorability) as well. However, as
opposed to our bipartite (resp., k-colorability) testing algorithm, here we achieve a two-sided error
(rather one-side error). That is, even if the input graph is bipartite (resp., k-colorable) it might be
rejected (here) with probability greater than 0. Furthermore, for constant &, the sample complexity
and running time of the algorithms presented here, are also worse than those specifically intended
to test bipartiteness and k-colorability.

ORGANIZATION: We start by presenting a quadratic-time partitioning algorithm, which given a
graph G constructs a cut (i.e. a partition the vertices of the graph into two disjoint sets) of edge
density at least u(G) — %e. This algorithm runs in time O (exp poly (M) . NZ) and is the basis
for the approximation algorithm of Item (1) of Theorem 3.6. The algorithm claimed in Item (2)
follows by combining the two algorithms. The extension to k-way cuts is presented at the end of
this section.

3.4.1 A Preliminary Graph Partitioning Algorithm

Let £ =2, and let (V',...,V’) be a fixed partition of V(G) into ¢ sets of (roughly) equal size (say,
according to the lexicographical order of the vertices in V(G)). In the Graph Partitioning Algorithm
given below we describe how to construct a partition (Vy,V;) of V(G) in £ iterations, where in
the ™ iteration we construct a partition (Vi, Vi) of Vi. The algorithm is essentially based on the
following observation.

Let (H;,H,) be any fixed partition of V(G). (In particular, we may consider a partition which
defines a maximum cut). Let v € H; and assume, without loss of generality, that v has at least as
many neighbors in H; as it has in H, (i.e., |[I'(v) N Hy| > |I'(v) N Hy|). Then by moving » from H;
to Hy we cannot decrease the edge density of the cut (and we might even increase it). Namely,

Y (Hl \ {v},Ha U {”}) > ,U(Hh H2)
Furthermore,

2-(|P(v) N Hy| = [T(v) N H,y|)
p(Hi\{v}, HoU{o}) — p(Hy, Hy) = ] : (3.9)
Taking this observation one step further, we next show how we can define a new partition of V
based on some information concerning (H,, H,), where we move ©(eN) vertices between the sides
of the partition. While we can not ensure that the size of the cut does not decrease, as was the
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case when moving a single vertex, we can show that the the size of the cut decreases by O(e*N?)
(note that in the worst case, by moving @(eN) vertices, the size of a cut may decrease by @(eN?)).
We then show how such a process could be used by a graph partitioning algorithm given such
information (which can be viewed as access to certain oracles), and finally we show how the process
can be implemented approximately (without any additional information).

An “Ideal” Procedure

let X be a subset of V(G) of size I = 1eN, let W

l
def

induced by (Hy, Hy). That is W, ef HiNnW,and W, = H,N'W. Assume we knew for every vertex
2 € X how many neighbors it has on each side of the partition (W, W,). In such a case, define
Xyg to be the set of unbalanced vertices in X with respect to (W, W,). That is, Xyg is the set of
vertices which have significantly (say $€N) more neighbors on one side of the partition than it has
in the other. Analogously, define Xz = X \ Xyp to be the set of balanced vertices with respect to
(W, Ws).

Assume we partition X into (X;,X,) as follows: Vertices in Xyp which have more neighbors
in Wy, are put in X,; vertices in Xyg which have more neighbors in W,, are put in X;; and
vertices in Xp are placed arbitrarily. Based on this partition of X we define a new partition of V:
(H},H)) = (W, UX;,W5U X,), which differs from (H;,H,) only in the placement of vertices in
X. Then clearly, the difference between p(H{,H%) and p(H;, H,), is only due to the change in the
number of edges between vertices in W and vertices in X, and between pairs of vertices in X. By
definition of Xyg, and the way it was partitioned, the number of cut edges between vertices in W
and vertices in Xygp could not have decreased. By definition of Xg, the arbitrary placement of these
vertices decreased the number of cut edges between W and Xg by at most |Xg|-2- %GJV < jNZ, and
the number of cut edges between pairs of vertices in X decreased by at most |X|? = K%NZ < SN

Now, let X be V' (i.e. the first N/{ vertices in lexicographical order), let (H;, H,) define
a maximum cut, and let the partition resulting from the process defined above be denoted by

def

= V\ X, and let (W;, W) be the partition of W

(Hi,H}). Thus the information needed in order to partition V* is the (approximate) number of
neighbors each vertex in V* has on each side of the partition of V\ V' induced by (H;, H,). Assume
we continue iteratively, where in stage i we perform the above partitioning process for Vi, given
the partition (H:™!, H4™!) determined in stage i — 1. That is, in stage ¢ we assume we know which
vertices in V? are unbalanced with respect to the partition of V'\ V¥ induced by (H{™',H5™"). Then
we can apply the same argument used above to each pair of consecutive partitions (H}, H%) and
(HYH' HET'), and get that p (HY, HS) is smaller than u(Hy, Hy) = u(G) by no more than 2e.

4

The Actual Algorithm

The graph partitioning algorithm, depicted in Figure 3.2, approximately implements the iterative
procedure described above, starting from a partition (HY, H) which defines a maximum cut. Clearly,
we do not have a clue as to what (HY, HY) is, and hence, in particular, we have no direct way of
determining for a given vertex v in V! whether it is balanced or unbalanced with respect to the
partition (W9, W?) of W° " V\ V! induced by this partition. However, we can approximate the
number of neighbors v has on each side of (W?, W?) by sampling. Namely, if we uniformly choose

a set of vertices U! of size { = poly (M) in W°, then (as we later prove formally), with high

probability over the choice of U' there exists a partition (U], Uj) of U', which is representative

with respect to (W{, W9) and V! in the following sense. For all but a small fraction of vertices v
in V', the number of neighbors v has in U} (Uj), relative to the size of U', is approximately the
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Graph Partitioning Algorithm (for MaxCUT)

1. Choose ¢ = % sets U, ... U’ each of sizet = © (51_2 log %), where U? is chosen uniformly in V\ V%,
Let U be the union of these sets.

2. For each of the partitions 7(U) = (Ule ﬁ,Ule U;) of U do:
(a) Fori=1...{, partition V! into two disjoint sets Vi and V! as follows:
For each v € V?,
i If |F(‘U) N U21| > |F('U) N U22| then put v in V3.
ii. Otherwise put v in Vi.

(b) Let VT(U) = Ule i, and let V;(U) = Uf:1 Vs,

3. Among all partitions (VT(U),V;(U)), created in Step (2), let (VP,VE) be the one which defines
the largest cut, and output it.

Figure 3.2: Graph Partitioning Algorithm for Max-CUT

same as the number of neighbors v has in W{ (WJ), relative to the size of V(G). Clearly such an
approximation suffices since what is important when deciding where to put the vertices in V! is to
determine where to put the unbalanced vertices. If U! has a representative partition, then we say
that U' is good. Since we do not know which of the 2' partitions of U' is the representative one
(assuming one exists), we simply try them all.

The choice of U' together with each of its partitions determines a partition of V!. While we
must consider all partitions (Uf, U3) of U', we are only interested in the (hopefully representative)
partition for which U} € W{ and U} C WJ. Denote this partition by (U}, U}). Let (Vi, Vi) be
the partition of V! which is determined by this partition of U', and let (Hj, H}) be the resulting
partition of V(G). Namely, (Hj, Hj) is the same as (HY, H)) exzcept for the placement of the vertices
in V', which is done according to (V{,V3). If in fact (Ui, U}) is representative (with respect to
(W9, W3) and V'), then p(Hi, H) is not much smaller than p(HY, H)) = p(G). We continue in
the same manner, where in stage ¢ we randomly pick a set U*, and for each of its partitions we
determine a partition of V. Therefore, we are actually constructing (2¢)* = 2°* possible partitions
of V(G), one for each partition of all the U"’s. However, in order to show that at least one of
these partitions defines a cut which is not much smaller than the maximum cut, we only need to
ensure that for each 7, with high probability, U’ is good with respect to (Wi™!, W5™!), where the
latter partition is determined by the choice of U!,..., U=l and their representative partitions,
(UL UL),..., (U, US"). The actual code is depicted in Figure 3.2. In the following lemma we
formalize the intuition given previously as to why the partitioning algorithm works.

Lemma 3.4.1 Let (Hy,H,) be a fized partition of V(G). Then with probability at least 1 —6/2 over
the choice of U, there exists a partition ©(U), such that M(VT(U),VQ(L)) > p(Hy, Hy) — 2e.

Proof: For a given partition 7(U) of U, we consider the following ¢ + 1 hybrid partitions. the
hybrid (H?, HY) is simply (H;, H,). The hybrid partition (H%, H}) is defined as follows:

H ¥ Wi-tyvi

and
H EwWi-tuvi
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where for j € {1,2}, Wi o H=' nWi=!, and Wi-! 'V \ Vi. Note, that in particular, (H{, H) is
the partition (Vf(t), V;(U)). Since the partition of each V' is determined by the choice of U’ and its

partition, the ™ hybrid partition is determined by the choice of U',..., U'~! and their partitions
but not by the choice nor the partitions of U?,..., Ut We shall show that for every 1 < i < ¢, for
any fixed choice and partitions of U?,..., Ui~!, with probability at least 1 — 267 over the choice of
U?, there exists a partition (U%, U%) of U' such that
) . - . 3¢
© (HZ17HZ2) > (Hll 17HZ2 1) B ﬂ

The lemma will directly follow.
For the i — 1 hybrid partition (H{™',H5™'), or more precisely, for the partition it induces on

Wi=! and a sample set U?, let

U= wiinue
and

i def yx7i—1 i

U, =W, nut.
We say that U’ is good with respect to (Wi™', Wi™") and V! if (UL, UY) is representative with
respect to (Wi™', Wi™1) and V?. That is, (U}, U}) is such that for all but e of the vertices v in V*
the following holds:

I'(»)NnU: T(v) N Wi?
For each j € {1,2}, ‘ ()t A | (U)N ! |:i:3i2

(3.10)

Assume that in fact for each i, the set U’ is good with respect to (W!™', W5™!) and Vi. As was
previously defined, we say that a vertex v is unbalanced with respect to (Wi=', Wi™) if

. . . i e 1
for j,7' € {1,2}, j#j ‘F(v) nw; 1‘ > ‘F(v) nNwW3 1‘ + §€N . (3.11)

Thus, if v € V? is an unbalanced vertex with respect to (Wi, W5™") for which Equation (3.10)
is satisfied, then ‘F(v) nU;| > ‘F(v) NU%| 4 {5et. We are hence guaranteed (by Steps (2)(a)(i)
and (2)(a)(ii) of the algorithm) that when the partition (U}, U%) is used then v is put opposite the
majority of its neighbors in Wi~! (according to their position in (W{™', W4™!)). If v is balanced
then it might be placed on either side of the partition. The same is true for the (at most g - %)
vertices for which Equation (3.10) does not hold.

As was noted previously, the decrease in the size of the cut is only due to changes in the
number of edges between vertices in W:=! and vertices in V?, and between pairs of vertices in V.
In particular:

1. The number of cut edges between vertices in W'~! and unbalanced vertices in V* for which
Equation (3.10) is satisfied can not decrease.

2. The number of cut edges between vertices in Wi=! and balanced vertices in V?, decreases by
at most [Vi]- 2. LeN < SN2

3. The number of cut edges between vertices in Wi=! and unbalanced vertices in V' for which
Equation (3.10) is not satisfied decreases by at most & - [Vi].2N < £N?,
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4. The number of cut edges between pairs of vertices in V¢ decreased by at most [Vi|* = SN <
LATZ.
at

The total decrease is bounded by 2 N2

It remains to prove that with high probability a chosen set U’ is good (with respect to (Wi~ Wi~1)
and V). We first fix a vertex v € V. Let U* = {uy,...,u;}. Recall that U’ is chosen uniformly in

Wil € v\ Vi, For j € {1,2}, and for 1 < k < ¢, define a Bernoulli random variable, &7, which

is 1 if uy is a neighbor of v and u; € Wj-_l, and is 0 otherwise. By definition. for each j, the sum
of the ff’s is simply the number of neighbors » has in Uj» (=TU'n W]i-_l) and the probability that

fjk =1lis IT(v) N W§_1|. By Hoeffding’s inequality and our choice of ¢, for each j € {1,...,k},

I'(v)N U} I(v) N Wit € €b
Proby: |: ‘ ; A I )N il >3l = O(exp(—€*t)) = O <7> .
By Markov’s inequality, for each j € {1,2}, with probability at least 1 — f—e over the choice of Ut,

for all but Le of the vertices in V*, Equation (3.10) holds (for that j), and thus with probability at

least 1 — 2‘57, Ut is good as required. M

Applying Lemma 3.4.1 to a maximum cut of G, we get

w

Corollary 3.4.2 With probability at least 1 — % over the choice of U, p(VY,VY) > u(G) — 2e.

IS

3.4.2 The Max-CUT Approximation Algorithm

Given the graph partitioning algorithm described above, the Max-CUT approximation algorithm

w), and run the

is quite straightforward. We uniformly choose a set S of size m = © (
graph partitioning algorithm restricted to this set. The only small difference from what might be
expected is that we do not necessarily output the size of largest cut among the cuts defined by the
resulting partitions of S (i.e. those determined by the partitions of U). Instead, we view S as a
multiset of m/2 (ordered) pairs of vertices, and we choose the cut which maximizes the number of

such pairs which are edges in the cut. The exact code is given in Figure 3.3.

Lemma 3.4.3 For any fived set U, with probabilily at least 1—6/2 over the choice of S, 1 (S},SY) =
1 (VY,VY) £ Le, where (-, -) is as defined in step 4 of the Max-CUT approzimation algorithm.

Proof: Consider first a particular partition of U, 7(U). The key observation is that for every

s € S, and for j € {1,2}, s € S;(U) if and only if s € V;r(t). Thus for each partition of U we

are effectively sampling from (VT(U), Vg(t)). Furthermore, by viewing S as consisting of m /2 pairs
of vertices (Sar_1,S21), and counting the number of such pairs which are on opposite sides of the
partition and have an edge in between, we are able to approximate the density of the cut edges.
For 1 <k <m/2,let Let & be a Bernoulli random variable which is 1 if (sar_1, S2r) € E(G), and

for j # ', Sap_1 € S;-T(U) and sy € S;,(U). Then, by definition, fi (ST(U),SQ(U)) = %ZT“ &, and

the probability that £, = 1is u (VT(U),V;(U)). Hence, by Hoeffding’s inequality and our choice of

m,

Prob Uﬂ (ST(U),SQ(U)) — i (VT(U),V;F(U)” > %e] = O(exp(—€’m)) = O (627 (3.12)
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Max-CUT Approximation Algorithm
1. As Step (1) of Figure 3.2.

2. Uniformly choose aset S = {s1,...,8m} of sizem = © (%1/—61). For1<i</ letS LT yins.

3. Analogously to Step (2) of Figure 3.2, for each of the partitions w(U) = (Ule Ui, Ule Ug) of U,

partition each S! into two disjoint sets S} and S}, and let S;(U) = Ule S; (for j =1,2).

4. Among all partitions (ST(U), Sg(t)>, let (S%, Sg) be the one which maximizes the number of cut

edges between pairs of vertices (sap—1, sa). Namely, define

‘{(5%-1, sor) € E(G) : forj # j', sup_1 € S;(U) & sap € S;/(Uj)}‘
m/2

i (sf“”, S;r(tn) def

QOutput max, i (ST(U), Sg(U)) .

Figure 3.3: Max-CUT Approximation Algorithm

Since there are 2“' partitions of U, with probability at least 1 — §/2, for every partition 7(U),
i (ST(U), S;(U)) =y (VT(U),V;r(U)) + L¢, and hence i (SY,S5) = u(VY,VY)tle, W

Combining Corollary 3.4.2 and Lemma 3.4.3, Part (1) of Theorem 3.6 follows.” As per Part (2) it
is proved in the next subsection.

3.4.3 An Improved Graph Partitioning Algorithm

The improved graph partitioning algorithm starts by invoking the Max-CUT approximation al-
gorithm of Figure 3.3, and recording the set U uniformly selected in Step (1) and the partition
I = 7(U) selected in Step (4). Using this specific partition II, the algorithm executes a single
iteration of Step (2) of the Graph Partitioning Algorithm of Figure 3.2 an obtains the partition

(VT(U),V;(U)). By Lemma 3.4.1, we have that with probability at least 1 — §/2 over the choice

of U, there exists a partition 7(U), such that H(VT(U),VQ(U)) > w(G) — 2e. ;From the proof of
Lemma 3.4.3 we have that for a fixed set U, with probability at least 1 — §/2 over the choice of S,
i} (ST(U'), Sg(U)) is within £ from p (Vf(t),V;(U')) for every partition II of U. Tt follows that with

probability at least 1 — 4, the recorded partition II is such that p (Vf(U),Vg(U)> > u(G) — ¢, as
required.
3.4.4 Generalization to k-way CUTs

For a k-way partition (Vi,...,Vy) of V(G), we denote by pup(Vy,...,Vy) the edge density of the
cut defined by (Vy,..., V). Namely,

def [{(v,0") € B(G): for j# 7, veV; &v' €V}
B N2

,uk(Vl, . ,Vk)

Let pr(G) denote the edge density of the largest k-way cut in G.

" Actually, we need to deal separately with the trivial case in which p > 1/2. In this case the class MC, is empty
and so we need to reject all graphs (as none is close to MC,).
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Theorem 3.8
1. There exists an algorithm that on input k, € and § and oracle access to a graph G, makes
0 (M) edge-queries to G, and with probability at least 1—-6, after time exp (O (%)),
outputs a value iy, such that |piy — ur(G)| < e.

2. There exists an algorithm that on input G, k, €, and §, runs in time
exp (O (ﬂy—fél)) + 0 (ﬂy—fél) - N, and with probability at least 1 — 6 oulpuls a k-way
partition (Vy,..., Vi) of V(G) such that pp(Vi,..., Vi) > i (G) — €.

The graph k-way partitioning algorithm (resp., Max-k-way-CUT approximation algorithm and
testing algorithms), are obtained from the 2-way partitioning algorithm by the following simple
modifications

o Instead of considering all two-way partitions of each U?, we consider all its k-way partitions.

e For each such partition, (Ui,..., Ui), we partition V* (into & disjoint sets) as follows. For
each vertex v € V¥, and for 1 < j < k, let di(v) = ‘F(v) nU;

Then we put v in V; .

, and let jui, = argmin,{d(v)}.

The following (minor) changes suffice for the adapting the analysis to the modified algorithm.
Let (HY,...,HY) be a k-way partition of V(G) which defines a maximum k-way cut. For a given
choice and k-way partitions of U', ..., Ui~!, let (Hﬁ_l, .. .,Hi‘l) be the ¢ — 1 hybrid k-way partition
(defined analogously to the two-way cut case) which is determined by this choice and partitions

of Ut,..., U=t Using the same notation introduced in the two-way cut case, for a set U’ and for

each j € {1,...,k} let U’ = Wi N U* where Wi™! = H;™"\ V. We shall say that U’ is good with

respect to (Wi™', ..., W} ") and V?, if for all but e of the vertices v in V?, Equation (3.10) holds
for every j € {1,...,k}. Tt follows that in order to ensure that each U’ be good (with respect to
(Wi, ..., W;™!) and V?), we need to choose ¢ = |U’| to be log k times larger than in the two-way
cut case.

The notion of unbalanced vertices is generalized as follows. We say that v € V! is unbal-
anced with respect to (Wi™', ..., Wi), if there exists j € {1,...,k} such that for every j' # j
‘F('v) N W;Tl‘ > |T(v) N W™ + LeN. Thus, it is still the case that if v is an unbalanced vertex
for which Equation (3.10) holds for every j € {1,...,k}, then v will be put on the side in which it
has the minimal number of neighbors in Wi=!. As a consequence, the number of cut edges between
vertices in Wi~! and unbalanced vertices in V! can not decrease. If v is not unbalanced it does not
mean (as in the two-way cut case) that it has roughly the same number of neighbors on each side of
the partition (Wi™',..., W;™!). Rather, it means that there exist at least two sides of the partition
on which » has roughly the same number of neighbors, and furthermore, one of these sides includes
its smallest number of neighbors. We shall thus refer to such a vertex v as partially balanced rather
than balanced. However, as for unbalanced vertices, if v is a partially balanced vertex for which
Equation (3.10) holds for every 7 € {1,...,k}, then v will be placed on a side of the partition in
which its number of neighbors is not much far from minimum. The key point is that if a vertex
is moved from side j (in (H:™',...,H,™") to side j' (in (H%,...,H)), all edges that it has with
vertices on sides j” # j, 7' remain cut edges, and only the number of cut-edges between side j and
side j' might change. Thus, when moving a partially balanced vertex (for which Equation (3.10)
holds for every j € {1,...,k}), the number of cut edges between this vertex and vertices in V'\ V'
does not decrease by much. As in the case of k = 2, we are essentially “giving up” on all cut edges
between pairs of vertices in V.
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Finally, since the number of k-way partitions of all the U'’s is £**, we must choose m (the size

of § in the Max-k-way-CUT approximation algorithm) to be ~ O(% -log k) rather than ~ O(%)

(as our choice in the case of two-way cuts).

3.5 Testing Bisection

In this section we study a variant of the Max-CUT problem in which both sides of the partition
are required to be of equal size. Namely, using the notation presented in Section 3.4, let

H(%’%)(G) def max w(Vi, V(G)\ V1) .

V1CV(G),|V1|=N/2

A partition (V1,Vs,) of V(G), such that |V,| = [Vy] = N/2 is called a bisection.® We first consider
the less standard problem of maximizing the (number of edges crossing the) bisection. The (more
standard) case of minimization is handled analogously (see Subsection 3.5.4). The main result of
this section is

Theorem 3.9

1. There exisls an algorithm that on inpult € and § and oracle access to a graph G, makes
0 (log(lew) . edge-queries to G, and with probability at least 1—6, after time exp (O (%)),
outputs a value fi'>3) such that |p(33) — pl33(G)| < .

2. There exists an algorithm that on inpult G, €, and §, runs in time exp (O (%)) +
0 (%) - N and with probability at least 1 — é outputs a bisection (V1,Vs) of V(G) such
that p(V1,Vy) > pl35)(G) — .

Item (1) yields a property tester for the class ./\/lC(2’2 = {G: u33)(G) > p}, for every 0 < p < 1,
with query complexity O (M) and running time exp ( (M)) A more natural property

tester follows as in previous cases:

Corollary 3.10 Let m = poly(log(1/6)/e€) and let R be a uniformly selected set of m vertices in
V(G). Let Gg be the subgraph (of G) induced by R. Then,

o ifG € MCE,%’%) then Probg[u(3)(GR) > (p — €/2)] > 2
o if dist(G,MCE,%’%)) > ¢ then Probg[u(3 9 (Gg) < (p—¢/2)] > 2

Our proof of Theorem 3.9 follows the outline of the proof of Theorem 3.6 (i.e., the analysis of
the Max-CUT algorithms). However, there is one crucial difference between the problem of con-
structing (resp., approximating the size of ) a maximum cut and the problem of constructing (resp.,
approximating the size of) a bisection: In a bisection both sides of the cut must be of equal size.
This has the following consequence. Recall that in in case of Max-CUT, it is always beneficial (and
possible) to relocate a vertex so that it is in the side opposite to the majority of its neighbors. In
contrast, when restricted to bisections, this property no longer holds: a maximum size bisection
may have vertices which belong to the same side of the bisection as the majority of their neighbors.

& We assume throughout this section that N is even. In case N is odd, one may require |[Vi| = |Va|+1= (N+1)/2.
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Thus, when partitioning a subset V, we can not simply put all vertices (or all unbalanced vertices)
on the side opposite the majority of their neighbors.

However, we can still use information concerning the unbalance of vertices with respect to a
given bisection (and some additional information) in order to define a new bisection whose cut is
not much smaller. Consider an arbitrary bisection (H;, H,), and and arbitrary set of vertices X of

size O(eN). Assume we are told how many neighbors each vertex in X has in W, “H, \ X and

how many in W,  H, \ X. Further assume that we know |H, N X| and |H, N X|. Let us related
with each vertex in X and unbalance value, with is simply the fraction of neighbors it has in W,
(among all N possible neighbors) minus the fraction of neighbors it has in W;. This value (which
ranges from 1 to —1) tries to capture our “preference” of placing a vertex on side 1. Assume we
now repartition the vertices in X so that: (1) there are |H; N X| vertices on side 1 and |[H, N X| on
side 2; (2) all vertices on side 1 have unbalance value which is greater or equal to the unbalance
value of any vertex on side 2; then the following holds. First, the resulting partition is clearly a
bisection. Secondly, the size of the cut decreases by at most |X|? = O(e?N?). The latter is due to
the fact that for any other partition of X with |H; N X| vertices on one side (and the rest on the
other), there cannot be more cut edges between vertices in X and vertices in V \ X than in the
partition defined above. The decrease in the size of the cut is hence due to the decrease in the
number of cut edges between pairs of vertices in X. Qur graph bisection algorithm is based on this
observation.

3.5.1 A High Level Description of the Bisection Algorithm

As was done in Subsection 3.4, we start by describing an algorithm which is aided by certain oracles,
and then show how to simulate these oracles. Similarly to the (oracle aided) graph partitioning
algorithm described in Section 3.4 for Max-CUT, the (oracle aided) graph bisection algorithm
proceeds in £ = O(1/e) iterations where in the i*" iteration the vertices in V* are partitioned into
two subsets, Vi and Vi. Here too we think of the algorithm as defining hybrid partitions. Starting
from the zero hybrid partition H® = {H?9,HI}, which is a maximum bisection, the ** hybrid
partition H* = (H{, H!) is a hybrid of the partition (V{, Vi) of V* (constructed in the :*" iteration),
and the partition Wi=t = {Wi™!, Wi~1} of Wi %' v \ Vi induced by the i — 1 hybrid partition,
HI-' = {H7', Hi7'}. However, differently from the Max-CUT graph partitioning algorithm, here
we might place vertices of V! which are unbalanced with respect to Wi~! on the same side of the
partition as the majority of their neighbors. This is done so to maintain the desired proportion of
vertices of V? on each side of the new hybrid. That is, for each i € {1,...,¢},1et ' = £-|[VinH{™|
be the fraction of vertices in V¢ which belong to H{™!. Assume we knew all 3"’s. If in each iteration,
i, we make sure to put 8’ of the vertices in V* on side 1 and (1 — 3°) on side 2, then since H° is a
bisection, so will each hybrid partition be, and in particular the final partition which the algorithm
outputs. Indeed, we assume here that we know the 3's.

Further assume that in each iteration of the algorithm we knew exactly how many neighbors
each vertex in V? has on each side of the partition. In such a case we could compute for each vertex
v its unbalance value:

st [D(0) VW = | () 1 Wi

b 3.13
ub(v) v (3.13)
Let L % N/t and v(1y, ..., vy be an ordering of the vertices in V* according to their unbalance
value; that is, ub(v)) > ub(v(s41)). Consider the following partition (Vi, Vi) of Vi: Vi =

def

{00y, - > 00y}, and Vi S {ogingys -0} Let (HY HY) S (Wit U Vi Wit U Vi), Then the
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number of cut edges in (H%, H}) between vertices in Wi~! and vertices in V' is at least as large as
in (H{™',H4™"). This is true since our partition of V', by definition, maximizes the number of such
cut edges among all partitions which are a hybrid between (W{™', W5™"), and a partition of V? into
two subsets of size 3°L and (1 — 3%)L respectively. The decrease in the size of the cut is hence at
most [Vi|* = O(£N?).

We next remove the assumptions that we know 3' as well as ub(v), for every ¢ € {1,...,(}
and v € V. Firstly, we note that approximations (up to O(e)) to these values are good enough.
Actually, we can afford having bad approximations of ub(v) for O(e) fraction of the vertices in V*.
As in the Max-CUT partitioning algorithm, we use sample sets U’ to obtain the approximations
1;\b(v) = ub(v) + O(¢€). The approximations 3 = ' + O(¢) are obtained by simply trying all integer
multiples of €/16 which sum up to %.9 Each possible setting of Bl, .. .,ﬁ‘ and sequence of partitions
of Ul,...,U* gives rise to a different bisection of V, and we choose the resulting bisection whose
cut is maximized.

We show that with high probability over the choice of the U*’s, there exist partitions of these
sets, and there always exists a setting of the $'’s, so that at least one of the resulting bisection
is close to having the maximum number of crossing edges. In particular, let o.),..., %) be an
ordering of the vertices in V? according to IIB( ). As we prove in Lemma 3.5.1, if we put the
vertices {91, .. U(WLD)} on side 1, and the vertices {v(m iL41): - - -» Or)} on side 2, then the
number of crossing edges in the lebultmg hybrid partition is not much smaller than that defined
by the previous hybrid partition.

A detailed description of the graph bisection algorithm is given in Figure 3.4, and its formal
analysis is provided in Lemma 3.5.1.

Graph Bisection Algorithm

1. Choose £ = % sets U, ..., U’ each of sizet = © (:_2 log %), where U’ is chosen uniformly in V\ V%,
Let U be the union of these sets.

2. For each of the partitions 11 = (Ule Zi,Ule Ug) of U and for each of the (-tuples B =
(31, . ..,BZ), where each ' € € [0,1] is an integer multiple of {5, and ), B = 1/2, construct a
bisection (V?’ﬁ,\/gl’ﬁ) as follows:

(a) Fori=1...¢ do:

def 1

i. For each v € V' let ub( |F( ﬂU2|—|F )N UL);

ii. Let v(1y,...,9) be an ordermg of the vertices in V* such that HB('&(;C)) > @('ﬁ(k_*_l))
(ties are broken according to lexicographical order).

jii. V4 = {02y, O gepyy b and Vi — {50094 90}
(b) Let Vll_lyﬁ = Uf:l Zi’ and let Vglvﬁ = Uf:l VZQ

3. Among all bisections, (V?’ﬁ,\/g{’ﬁ), let (VP,VE) be the one with maximum number of crossing

edges.

Figure 3.4: Graph Bisection algorithm

°This is always possible in case 1/¢ is an integer. Otherwise, we can try all integer multiples of ¢//16 which sum
up to 1/2, where ¢’ = 1/([1/€]). Since € > €/2, for simplicity we assume that 1/e is in fact an integer.
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Lemma 3.5.1 Let (Hi,H,) be a fized bisection of V(G). Then, with probability at least 1 — §/2
over the choice of U, there exists a partition 11 of U, and an {-tuple B, such that #(V?’ﬁ,\/g’ﬁ) >
M(H17 H2) — %6.

Proof: For a given set U, a fixed partition II of U, and a fixed B, let the ¢** hybrid partition
(Hi, H:) determined by IT and 3 be as defined in Lemma 3.4.1. ;From this point on, let 3 be such

that for every i, 3" = ' & ¢/16 where 3 = |H, N Vi|. The existence of such 3’ follows from the
resolution of the values taken by /ﬁl and the fact that all possibilities (to within this resolution) were
tried. Similarly to what was observed in Lemma 3.4.1, for ﬁ fixed as above, an " hybrid partition
is actually determined by the partitions of U',..., Ui, and does not depend on the partitions of
Ui+, .., U% Similarly to the analysis of the graph partition algorithm for Max-CUT, we shall show
that for every 1 < ¢ < {, and for a fixed choice and partitions of U', ..., Ui~! with probability at

least 1 — 2‘5—2 over the choice of U, there exists a partition (U?, Uj) of U such that

p (G HE) > (R TE) — 2F (3.14)
By induction on i we have that the ¢ hybrid partition (which is necessarily a bisection since
D ﬁz = 1/2) has a cut whose size is at most %Nz smaller than the 0 hybrid partition.
Let us define a good sample set U* and a representative partition (U}, U), similarly to the way
they were defined in Lemma 3.4.1 except that here we make the slightly stronger requirement that
for all but - of the vertices v in Vi

I'(v)NU: T(v) N Wit
For each j € {1,2}, ‘ ()t - | (U)N ! |:i:6i4

(3.15)

As was shown in the proof of Lemma 3.4.1, for our choice of ¢ = |U?|, with probability at least
1-6/2,Ul,...,U" are good with respect to the respective partitions. Assume from now on that
U, ..., Uf are good and for each i let HB(U) be defined with respect to the representative partition
of Ut.

For a fixed 4, let v(1), ..., vy be the ordering of the vertices in V* according to their (correct) un-
balance value ub(v) with respect to (Wi_l, Wé_l). As was noted previously, if we put v(1y,..., v
on side 1 (and the rest of the vertices on side 2), then the number of cut edges between Wi~* and
Vi does not decrease, and the decrease in the size of the cut is at most |Vi|2 =17 = 5N* We
refer to this partition of V* as the ideal partition, and bound the additional decrease in the size
of the cut due to the change in the number of edges between Wi~! and V? in the actual partition
of Vi constructed by the algorithm. We do this by comparing the actual partition to the ideal
one. Assume first that 8! = ﬁi, and let Y® be the set of misplaced vertices in V' which are put
on a different side in (H?, H}) than they are put in the ideal partition described above (given the
correct unbalance values of the vertices). We shall show below that in such a case all but ;<L of
the vertices in Y’ have approximately the same unbalance value (i.e., within {=N). This will imply
the following bound on the decrease in the number of cut edges between W'=! and V.

By our assumption that ﬁ‘ = (' (which we remove momentarily) we know that in the actual
algorithm we put exactly the same number of vertices on each side of the partition of V' as in the
ideal partition. It follows that the number of misplaced vertices on each side of the partition is
the same, and we can pair the misplaced vertices and view these pairs as having switched sides.
Whenever we switch sides between pairs of vertices whose unbalance value differs by at most %N,
the decrease in the number of cut edges between these two vertices and vertices in W*=! is at most
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. The contribution of all such pairs is at most % -£N = ;5 N”. The number of cut edges between

Wi=1 and the at most 5L vertices in Y? which differ significantly in their unbalance value from
the rest, decreases by at most ;5L -4N = 5 N?. Finally, if we do not assume that ﬁ‘ = (3%, then
since |ﬁl - B < 5, there are at most ;5L additional misplaced vertices which cause an additional
decrease of at most 5L -2N = 5N? in the size of the cut. Summing all contributions we get that
the total decrease in the size of the cut is bounded by %N{ as required.

It remains to prove our claim concerning the set of misplaced vertices, Y* under the assumption
that 3* = #. Consider a grouping of the vertices in V' into K = 1/¢' unbalance bins according to
their (correct) unbalance value where ¢ = ¢/32. For k = —1,..., K — 1, the ™ bin, denoted B,

is defined as follows:
By E{veVi:ubv)ek-éN,(k+1)-¢N)} .

Let g be the index of the bin which vs:.) belongs to. By definition of the bins, all vertices in B,
have approximately the same unbalance value. Since we only have approximations of the unbalance
values we also group the vertices according to their approximated unbalance values. Namely, For
k=-1,...,K -1,

B, & {'v eV EB(?J) €lk-éN,(k+1)- e'N)} ,

By our assumption on the representativeness of (U}, U}), at most 5 of the vertices in V* belong to
a bin By, whose index differs by more than 1 from their correct bin B, (and vertices in the same,
or in neighboring bins have approximately the same unbalance value).

Let (1), ..., %) be an ordering of the vertices in V? according to their approximate unbalance
value @(v), and let § be the index of the bin which Digiry belongs to. It follows that if § = g £+ 1,
then all but ;5L of the misplaced vertices have unbalance value (g +£2€¢')N = gN £ 5N, as required.
Thus assume that § > ¢ + 2 (the case § < g — 2 is analogous). In such a case, necessarily, all but
7L of the vertices v(yy,...,vir) (Which belong to bins By,...,B,), are put on side 1 (as they
should). But since we put only BiL = ('L vertices on side 1, the total number of misplaced vertices

is bounded by -3Z. W

3.5.2 The Bisection Approximation Algorithm

Similarly to the Max-CUT approximation algorithm, the Bisection Approximation Algorithm (de-
scribed in Figure 3.5) performs the same steps as the algorithm described in Figure 3.4, but does
so only on a small sample S. The analysis of this Bisection approximation algorithm given the
correctness of the graph bisection algorithm, is the same as that of the Max-CUT approximation
algorithm (Lemma 3.4.3) except for the following detail. Here we need to take into account that it
is not necessarily the case that for a given U, a partition I of U and ﬁA, foreach s € S, s € S]H’ﬁ, i.ff.

s € VJH”E;. This is due to to the possibility that for some vertices v € S?, vertex v appears before

(resp., after) the 3 N'™ vertex in the ordering of Vi, but after (resp., before) the Fim™ vertex in
the ordering of S'. However, by applying arguments analogous to Lemma 3.3.5, it can be shown
that the fraction of such vertices is small, and that their contribution to the approximation error
is small too. Part (1) of Theorem 3.9 follows.

3.5.3 The improved Graph Bisection Algorithm

The improved graph bisection algorithm (whose running time is as stated in Theorem 3.9, Part (2))
starts by invoking the Bisection approximation algorithm of Figure 3.5, and recording the set U
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Bisection Approximation Algorithm

1. As Step (1) of Figure 3.4.

2. Uniformly choose a set S = {s1,...,8m} of sizem =0 (%1/—62). For1<i<{, let S L yins.

3. Analogously to Step (2) of Figure 3.4, for each of the partitions I = (Ule Ui, Ule Ug) of U, and
for each of the {-tuples B = (Bl, .. .,BZ), construct a bisection (S?’ﬁ, Sg”@> of S. Specifically, in

the i*™ jteration of Substep (a), S} is assigned the [3'm/{] vertices with the biggest HB() value.

4. Among all partitions (S?’ﬁ, Sg’ﬁ), let (Sy, Sg) be the one which maximizes the number of cut

edges between pairs of vertices (sag—1, Sax). Namely, define

‘{(521«—1,5%) €EE(G): forj#j', sap_1 € SJr-m, & sap € S?ﬂﬁ}‘
m/2 '

o (QILA I,AY def
N(S1 ﬁ:S:z ﬁ) =

Output i33(G) = max,_ ; ji (S{Lﬁ’ S;(U,ﬁ)).

Figure 3.5: Bisection Approximation Algorithm

uniformly selected in Step (1), the partition IT = 7(U) selected in Step (4), and the {-tuple 3 used
for it. Using these specific IT and §, the algorithm executes a single iteration of Step (2) of the

Graph Bisection Algorithm (of Figure 3.4). It is easy to see that the resulting algorithm satisfies
Part (2) of Theorem 3.9.

3.5.4 Variations

An easy modification suffices for finding (resp., approximating the size of) a nearly minimum
bisection rather than a nearly maximum one. In each iteration of the algorithm(s), instead of
placing in side 1 the first ﬁl vertices in decreasing order of (approximate) unbalance, we would do
the opposite. Namely, since we would like to minimize the size of the cut, we try and put vertices
on the size opposite the minorily of their neighbors. While we might not be able to do so for
all vertices (since we are restricted to constructing a bisection), analogously to the maximization
problem, there exists one side in which all vertices have a smaller (i.e., more negative) unbalance
value than all those on the other side. Thus, in the " iteration we order all vertices in V* (or S*
in the approximation algorithm) according to increasing unbalance value ub(v) (where ub(v) is as
defined in the maximization algorithms), and put the first ﬁl vertices on side 1 and the rest on side
2.

We can easily generalize the algorithms to construct (resp., approximate the size of) partitions
with other given proportion of vertices on each side. A key observation is that the main steps of our
algorithms are oblivious of the bisection requirement. In fact, the main steps produce partitions
with maximum (resp., minimum) number of crossing edges per each proportion of vertices on each
side (up to some resolution). Thus, all we need to do is modify the last step of these algorithms so
that they select the best partition among those with specific vertex proportions (or alternatively,
first modify each partition to have the desired vertex proportion). Thus, for example, we can
approximate quantities such as opt)y,j=n/s{p(V1, V(G) \ Vi)} or optuy ¢y, j<on{p(V1, V(G) \ V1)},
where opt € {max, min}.
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3.6 The General Partition Problem

The following framework of a general partition problem generalizes all properties considered in
previous sections. In particular, it captured any graph property which requires the existence of
partitions satisfying certain fixed density constraints. These constraints may refer both to the
number of vertices on each side of the partition and to the number of edges between each pair of
sides.

Let & &' {,0] ,pJ }’__ U {Q“,,Q” } . be a set of non-negative parameters so that p}b <

> (Vj) and QN < QN (V7,7"). Let g% be the class of graphs which have a k-way partition
(Vi,..., V) with the following properties'®

Vi, PPN < Vi < p N, (3.16)

and

Vi, o N7 < |E(V;, Vi)l < of% - N7, (3.17)
where E(V;,V;/) is the set of edges between vertices in V; and vertices in V;, (where we include
edges going in both directions). That is, Eq. (3.16) places lower and upper bounds on the relative
sizes of the various parts; whereas Eq. (3.17) imposes lower and upper bounds on the density of
edges among the various pairs of parts. (LB stands for Lower Bound, and UB stands for Upper
Bound.)

In this section we describe a testing algorithm for the class GPg (for any given set of param-
eters ® = {p¥*} U {07%,}). The testing algorithm is based on a randomized partitioning algorithm
for the related partition problem. Namely, given a graph G, a set of parameters ®, an approxi-
mation parameter ¢ and a confidence parameter §, so that G has a k-way partition which obeys
Equations (3.16) and (3.17), the partitioning algorithm constructs a partition (Vy,...,Vy) of G for
which the following holds with probability at least 1 — é:

Vi, (pf =€) N < Vil < (p" +€)- N, (3.18)

and

Vi i (e =€) N* < [B(V;, Vi)l < (a5 +€)- N?, (3.19)
A partition obeying (3.18) and (3.19) is called an e-approzimation for the partitioning problem
defined by the set of parameters ®.

As stated above, all properties considered in previous sections can be casted as special cases of
the general partition problem. For example, k-colorability is expressed by setting Qub = 0 for every
J (and setting p”’ =0, p;lb = 1, and similarly setting the ¢%.’s for j* # j). In case we are interested
in maximizing or minimizing a parameter (e.g. maximizing E(V, V) in the case of Max-CUT) we
can simply run the general partitioning (resp., testing) algorithm on all values of this parameter
which are multiples of ¢, and find the maximum/minimum value attainable.!! However, as can be

10 Actually, to avoid integrability problems, we consider generalized (or fractional) k-way partitions in which up
to k — 1 vertices may be split among several parts. Had we not followed this convention, the set of N-vertex graphs
in GPs could be empty for some values of N and non-empty for others. For example, if piP = pi® = 1/3 then only
graphs with 3N’ vertices may be in GPs. In such a case, the tester must reject any graph on 3N’ + 1 vertices (as
it is 1-away from GPs) whereas it must accept some 3N'-vertex graphs, and consequently it must count the number
of vertices in the graph. These integrability problems have nothing to do with the combinatorial structure which we
wish to investigate and thus we avoid them by taking this somewhat unnatural convention.

! Actually, our partitioning algorithm works by producing a set of partitions of the graph vertices and then searching
among them for one which is an e-approximation of the partitioning problem. The testing algorithm runs a similar
procedure on a sample set of vertices. The procedure for producing these partitions depends on k, €, and 4, but not
on the particular set of parameters @, and therefore we do not actually need to run the algorithm more than once.
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seen from our theorems below, this generality has a price: the query complexity and running times
of our algorithms (for the general partition problem) are quite large. More efficient algorithms
for specific problems such as Max-Clique, Max-CUT, and Bisection, were presented in previous
sections. Though some of the ideas used in the above algorithms are also applied here, we choose
to present the algorithms in this section in a self-contained manner. Throughout the rest of this
section, we always assume that the parameters in ® are given to within an accuracy of e.

Theorem 3.11 There exists an algorithm A such that for every given set of parameters ®, al-
2y k45
gorithm A is a property testing algorithm for the class GPg with query complexity (gf—l) .

s\ k1
klog2(k/a5), and running time exp((ﬂf—l) * -klog(k/eé)).

Theorem 3.12 There exists a graph partitioning algorithm that on input G, ®, €, and §, runs in
k+1
time exp ((@) -klog(k/eé)) + O (S log(k/€d)) - N, and if G has a k-way partition salisfying

Fquations (3.16) and (3.17) then with probability at least 1 — § the graph partitioning algorithm
oulputs a partition which satisfies Equations (3.18) and (3.19).

We start by describing the graph partitioning algorithm. The running time of this algorithm, as
described below is is exp ((%)Hl klog(k/(e(ﬁ))) - N2. However, as we later show, by first running

the testing algorithm, with high probability we can construct such a partition (if one exists) in time
as stated in Theorem 3.12.

3.6.1 High Level Description of the Partitioning Algorithm

The algorithm is based on the following observation. Let H = (Hy, ..., H;) be any fixed partition
of V. In particular, we may want to consider a partition which obeys Equations (3.16) and (3.17).
Let X be a set of vertices of small size (i.e., of size O(e/N)) and suppose that all vertices in X have
approximately the same (i.e., £O(eN )) number of neighbors in each H; \ X (i.e., |[['(u)N(H; \ X)| =
IT'(v) N (H; \ X)| £ O(eN), for every u,v € X and j). The observation is that if we redistribute
the vertices of X among the k parts (i.e., H;’s) while maintaining the number of vertices in each
part, then the number of edges between every pair of parts is approximately maintained. That
is, let (Xi,...,X;) be an arbitrary partition of X so that |X;| = |X N H;| £ O(e?N), and let
H; = (H; \ X) UX;. Then, [[H;| — [Hj|| = O(¢*N) and furthermore ||E(H;, H;/)| — [E(H}, Hj,)|| =
O(|X] - eN + |X]?) = O(*N), for every j,j', where the last equality is due to the size of X. The
bound on the difference of the number of edges follows by considering the three types of edges.
Note first that edges with both endpoints NOT in X are on the same side in H' as they were in H,
and thus are not effected by the redistribution of X. The number of edges with both endpoints
in X is bounded by |X|?. Finally we get to the interesting edges; that is, those with exactly one
endpoint in X. Here we use the hypothesis that all vertices in X have about the same “neighboring
profile” with respect to H \ X and thus switching vertices of X among the parts (while maintaining
the number of vertices in each part) does not effect the edge-count (among the various parts) by
much. In particular, each vertex in X may contribute a change of at most O(eN) and thus the
claim follows. Note that it suffices to have almost all vertices in X (i.e., all but O(¢|X]|) of the
vertices) have approximately the same “neighboring profile” with respect to H \ X.

Going with this observation one step further, let ‘H be as defined above, let Y be any given
set of vertices of size O(eN ), and let W = (Wy,..., W) be defined by W; o H; \'Y (for each j).

Let us first cluster the vertices in Y according to the number of neighbors they have in each W;.
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That is, in each (disjoint) cluster all vertices have approximately the same number of neighbors in
each W;. Suppose we now partition the vertices in each cluster X into k parts, (X;,...,X;) in an
arbitrary way so that the number of vertices in each X; is approximately |X N H;|, and add each X;
to W;, defining a hybrid partition, H' = (H,...,H}). Then the previous argument (for a single
cluster) easily generalizes to show that H’ has approximately the same vertex and edge densities

as H.

The Oracle Aided Procedure In view of the above observation, we are almost ready to describe
the partitioning algorithm. We first describe a mental experiment in which we assume the algorithm
has access to certain oracles (which it actually does not have direct access to). We later show how
we can approximately simulate these oracles. The algorithm works in £ iterations, where £ = %. In
the *® iteration the algorithm considers a fixed subset of N/{ vertices, denoted V?, and produces
a k-way partition of V¢, denoted (Vi,...,Vi). The subsets V', ..., V* are defined according to
(increasing) lexicographical order of the vertices. The final partition constructed, (Vy,...,Vy), is
simply defined by V; ot Ui, Vi, for each j € {1,...,k}.

Let H° = (HY,...,HY) be a k-way partition which obeys Equations (3.16) and (3.17). Let
WP = (W9, ..., W?) be the partition induced on V\ V! by H°. That is, for each j, W? e H? \ V1.

j
For any given vertex v € V! and for every j € {1,...,k}, let v;(v) ! % That is, v;(v) is

the fraction of neighbors v has in W? (normalized by N, the maximum number of neighbors v may
have).

Assume we had an oracle which, given v € V' and j, returns a value 4;(v) so that for all but an
O(¢) fraction of the vertices v in V' it holds that for every j, 4;(v) = 7;(v) £ €/32. Using this oracle
we could cluster the vertices in V! according to the number of neighbors they have on each side of
W? as approximated by the oracle: For every possible @ = (a;,...,a;) where each o; ranges over
all integer multiples of ¢/16, let

VLS e VI V), 0 — €/32 < 4;(v) < aj +¢/32)

We refer to the @’s as the cluster names, since each @ uniquely defines a different cluster of V' (or
similarly, of any given set of vertices).

Assume further that the algorithm also had access to an oracle which for every cluster V&
and for each j, returns an approximation, up to an error of €¢/16, of the fraction of vertices in V&
which belong to H? Let this approximate fraction be denoted ﬂ;& We refer to ( La L, i&>
as the quantitative partition of V% since it only determines how many vertices from V*# should
be on each side of the partition (and does not specify which vertices should be on each side).
However, by the above observation, the quantitative partition of V1 is all that matters, and we
may as well partition V1% in an arbitrary way as long as the quantitative partition is satisfied. Let

(V%’a, . .,Vi’&) be such a partition; that is, m},&wl,au < |V}’a| < [ﬁjl’awl’aﬂ, for every j.

Let (Vi,...,V}) be defined by V; “Us V;’&, for each j. Consider the partition H' =
(Hi,...,H}), where H; o W? UV}, for each j. We view (Hj,...,H}) as a hybrid of the par-
tition (WY,...,W?) (of V\ V'), and the partition (Vi,...,V};) (of V1), and refer to it as the 1%
hybrid partition. Combining our hypothesis concerning H° (i.e., that H° obeys Equations (3.16)
and (3.17)) and our observation above (which can be applied since |V!| = O(eN)), we conclude that
H* is an O(€?)-approximation of the partitioning problem as defined by Equations (3.16) and (3.17).

We have just described how the algorithm (with the aid of oracles) produces a k-way partition of
V'. In general, in the ¢"" iteration, the algorithm performs an analogous procedure for partitioning
Vi. The starting point of the ' iteration is the hybrid partition resulting from the previous
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iteration, which is denoted H!~* = (H{™', ..., H,™!). Assume that for every i € {1,...,£},in the i*"

iteration we had access to the following two oracles. The first is an oracle for approximating v;(v) o

~|T(v)N W§_1| for every given v € V' and j, where Wj_l o Hj_Z\VZ The second is an oracle which
for every cluster name @ and for every j, returns a fraction ﬂ;& which approximates |VH% N H§_1|/N
(up to €/16). Then we can partition each cluster of V* as described for V! obtaining the ¢"* hybrid,
denoted H?. That is, H’ is a hybrid of (W{™', ..., Wi™"), and the partition (V¢,..., Vi) (produced
in the i'" iteration). We show that in each iteration the resulting hybrid partition does not differ
by much from the previous hybrid partition in terms of the sizes of the different sides and the edge
densities in and between the different sides. Tt follows that the final partition is an e-approximation
of the partitioning problem as defined by Equations (3.16) and (3.17).

Simulating the Oracles We next need to get rid of the oracles used in each iteration. It is

not hard to see that we do not actually need an oracle to give us the ﬁ;’a’s. This is true since
i takes on £ = O(1/€) values, and for each 4, there are (O(1)/¢)* possible values of @. Finally,
for each ¢, @, and j € {1,...,k}, there are O(1/¢) possible values of ﬁ;& Thus, we can simply
try all possible ((O(1)/€)*)CM/9*O < exp ((O(1)/€)*+! -k -log(1/€)) (vectors of ) values for the
quantitative partitions of the clusters. Fach one gives rise to a different partition of V, and we can
search among these partitions for an e-approximation of the partitioning problem.

We now turn to the oracles for v;(v). Consider the oracle needed in the first iteration. This oracle
gives approximations 4;(v), for v € V' with respect to W® = (W{,..., W}), where W? = o H? \ VY,
and H° is assumed to be a partition which obeys Equations (3.16) and (3.17). Clearly we do
not know of any such partition, or else we would be done. However, if we take a sample U of
size poly((1/€)log(k/68)) chosen uniformly from V \ V', then with high probability the following
holds. Let (Uy,...,U) be the partition of U defined by U; L Un W? and for each v € V' let

3i(v) o |I'(v) N U,;|/|U|. That is 4;(v) is the fraction of neighbors v has in U;, among all vertices

in U, and U; is essentially a random sample of vertices from W? Then, with hlgh probability over
the choice of U, for most vertices v in V', 4;(v) is a good approximation of v;(v) (with respect to
(W, ..., W?)) for all j. However, we do not know which partition (Uy,...,Uy;) to use, but this is
not a problem since we may simply try all (£/Y!) possible k-way partitions of U.

In general, in order to simulate all oracles which yield, for every ¢, v, and j, an approximate
value 4;(v) of 7;(v) (for vertices v € V' and with respect to with W~'), we do the following. We
choose ( sets, U',..., U’ each of size t = O((1/€*)log(k/ed)), where U’ is chosen uniformly in
V \ Vi. We then consider all possible k-way partitions of each U’. For each possible sequence of
partitions, ((Ui,...,U}),..., (U, ..., U%)), (where there are k** = eXp( ((1/€)? -log(k/ed)logk))
such possible partitions), and for each possible setting of all the 3%’s, we run the (oracle aided)
procedure described previously, where for 4;(v) in iteration ¢ we use |F(U) NU:|/t. The idea is that
with high probability over the choice of the U'’s, there exist (correct, or representative) partitions
of these sets for which 4;(v) is in fact a good approximation of ¥;(v), where 4;(v) in each iteration
is defined with respect to the + — 1 hybrid partition. This partition is the one determined by the
previous iteration (using the representative partition of U~! and the correct settmg of ﬁl ). While
we must try all possible partitions of the U’’s and all possible settings of the 3;%’s since we do not
know which is the correct one, with high probability over the choice of U',..., U¥, there exists at
least one execution of the partitioning algorithm which simulates the oracle procedure correctly.
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3.6.2 The preliminary Partitioning Algorithm

A detailed description of the graph partitioning algorithm is given in Figure 3.6, and its formal
analysis is provided in Lemma 3.6.1.

Graph Partitioning Algorithm
Let A={a:d = (a1,...,ar), o; €[0,1] is an integer multiple of ¢/16 }.

1. Choose £ = % sets U, ... U* each of sizet = © (51_2 log %), where U? is chosen uniformly in V\ V.,
Let U be the union of these sets.

2. For every setting ofg = ﬁj, . EZ, where EZ = <ﬁi’&, e ﬁfﬂ’&> R and ﬁ;’& € [0,1] is an integer
ae
multiple of €/8, and for each of the partitions Il = (Ule ui,..., Ule U}c) of U,

construct a partition Yis = (V?’ﬁ, ey an’ﬁ> as follows:

(a) Fori=1...¢ do:
i. For each v € Vi, and for j € {1,...,k}, let 4;(v) EC (|F(U) OUH)

=3

ii. For each @ € A let the d-cluster of V!, denoted V%, be defined as follows:
Vi S Ly e Vi VG, aj —¢/32 < 4(v) < aj + ¢/32).

iii. For each cluster V% & € A, let Vi’& be the first ﬁi’& - [V5E| vertices in VI let Vé’&
be the next 35 - |VH%| vertices in V&% and in general, let Vi© be the first §; - [Vi4|

L s ia

vertices in V2 \ U, ; V]»,- .
That is, the d-cluster of V* is partitioned according to the (guess of the) corresponding
quantitative partition (i.e., the 6;-’0‘ ’s).

iv. Foreach j € {1,... k}, let V;- =Uaea V]i-’a.

(b) Foreach j€{l,... k}, let V; = Ule Vj

Since each V; actually depends on Il and E we denote it by VJH’ﬁ.

(c) IF YA = {V?’E, . .,an’ﬁ} obeys Equations (3.18) and (3.19) then Output yié,

Figure 3.6: Graph Partitioning Algorithm

Lemma 3.6.1 Let H = (Hy,...,Hy) be a fized partition of V(G). Then with probability at least
1 — & over the choice of U, there exists a partition 11 of U = U, ..., U, and a selting of 3, such
that .

IT,5
V) ]|

vy, I S €,
and . -
o, |IE (V?’ﬁavg’ﬁ) | — [E(H;, H;/)l
5,3, E <e.

Proof: For a fixed partition IT of U and a fixed setting ﬁ = ﬁl, .. .,ﬂv, we consider the following
¢+ 1 hybrid partitions: The hybrid H° = (HY,...,H?) is simply H; The hybrid partition H' =
(Hi,...,Hi) is defined as follows:

H = Wity Vi

J
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where the partition Wi=! = (W{™", ..., W™!) of V\ V', is defined by Wi~ = H;7'\ Vi, and Vi's
are determined as in Figure 3.6. We shall show that for every 1 < ¢ < {, for a given choice and
partitions of U, ..., U=, and for a given setting of 3, ..., 3=, there always exists a setting of
(referred to as the correct setting), and with probability at least 1 — % over the choice of U’, there
exists a partition (U4, ..., U%) of U such that

v \H‘% <t (3.20)
and R i—1 rie1
i i (HwHJ')|‘NzE (17" 17| <. (3.21)

The lemma follows by simple induction on .

Let (U3,...,U}) be the partition of U’ induces by W'='. Namely, for each j, U} = Wit n UL
We say that U is good with respect to (Wi™',..., Wi™!) and V* if the following holds. For all but
€/8 of the vertices v in V*,

‘F(U)QU;- IT(v) N Wi L€

For each j € {1,...,k} ; = v 2

(3.22)

If the above holds then we say that (U%,..., Ui) is representative with respect to (Wi™',..., Wi™)
and V¢,

Proving Eq. (3.20) and (3.21) for a Good U* Assume first that (U,..., UL) is represen-
tative with respect to (Wi™' ..., Wi™!) and V!, and let the clusters V©¢ be as defined in Fig-
ure 3.6, Step 2(a)ii, where %;(v) (for every v € V' and j) is defined as in Step 2(a)i. Let

ﬁi = < i’&,..., 2’&>&EA be such that for every @ € A, and for each j, ﬁ;& = % + €/16.

Since each ﬂ;a takes on all values which are multiples of ¢/8, there is such a setting of ﬁ“s. It
follows that when the vertices in Vi are partitioning using this ﬁi, then Equation (3.20) holds. We
now show that Equation (3.21) holds as well. Towards this end we fix arbitrary 7,7’ and consider
the contribution of three types of edges to the Lh.s. of Equation (3.21):

1. The contribution of edges with both endpoints NOT in V¢. Since v € H; iff v e Hj-_l, for every

v & V', such edges do not contribute to the difference (i.e., to the L.h.s. of Equation (3.21)).
2. The contribution of edges with both endpoints 1IN Vi. There are at most |Vi|2 such edges.
Using |V?| = % = N, the potential contribution of these edges is bounded by 5 N.

3. The contribution of edges with exactly ONE endpoint in V. We distinguish two cases.

(a) Edges incident to vertices in V* for which Equation (3.22) does NoT hold. Since (U%,...,U%)
is representative with respect to (Wi™',..., W;™") and V?, there are at most 5; N such
vertices. Thus, the contribution of these edges to the Lh.s. of Equation (3.21) is bounded
above by £N -2N = 5N?

(b) Edges incident to vertices in V* for which Equation (3.22) poEs hold. The contribution
of these edges is due to two types of approximation errors. The first approximation error

is due to the clustering itself. That is, vertices in V¢ which belong to the same cluster,
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might differ by £~V in the number of neighbors they have in each Wj-_l (i.e., for every
v, v’ which belong to the same cluster V&% and for each j, we have |y;(v) — 7;(v")] <
19 (v) — 3, (") + 135 (v) — 75 (v)|+1;(v") = 7;(v")| < (¢/8)N.) The second approximation
error is due to the fact that the fractional partition is specified with bounded precision

(i.e., ﬁ;& = w + €/16). Thus, the contribution of these edges to the Lh.s. of
Equation (3.21) is bounded above by N2

Summing both cases we get a contribution bounded above by $N?Z.

Bounding the Probability that U? is not Good We first fix a vertex v € Vi. Let U =
{u1,...,u;}. For j € {1...,k}, and for 1 < s < ¢, define a Bernoulli random variable, £, which is
1if u, is a neighbor of v and u, € Wji-_l, and is 0 otherwise. By definition, for each particular j,
the sum of the £j’s is simply the number of neighbors v has in U}, and the probability that £ =1
is = |T(v) N W§_1|. By Hoeffding’s inequality and our choice of ¢, for each j € {1,...,k},

TV ) nwity
1 B N

> 3%] = exp(=0(€’t)) = O <%> .

By Markov’s inequality, for each j € {1,...,k}, with probability at least 1 — & over the choice of
U’, for all but 1e of the vertices in V*, Equation (3.22) holds (for that j), and thus with probability
at least 1 — %, Ut is good as required. W

Lemma 3.6.1 implies that if G € GPg, then with high probability the Graph Partitioning Al-
gorithm described in Figure 3.6 will find an e-approximation for the partitioning problem defined
by ®. As was mentioned previously, we show below how to produce such a partitioning in a more
efficient way by first running the testing algorithm for GPg.

Proby: [

3.6.3 The Testing Algorithm

The testing algorithm for GPg (described in Figure 3.7) essentially performs the same steps as
the graph partitioning algorithm on a small sample, S, and it is analyzed below. An important
technical detail is that (in Step 4) the tester checks whether the sampled densities are close to an
admissible set of densities (defined below), rather than test if they satisfy inequalities analogous to
Equations (3.18) and (3.19) hold.

ADMISSIBLE SET OF DENSITIES: A set of (non-negative) reals, {a;} U {b; ;), is called admissible

with respect to ® (= {p}>, pi*} U {0}, 04", }) if it satisfies the following inequalities

k k
Zaj =1 and Z b]'J'I S 1 (323)
ji=1

Ji'=1
py <a; <pi (V) and o, < by <ol (V5,5) (3.24)
and
bjj<ai (Vj) and bj; <2-a;-a; (Vj#75") (3.25)

We may assume that @ is such that there are admissible sets of reals with respect to it. In Step 4

of Figure 3.7 we check that a set of densities {pJH’ﬁ} U {QJHJ’?} is 2¢'-close to an admissible set. That
is, we ask whether there are non-negative a;’s and b;;’s which, in addition to the above, also
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satisfy |a; — p; ’ﬁ| < 2¢ (Vj) and |b; ;0 — gjlﬂ < 2€¢' (Vj4,5'). This comes instead of checking if
P e [(pl =), (p 4+ £)] (V5) and gm’ﬁ € [(0F =), (0% + £)] (V4,5). The reason for this choice
will become clear in the proof below. We note that the problem of whether a set of densities is
2¢'-close to an admissible set for ® can be certainly solved in exp(poly(k)- L)-time, where L is the
length of the encoding (in binary) of ® and € (see Appendix A.2). Note that this time-bound is
dominated by the number of partitions examined in Step 4 (of Figure 3.7).

k

Testing Algorithm for GPg, where ® = {p®, p¥}i_; U {0}, 0% 35 11,

7 _ €
Let ¢ = 55

' ' o1y} F+3
1. Uniformly choose a set S = {s1,...,8y,} of size m = © ( ' ) k -log(k/(€8)) ).

For1<i</ let S € vins,

2. Choose £ = 54_' sets U, ..., U each of sizet = © (6,% log %), where U is chosen uniformly in V\V*.
Let U be the union of these sets.

3. For every setting ofg = ﬁj, .. .,EZ and for each of the partitions Il = (Ule Ui, ..., Ule Uﬁg) of
U (as in Figure 3.6),
construct a partition SA — (S?’E, ey S?’ﬁ) as follows:

(a) Fori=1...¢ do:

i. Foreach v €S, and for j € {1,...,k}, let 4;(v) = def 1 |F (v) N UL |)

ii. For each @ € A let the @-cluster of St, denoted %% be defined as follows:
gina ! {ve S V) a; —€/32<9(v) <aj+€/32}

iii. For each clustel“Si’&, a@ €A, let i % be the first | 8% &St || vertices in $"%, let Sy a
be the next |3y - [S"%|| vertices in S"% and in general for j < k let SZ a be the first
Lﬁ;’& -|SHE|| vertices in SH \ Ujij

iv. Foreach j € {l,... k}, let S?- = Uanea S; @

(b) Foreach j € {l,... k}, let Sj:U St.

i=1%j"

Z,O‘, and let S} ' be the remaining vertices in S»¢.

4. For each partition, Snﬁ let p; IL§ def o |Snﬁ| (vV4)

yﬁ def 1
— m/2

If for some 11, 3 the set of densities {p?’ﬁ} U {g?ﬁ} is 2¢'-close to an admissible set w.r.t. ®
then output Accept, otherwise output Reject.

and 0 i {(s2r=1,827) EE : 8901 € S]H’ﬁ and s, € S]U,’ﬁ or vica versa }| (Vj,7).

Figure 3.7: Testing Algorithm for GP s

Proof of Theorem 3.11 Recall that ¢ = 5. We first note that if G € GPg, then by
Lemma 3.6.1, with probability 1 — §/2 over the choice of U, there exist II and E such that V7 is
an €-approximation of the partition problem. Furthermore, the densities related to this partition
are €¢-close to an admissible set for ®. On the other hand, if G is e-far from GPg, then no k-way

partition of V has densities which are 3¢/-close to an admissible set w.r.t. ®.12 Suppose, on the

12 Here is where the notion of admissible solution plays an important role. We could not have concluded that then
no k-way partltlon of V 1s a 36'—g00d approximation (of the partition problem). To demonstrate the point consider
the parameters pi° = p = 1 + ¢’ (and all other parameters are trivial; i.e., upper-bounds are 1 and lower bounds
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contrary, that V has a k-way partition with densities that are 3¢’-close to an admissible set w.r.t. ®.
Then we can modify this partition by moving up to 3ke N vertices (according to the guaranteed
admissible densities) and omitting/adding up to 3k%¢ - N? = €N2 edges, and obtain a graph in GPg
in contradiction to the hypothesis. 3

For a fixed set U, we now consider the partitions V!1#’s which would result in running the graph
partitioning algorithm with an approximation parameter ¢ = €/3k*, and a confidence parameter
§/2. We relate these partitions to the the partitions S™#’s that are generated by the Testing
algorithm when using the same set U. We claim that, with high probability over the choice of S,
for each partition II of U and for each setting of ﬁ, the following holds:

1. If the densities of the partition YIs = (V?’ﬁ, .. .,an’ﬁ) are €'-close to an admissible set for

the problem, then the densities of the partition SmA = (S{I”G, .. .,S?’ﬁ) are 2¢'-close to an

admissible set for the problem. It follows that the testing algorithm will accept G (cf., Step 4
in Figure 3.7).

2. Tf the densities in V™f are not 3¢-close to an admissible set then the densities in S are
not 2€¢-close to an admissible set. It follows that the testing algorithm will reject G.

8 i exactly

To prove the claim, consider a particular II and ﬁ Assume first that for each j, S;
V]U’ﬁ N'S. Then we can view ST7 as sampling Yis, Namely, for a given side j € {1,...,k} and
for each r € {1,...,m} we can define a Bernoulli random variable, £, which is 1 if s, € V]H’E
and 0 otherwise. Thus, Prob({] = 1) = ‘V;I’E /N, and with high probability, by Hoeffding’s
inequality, the sum of the £;’s does not deviate from its expectation by more than €. Similarly, for
a given j,j’ we can define a Bernoulli random variable, 7 ;, for every r € {1,...,m/2} which is 1

if (Sop_1,52,) € E, S9,_1 € V;l’ﬂ and s, € S;»I,’ﬂ (or vica versa), and is 0 otherwise. The expected

value of the sum of the £ ;,’s is the edge density between V;l’ﬂ and V;{’ﬁ, and for large enough m
we do not deviate by more than € from this expected value for every j and j'. Since we want these
estimations of expected values to be good for all II and ﬁ, the size of S must grow logarithmically
with the number of possible partitions I and settings of ﬁ

The only detail that we need to take care of is that when partitioning S C V¥ for some i and
a, (and a fixed II and ﬁ), some s,’s which belong to S%% might be put in a particular Sj-’&, while in
the graph partition they are put in V;»’,a, for j # 7. However, by applying arguments analogous to
Lemma 3.3.5, it can be shown that the fraction of such vertices is small, and that their contribution
to the approximation error is small too. W

Proof of Theorem 3.12 In order to get a partitioning algorithm whose running time is as stated
in the theorem, we first run the testing algorithm. The idea is that by first running the testing
algorithm we find the correct choice of II and ﬁ (in time independent of N), and then we can use
these choices to partition all of V. As we have shown in the proof of Theorem 3.11, with high
probability, a partition S™F will cause the test to accept if VL s an € -approximation of the
partitioning problem, and if V% is not an 3¢-approximation, then S™# will not cause the test to
accept. Thus, with high probability if the testing algorithm accepted G due to a certain setting of
1T and ﬂ, then VL5 is an e approximation of the partitioning problem. W

are 0). In this case the class GPg is empty and thus all graphs are e-far from it. Yet, any bisection of any graph is
an ¢’-good approximation of the partition problem with parameters ®.
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3.7 Various Comments

3.7.1 Extensions and Limitations

We have presented several Graph Property Testers which use queries and are evaluated with respect
to the uniform distribution (on pairs of vertices). We now comment on several extensions, variations
and considerations.

IMPOSSIBILITY OF TESTING WITHOUT QUERIES. Proposition 3.2 shows that queries are essential for
testing Bipartiteness. The construction used in the proof actually establishes the same for testing
the class of graphs having cliques of density at least 1/2, and for approximating the MaxCUT (of
dense graphs up to an N?/8 additive term). Furthermore, the proof can be easily modified to yield
the same result for testing k-Colorability, for any £ > 3.

EXTENSION TO DIRECTED GRAPHS. Some of the problems we study have analogies in directed
graphs. In particular this is true for p-Cut, where we are interested in testing whether a directed
graph has a two-way partition (V;,Vs) such that the number of edges crossing from V, to V, is
at least pN?. Note that directed graphs in general do not have a symmetric adjacency matrix
and the existence of a directed edge from v, to vy does not necessarily imply the existence of an
edge from v, to ;. Similarly to the undirected case, the algorithm is essentially based on the
following observation. Consider a vertex v and a partition (W;, Wy) of V \ {v}. Let E(v, W;) be
the set of edges going from v to vertices in W,, and let E(Wy,v) be the set of edges going from
vertices in Wy to v. In case |E(v, Wy)| > |E(Wy,v)|, then it is preferable to put v on side 1, i.e.
(Wi U {v}, Wy) > (W, Wy U {v}), and in case |E(W,v)| > |E(v, W,)|, we should put v on side
2. The notion of unbalance is hence slightly modified, but as in the case of undirected cuts, the
above observation generalizes to sets of vertices of size O(eN). Thus the p-Directed-Cut testing
algorithm is very similar to the p-Cut testing algorithm, the only difference is that when deciding
where to put a vertex v € V* given a fixed partition (U, U,) of the uniformly selected set U, we
compare the number of edges going from v to vertices in U, to the number of edges going from U,
to v. The algorithms for k-way-Cut and Bisection are modified similarly.

It is also possible to extend the definition of the general partition problem to directed graphs
by allowing the bounds ¢, and 0}", to differ from )% ; and ¢l;, respectively for j # j’. That is,
there are separate requirements on the number of edges crossing from V; to V; and the number
of edges crossing from V;: to V;. In such a case, the graph partitioning and testing algorithms for
directed graphs differ from the algorithms for undirected graphs only in their definition of clusters
(but the clusters are partitioned by the algorithms as in the undirected case). A cluster of vertices
which is defined with respect to a fixed partition (Wy,..., Wy), is a set of vertices Z such that for
all v;,vy € Z, and for every j € {1,...,k}, E(v;, W;) = E(v,, W;), and E(W;,v;) & E(W;, v).

EXTENSION TO PRODUCT DISTRIBUTIONS. Qur algorithms for k-Colorability, p-Clique and p-Cut
can be easily extended to provide testers with respect to “product distributions”. We call the
distribution I : V(G)? — [0,1] a product distribution if there exists a distribution on vertices
7 : V(G) — [0,1] so that II(u,v) = 7(u) - 7(v). Recall that each of our algorithms takes a uniform
sample of vertices, and queries the graph only on the existence of edges between these vertices.
Instead, in case we need to test G w.r.t the product distribution II, we sample V(G) according to
the distribution 7. Note that the algorithm need not “know” 7; it suffices that the algorithm has
access to a source of vertices drawn from this distribution (or to a source of pairs drawn according
to II). To prove that this extension is valid consider an auxiliary graph G’ consisting of vertex-
components so that each component correspond to a vertex in G. Complete bipartite graphs will be
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placed between pairs of components which correspond to edges in G. The size of the component will
be related to the probability measure of the corresponding vertex in G. Thus, uniform distribution
on V(G’) is almost the same as distribution II on V(G). For the analysis of the p-Clique tester,
we add also edges between vertices residing in the same component. (This is certainly NOT done
in analyzing the k-Colorability and Max-CUT testers.) It can be shown that testing G for any of
the above mentioned properties with respect to the product distribution II corresponds to testing
G’ (for the respective property) under the uniform distribution. Suppose, for example, that G
is k-Colorable. Then so is G’ and thus the k-Colorability Tester will always accept G’ (and thus
always accept G). On the other hand, if the k-Colorability Tester, run with parameters ¢, §, accepts
G’ with probability 1 — 4, then there is a k-coloring of G’ which violates less than an € fraction of
vertex pairs. To obtain a k-coloring of G we randomly assign each vertex in G a color according to
the proportions of colors assigned to the corresponding vertices in G'. It follows that the expected
probability mass (according to II) assigned to violated edges is less than e.

IMPOSSIBILITY OF DISTRIBUTION-FREE TESTING. In contrast to the above extension, it is not
possible to test any of the graph properties discussed above in a distribution-free manner (even
with queries). For simplicity, let us consider the case of Bipartite Testing. Consider the following
class of distributions on pairs of vertices of an N-vertex graph. FEach distribution is defined by a
partition of [N] into & 4-tuples. The distribution assigns probability z% to each (ordered) pair of
distinct vertices which belong to the same 4-tuple. Pairs residing in different 4-tuples are assigned
probability 0. For each distribution, we consider two graphs. The first graph consists of N/4 paths
of length 3, each residing in a different 4-tuple; whereas the second graph consists of N/4 triangles,
each residing in a different 4-tuple. Clearly, the first graph is bipartite whereas the second is not.
Furthermore, the second graph is 1/6-far (w.r.t the above distribution) from being bipartite. Still,
no tester which works in o(ﬁ) time can tell these two graphs apart, even if it gets samples drawn
from the distribution and is allowed queries. The reason being, that ¢ samples drawn from the
distribution will, with probability at least 1 —4¢*/N, come from different 4-tuples. In this case, any
query made by the tester, unless if it is on a pair which has appeared in the sample, is likely to be
on a pair which is not from the same 4-tuple and thus a non-edge (in both graphs). (Formally, one
may consider a fixed distribution drawn at random from the above class and the likelihood claim
is made with respect to the choice of distribution.)

ON THE POSSIBILITY OF WORKING IN poly(1/¢) TIME. The algorithm for Bipartite Testing works
in poly(1/€)-time (see Thm. 3.1), whereas all the other testers we present work in time exponential
in poly(1/e). In fact, it seems that one cannot hope for much better. For example, we claim that
if one can test 3-Colorability with distance parameter € in time poly(1/¢) then NP C BPP. To
test if a graph G is 3-colorable, simply set ¢ = 1/|V(G)|* (and § = 1/3) and run the property
testing. Clearly, if G is 3-colorable then the test will accept with probability at least 2/3, whereas
if G is not 3-colorable it must be e-far from being 3-colorable and thus be rejected by the test with
probability at least 2/3. We remark that a similar argument can be made when using a relatively

bigger value of €. For example, to decide if G is 3-Colorable consider an auxiliary graph, G’, with

21Vl vertices which are grouped into n < |[V(G)| components each consisting of 2" /n vertices.

These huge components will correspond to vertices in G and complete bipartite graphs will be
placed between pairs of components which correspond to edges in G. Thus, we can set € = 1/n?
and apply the same reduction as above this time showing that deciding 3-colorability of G reduces
to 3-colorability testing of G’ with distance parameter € = 1/poly log |V(G')|.

ON ONE-SIDED FAILURE PROBABILITY. The testers for Bipartite and k-Colorability always accept

58



graphs which have the property. In contrast, all other testers we present may fail to accept a yes-
instance (yet, with probability at most §). We claim that non-zero failure probability, in this case,
is inevitable. Consider the execution of a potential Clique Tester given access to a graph with no
edges at all. Clearly, the tester must reject with probability at least 1 —§. Fix any sequence of coin
tosses (for the tester) which makes it reject. This determines a sequence of queries into the graph
(all queries are answered by a 0). Assuming that the number of queries is less than (1 — p)N, there
exists an N-vertex graph having a clique of size pN in which all the queried pairs are non-edges.
It follows that the Clique Tester rejects this yes-instance with positive probability.'® We conclude
that there is a fundamental difference between testing k-Colorability and testing p-Clique.

IMPOSSIBILITY OF LEARNING WITH QUERIES. Finally, we remark that all the above classes are
not learnable, not even under uniform distribution and when allowing queries. Furthermore, this
holds also if we allow unlimited computing power as long as we restrict the number of queries to
o( N). Intuitively, there are “too” many graphs in each family. Formally, we may consider attempts
to learn a random bipartite N-vertex graph and may even fix the 2-partition, say, place vertices
{1,..., N/2} on one side. Then, each uninspected pair (¢,7), with ¢ < N/2 and j > N/2, is equally
likely to be either an edge or a non-edge.

EXTENSION TO WEIGHTED GRAPHS (WITH BOUNDED WEIGHTS). Let G = (V,E) be a (simple
undirected) graph, and w : E — [0, B] be a weight function assigning each edge ¢ € E a non-negative
value (bounded by B). We assume that B, the bound on the weights of the edges, is known. We
associate with G a function fg, : V x V — [0, B], where fg ,(v1,v5) = 01if (v1,v,) ¢ E and is
w(vy, v9) otherwise. When performing a query on a pair of vertices, (v, v,), our testing algorithms
receive the value of fg(vi,vs). The notion of distance between graphs is slightly different from
the unweighted case: We define the distance between two weighted graphs (G,w) and (G’,w’), or
equivalently between fg, and fa/ ., to be % Y vaeV | fa.w(v1,v2) — farw(v1,v2)|. The distance
between a weighted graph and a class of weighted graphs is defined in the obvious manner. The
generalization to weighted graphs may affect the testing problems in two ways:

Affect on the objective:  Consider, for example, a generalization of p-CUT to weighted graphs. A
weighted graph G = (V,E,w) has a cut of weight at least p, if there exists a partition (V,V,)
of V such that #ZUIE\,IME% 2fa(vi,v9) > p. Thus, the class p-CUT is a class of weighted
graphs (rather than of graphs). Still, our algorithms for unweighted p-CUT are easily adapted
to the weighted case; yet, the query complexity (resp., running-time) of our tester will depend
polynomially (resp., exponentially) on the bound B.'* The k-Cut, Bisection, and General Partition
properties and algorithms generalize similarly.

Affect on distance: Consider, for example, testing k-colorability of weighted graphs. Clearly, the
property of being k-colorable has nothing to do with the weights of the edges; yet, the distance
from the class of k-Colorable graph does depend on these weights. However, the latter dependency
can be easily waived by replacing each non-zero weighted edge by an edge with weight B. Note
that this replacement does not affect k-colorability and that it only increases the distance of non-

'3 An analogous argument can be used to show that any Clique Tester must accept some no-instance with positive
probability. (Start by considering an execution on the complete graph.)

"Qpecifically, all that need be changed is the notion of balanced vertices: We say that a vertex v is unbalanced
with respect to a partition (Wi, Ws) if %| Ew1€W1 fa(v,wr) — Ew2ew2 fa(v, w2)| is non-negligible. Similarly to
the unweighted case we shall use partitions (U, Uz) of a uniformly selected sample U to approximate this difference
(and use an additional sample S to approximate weights of cuts). The only difference in the analysis is that instead
of using sums of 0/1 random variables to approximate expected values, we are using sums of random variables whose
value lies in [0, B], and hence we’ll get a polynomial dependence on B in the sample complexity, and an exponential
dependency in the running time.

59



k-colorable weighted graph from the class of k-colorable weighted graphs. We stress that in the
resulting graph all edges have weight B. Thus, testing a weighted graph for k-Colorability with
distnace paprameter €, reduces to testing the underlying (unweighted) graph (for k-colorability)
with distance parameter 5. Again, the bound B turns out to affect the query complexity and
running-time as in the first case.

3.7.2 Testing Graph Properties and Approximation

k-COLORABILITY TESTING VS. APPROXIMATING k-COLORABILITY. Petrank has defined Approz-
imating k-Colorability as determining the number of edges which are “violated” under the best
k-partition of the graph [Pet94]. (By violated edges w.r.t a k-partition we mean edges with two
end-points in the same side of the partition.) Furthermore, he has suggested to concentrate on the
“genuine” special case of the problem where one has to distinguish k-colorable graphs from graphs
for which every k-partition violates a constant fraction of the edges. Petrank has shown that solving
this promise problem is NP-Hard [Pet94], for &k = 3. In contrast, our k-Colorability Tester implies
that solving the same promise problem is easy for dense graphs, where by dense graphs we mean
N-vertex graphs with Q(N?) edges. This is the case since, for every constant € > 0, our tester can
distinguish, in exp(k?/€®)-time, between k-colorable N-vertex graphs and N-vertex graphs which
remain non-k-colorable even if one omits at most e N? of their edges.'®

Another application of our k-Colorability Tester uses the fact that, for every € > 0, in case the
N-vertex graph is k-colorable, the tester may retrieve in poly(k/e€) - N-time a k-partition which
violates at most e N2 edges. Thus, we may reduce the general problem of coloring k-colorable graphs
to the same problem restricted to non-dense graphs (i.e., N-vertex graphs with o( N?) edges). (The
reduction produces a coloring for dense graphs with k£ times more colors than the number used by
the coloring of the non-dense graphs, but a factor of k seems small at the current state of art for this
problem [KMS94].) We remark that some known algorithms for this task, seem to perform better
when the maximum degree of vertices in the graph is smaller [KMS94]. Furthermore, deciding
k-colorability even for N-vertex graphs of minimum degree at least ]’z%g - N is NP-complete (cf.,
Edwards [Edw86]). On the other hand, Edwards also gave a polynomial-time algorithm for &-
coloring k-colorable N-vertex graphs of minimum degree at least aN, for any constant o > Z%;’

p-CLIQUE TESTING VS. APPROXIMATING THE MAXCLIQUE. Our notion of p-Clique Testing differs
from the traditional notion of MaxClique Approximation. Qur p-Clique tester refers to the distance
of a graph from the family of N-vertex graphs having cliques of size pN, say, for p = 1/4. It accepts
N-vertex graphs having a clique of size N/4 and reject graphs which are, say, 0.01 - N? edges away
from having a clique of size N/4. On the other hand, when approximating the size of MaxClique,
one is given an N-vertex graph and is asked to distinguish, for example, the case in which the
max-clique has size at most N/4 from the case in which the max-clique has size at most N/5.
Distinguishing the cases in the latter example is NP-Hard [BGS95]. Still the graphs constructed by
the FGLSS reduction [FGL*91] are very close to having a clique of size N/4, also in the case where
the max-clique has size smaller than N/5. Furthermore, a random graph with high edge density
is very close to being a clique, whereas with very high probability its max-clique is quite small In
general, a random N-vertex graph with edge density 1 — p is only p-away (i.e., misses “only” a p
fraction of all possible edges) from being an N-clique, whereas the probability that it contains a

clique of size t is bounded above by (Jj) (1- p)(;)) (For example, with p = N~/ the maxclique

5 Similar results, alas with much worse dependence on ¢ in the running-time, can be obtained by using the results
of Alon et. al. [ADL*94]. This was observed by Noga Alon (private communication, April 1996).
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is very likely to be smaller than v/N.)

3.7.3 Testing other Graph Properties

The following remarks and observations are meant to indicate that providing a characterization of
graph properties according to the complexity of testing them may not be easy.

We first recall that testing k-Colorability seems to be fundamentally different from testing p-
Clique since the first can be done without ever rejecting yes-instances whereas the second cannot
be done without two-sided failure probability.

EAsY TO TEST GRAPH PROPERTIES. Next, we observe that any graph property which can be made
to hold by adding or omitting few edges from any graph can be tested very easily. Namely,

Proposition 3.13 (testing almost trivial classes): Let a > 0 be a constant and C a class of graphs
so that for every graph, G,
dist(G,C) < |V(G)|~

Then, C can be tested by using at most poly(log(1/6)/¢) labeled random examples, where € is the
distance parameter. Furthermore, the test always accepls graphs in C.

Classes which satisfy the hypothesis of the proposition include: Connected Graphs (add < [V(G)|—1
edges), Fulerian Graphs (make connected and add < |V(G)|/2 edges), Hamiltonian Graphs (add
< |V(G)| — 1 edges), Graphs with K(-)-vertex Dominating Set (add < |V(G)| — K(|V(G)|) edges),
Graphs having Perfect Matching (add < |V(G)|/2 edges), and Graphs containing a subgraph H (add
< |E(H)| edges).'® We remark that the above also holds with respect to some of the complement-
ing classes such as UnConnected Graphs, Non-Hamiltonian Graphs, Non-Fulerian Graphs, Graphs
without K(-)-vertex Dominating Set and Graphs not having Perfect Matching (e.g., by removing
edges to make one vertex isolated).

Proof: Let A(N) = maXg.v(a)=n1dist(G,C)} and suppose that A(N) or a good upper bound
on it is known. (One may always use A(N) = N~2.) On input an N-vertex graph G (and distance
parameter €), if € > A(N) then the tester always accepts. Otherwise, the tester inspects all
N?% = poly(1/e) edges and decides accordingly. Actually, we may take a sample of O(log(N/é)- N?)
labeled random examples and accept iff either the sample does not cover all possible vertex pairs
or the sample “reveals” a graph in C. The main point is that in case ¢ > A(N) every N-vertex
graph is e-close to C. W

We stress that as long as the distance parameter (i.e., €) is not too small, the tester is trivial (i.e.,
it accepts any graph without performing any checking). Slightly more is required in order to check
any graph property which holds only on very sparse graphs. Here, as long as € is not too small, the
tester need only check that random examples of vertex-pairs have no edge between them.

Proposition 3.14 (testing classes of sparse graphs): Let a > 0 be a constant and C a class
of graphs so that C C {G : |E(G)| < |[V(G)|*~*}. Then, C can be tested by using al most
poly(log(1/é)/€) labeled random examples, where € and ¢ are the distance and confidence parame-
ters.

1The latter can be generalized to Graphs containing a subgraph which can be contracted to one of the graphs in
{Hi,...,H;}. The Non-Planar Graphs are a special case.
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Classes which satisfy the hypothesis of the proposition include: Trees, Forests and Planar Graphs.

Proof: Let p(N) = maxgec:v(a)=~{|E(G)|/N?} and suppose that p( V) or a good upper bound on
it is known. (One may always use p(N) = N~°.) On input an N-vertex graph G (and parameters
€,0),if € > 3p(N) then the tester takes a sample of ¢ o O(log(1/6)/€?) labeled random examples
and accepts iff it has seen at most (p(N) + (¢/3)) - t edges. Otherwise, the tester inspects all
N? = poly(1/e) edges and decides accordingly. (Again, the actual implementation is by a sample of
O(log(N/é)-N?) edges which is very likely to cover all vertex pairs.) The main point is that, in case
€ > 3p(N), the graphs which are e-away from C have edge density at least e — p(N) > p(N )+ 2¢/3.
We conclude by noting that, with probability at least 1 — § the number of edges seen by the tester
provides a good estimate (i.e., ¢/3 deviation) to the density of the graph. W

We stress that both the above testers make no queries. In contrary, the following slightly more
involved tester does make queries in order to check that vertices drawn at random have about the
same degree. This algorithm is a tester for the class of Regular Graphs, and its correctness is
established based on a theorem due to Noga Alon (private communication, 13th April 1996).

Proposition 3.15 (testing regular graphs): The class of regular graphs can be tested by using at
most poly(log(1/6)/€) queries, where € and § are the distance and confidence parameters.

Proof: On input an N-vertex graph G (and parameters €,§), the test takes a sample, 5, of
O(log(1/6)/€) many vertices and for each v € 5 makes O(log(1/€d)/€®) queries of the form “is
(v,w) € E(G)”, where w € V(G) is uniformly chosen. Thus, the test estimates the degrees of all
vertices in §. The test accept iff all the estimated degrees (divided by N) are within €¢/3 of one
another.

Clearly, if G is regular then, with probability at least 1 — §, the test accepts it. Assume,
on the other hand, that the test accepts with probability greater than §. Then, for some p and
€ = ¢/10, it must be the case that all but an € fraction of the vertices in G have degree (p+ € )N.
By omitting/adding edges to the few vertices with degree outside the above interval, we obtain a
graph G’ so that

1. dist(G,G’) < €.
2. every vertex in G’ has degree (p £ 2¢')N.

At this point we invoke a theorem due to Noga Alon (see Appendix A.l) which asserts that a
graph G’ in which the difference between the maximum and minimum degree is bounded above by
€'IV(G')| is at most (3+0(1)) - ¢’-away from the class of regular graphs. Thus, G is at most e-away
from this class, and the proposition follows. W

Estimating vertex degree also suffices to test that the minimum cut in the graph is above some

threshold. That is,

Proposition 3.16 (testing min-cut): The class of graphs G with minimum cut at least K =
K(|V(G)]|) can be tested by using at most poly(log(1/6)/€) queries, where € and § are the distance
and confidence paramelers.

Proof: If ¢ = O(log(N)/N) then we examine the entire graph. Otherwise, we merely test via
a poly(1/€)log(1/6) sample that all vertices seem to have degree (approximately) above K. That
is, to test that the minimum cut is at least K = K(|V(G)|) we sample sufficiently many vertices,
approximate their degree according to the sample, and accept iff all estimated degrees are above,
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say, K — £|V(G)|. The analysis utilizes the observation that at most O(N log N) edges must be
added to an N-vertex graph of minimum degree K in order to make it have min-cut at least K.
This observation is proved by a random construction.

The basic idea is to consider the immediate neighborhoods of each of the N vertices in the
graph. We get a collection of subsets, each having cardinality at least K. Thus, all that is needed
is to guarantee K edge-disjoint paths between each pair of such subsets. This can be done easily,
by designating K special vertices in the graph, and randomly connect each vertex in the graph to
the designated set by O(log N) random edges. Consider one specific neighborhood (out of the N).
With probability greater than 1 — %, the random edges (from its vertices to the designated set)
contain a K-matching. Thus, we obtain K edge-disjoint paths between each pair of neighborhoods,
which implies that the augmented graph id K-edge-connected. W

TESTING GRAPH PROPERTIES USING THE REGULARITY LEMMA. As noted above, much less efficient
testers for k-Colorability and other graph properties can be obtained by using the Regularity Lemma
of Szemerédi [Sze78]. Interestingly, the Regularity Lemma yields the following result about testing,
which we do not know to obtain without it. Let H be an arbitrary fixed graph (e.g., the triangle
K3) and consider the class of graphs which have no H subgraphs. Using the Regularity Lemma,
Noga Alon (private communication) observed that there exist testers for H-freeness, with query
complexity which is a tower of poly(1/¢) exponents. Recall that ¢ is our distance parameter (i.e.,
Alon’s tester rejects a graph if it is e-far from being H-free). Alon expressed the opinion that
proving a result like this without the Regularity Lemma (and hence getting better bounds) would
be, indeed, very challenging, and would probably have some very nice combinatorial applications.

HARD TO TEST GRAPH PROPERTIES. Analogously to Proposition 2.7, we show that there are graph
properties requiring inspection of a constant fraction of all possible vertex-pairs.

Proposition 3.17 There exists a class of graphs, G, for which any testing algorithm must inspect
a constant fraction of the vertex pairs. This holds even for testing with respect to the uniform
distributions, for any distance parameler ¢ < 1/2 and confidence parameter § < 1/2, and when
allowing the algorithm to make queries and use unlimited computing time.

Proof: In adapting the proof of Proposition 2.7, we introduce for each N a random subset of 235V
N-vertex graphs. FEach graph is specified by the lower triangle of the corresponding adjacency
matrix. This allows at most N! representations of the same graph (i.e., all its automorphism). The
multiple representation only effects the first part of the proof; that is, the bound on the probability
that a uniformly selected graph is e-close to G. However, the extra factor of N!is easily eliminated
by the probability exp(—Q(N?)) that a random graph is e-close to a specific graph. The second part
of the proof (i.e., the distance between the two observed distributions) remains almost unchanged.

Actually, a similar result holds with respect to graph properties which are in A"P; that is, classes
of graphs which constitute NP sets.

Proposition 3.18 There exists an NP set of graphs, G, for which any testing algorithm must
inspect at least Q(N?) of the vertex pairs, where N is the number of vertices in the graph. This
holds even for testing with respect to the uniform distributions, for any distance parameter ¢ < 1/2
and confidence parameter 6 < 1/2, and when allowing the algorithm to make queries and use
unlimited compuling time.
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Proof: We adapt the proof of Proposition 3.17, by considering, for each N, all graphs which arise

for particular “pseudorandom” sequences. Specifically, we consider (J;f)—long sequences taken from
def 1

an €-27*-biased sample space (cf., [NN93] or [AGHP92]), where { = ;5 N?. Efficiently constructible
sample spaces of size poly(2'/€) having the above property can be found in [NN93, AGHP92].
Graphs are now specified, as before, by letting each such sequence define (the lower triangle of)
the corresponding adjacency matrix. The first part of the proof remains unchanged (since all that
matters is the number of graphs in the class). The second part of the proof is actually simplified
since any t observed bits in the a random sequence as above deviates (in max-norm) from the
uniform distribution by at most €. All which remains is to be convinced that we have constructed
an NP set. This follows by letting the NP-witness of the membership of a graph in the set be the
isomorphism to the canonical representation (i.e., the representation corresponding to the almost
unbiased sequence). W
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Appendix A

Technical Appendix

A.1 A note on Regular Graphs (by Noga Alon)

The following theorem is due to Noga Alon. We stress that the theorem refers to simple undirected
graphs (i.e., with no self-loops and no parallel edges).

Theorem A.1 Let G = (V,E) be a graph on N vertices with mazimum degree D and minimum
degree d, where D —d < eN. Then there is a regular graph on N wvertices obtained from G by
omitting and adding at most 3¢N? + 2N edges.

Proof: By replacing G, if needed, with its complement, we may and will assume that D <
(1 4+ ¢)N. Tt is convenient to first reduce to the case in which the maximum degree is a bit
smaller than 0.5N. This can be done as follows. Delete the maximum possible number of edges
from G subject to keeping its minimum degree d. Let us denote the resulting graph by G’ and
the maximum degree in it by D’. In case D' = d we are done. Otherwise, we consider the set
of vertices of degree D’ and observe that it is an independent set (since the existence of an edge
between two vertices of degree greater than d violates the maximality of G’). Thus, for each set
A of vertices of maximum degree in G’, |[T'(A)| > |A|, since the number of edges from A to I'(A)
equals |A|- D’ as well as is bounded above by |I'(A)|- (D’ — 1). Therefore, by Hall’s theorem, there
is a matching in G’ that saturates all vertices of degree D’. Omitting such a matching, we obtain a
graph, denoted Gi, of maximum degree D; = D’ —1 and minimum degree d; € {d,d—1}. Iterating
this procedure (of first omitting edges between vertices of maximum degree and then omitting an
appropriate matching) we obtain a sequence of graphs Gy, G, ..., G, stopping if either G, is regular
orift = §N+2. Let (Dy,d,),...,(Dy,d;) be the corresponding sequence of maximum and minimum
degrees in the G;’s. Since d; > d — t we conclude that during this process we have omitted at most

(D—(d—1t))-N < 1.5eN? 4+ 2N edges. In case G, is regular, we are done. Otherwise, we have
def

Dy —d; <eN and D; <05N —2. Welet H = Gy, D’ def D, d def d;, and let D" be the smallest
even integer which is at least D’ (i.e., D" = D'+ ([D'/2] — | D'/2]) € {D’, D' + 1}).

To complete the proof we show how to modify H by omitting and adding to it at most O(en?)
edges so that the resulting graph will be D”-regular. For each vertex v of H, define s(v) = D" —d(v),
where d(v) is the degree of v in H. Thus the sum S = 3" ., s(v) is even, and we have to increase
the degree of each vertex v by s(v). We do so in 5/2 steps, where in each step we increase by 1 the
degrees of two (not necessarily distinct) vertices with positive s values, and keep the other degrees
invariant. Specifically, in each step we either add one edge or add two edges and remove one edge.
In either case, we update the relevant s values. Since § < (D" — d')N < eN? the desired result
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follows. Here is a typical step; as long as there are some vertices with positive s values, proceed as
follows.

Case 1 there is a vertex v for which s(v) > 2. Let Y denote the set of all its non-neighbors.
If some member of Y has a positive s value, connect it to v and update their s values to
complete the step. Else, each member of Y has degree D”. Note that |Y| > N/2 (since
Y| >N—-(D"—-2)>N—-D"+1>0.5N —1). Hence there must be an edge between two
members of Y, since otherwise |Y|- D" < (N — |Y]) - D". Let uw be such an edge, omit it
from the graph and add the two edges vu and vw, update the s value of v and complete the
step.

Case 2 the only vertices v with positive s values have s(v) = 1. Since the sum of the s-values is
even, there are at least two such vertices, say, v and v. Let Y be the set of all non-neighbors
of u and Z the set of all non-neighbors of » and note that, as before, if some vertex in either
Y or Z has a positive s value we can connect it to either u or v and complete the step. We
now claim that there must be an edge yz in the graph with y € Y and z € Z, since otherwise
all edges from Y lead to vertices in V'\ Z, implying that |Y|- D" < (N —|Z|)- D", which is
impossible, since both |Y| and |Z| are greater than N/2. We can now add the edges uy and
zv, remove the edge yz, and update the s values of u and v, completing the step.

Observing the the maximum number of edge modifications in these 5/2 steps is 2.5 < 2eN?, the
theorem follows. W

A.2 Determining closeness to an Admittable Set

In this appendix we consider the computational problem of determining whether a sequence of
densities is 2¢’-close to an admissible set for ®. That is,

. . Alb b ub ub 1b 1b ub ub /
Input: e parameters: pi’, ..., p3", P17 s Pk s 0115 o3 Ok ks 0115 -5 Oy and €.
o densities: py,...,pp and 0y 1, ..., Ok -

Question: Does the following system of inequalities in z;’s and y; ;’s have a solution?

k

3
in =1 and Z yij <1 (A.1)

i=1 ij=1
p <z <pi® (Vi) and o <wy <o (Vi,5) (A.2)
yii <z} (Vi) and y; <2-x;-2; (Vi#j) (A.3)
|z — pi] <26 and |y — 0i4] <2 (Vi,5). (A.4)

We first observe that the corresponding lower and upper bounds in Eq. (A.2) and Eq. (A.4) can
be combined. We also observe that the above system has a solution if and only if it has a solution
in which the y; ; are set to be as small as possible. That is, a solution in which each y,; has
the minimum value that obeys the lower bounds in Equations Eq. (A.2) and Eq. (A.4). This
yields the following system of 1nequa11tleb where L; = max{p!®, p; — 2¢'}, U; = min{p\®, p; + 2¢'},

L, = nrlax{gm,ghZ —2¢'},and L;; = 2 maX{gw,gw -2} (e #£ )

Zx =1 (A.5)



zi-ap > Ly (Vi5) (A.7)

We first observe that Eq. (A.5)~(A.7) constitute a Convex Program; furthermore, its feasibility
region, in case it is not empty, is a {-dimensional convex set, where { < k—1. Next, we observe that
this convex set contains any simplex defined by {41 points of general position inside the convex set.
This holds, in particular, for points which are on the intersection of ¢ of the boundaries/inequalities
(i.e., “vertices” of the body). It can be easily verified that for any such two points and for any
coordinate, if the points are different along this coordinate then their difference is bounded below
by 27%% where L is the length of the encoding (in binary) of ® and e. It follows that the feasibility
region, if not empty, contains a ¢-dimensional ball of radius 2=P°¥*)L (and is contained in [0, 1]%).
Thus, the feasibility problem can be solved by exhaustive search in exp(poly(k) - L)-time: First,
we reduce the problem to ¢ dimensions, by guessing k£ — ¢ (“independent”) inequalities which are
satisfied at equality. Next, we search the resulting {-dimensional space for a feasible solution, by
examining all points which reside on a cubic integer lattice spanned by vectors of length 2-Pe(k)- L

REMARK: It seems that the feasibility problem can be solvable by the Ellipsoid Method (cf.,
[GLS88]) in poly(L)-time, but this saving has little affect on our application.
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