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Abstract

Rice’s Theorem says that every nontrivial semantic property of programs is
undecidable. It this spirit we show the following: Every nontrivial absolute (gap,
relative) counting property of circuits is UP-hard with respect to polynomial-
time Turing reductions.

1 Introduction

One of the nicest theorems in Recursion Theory is Rice’s Theorem [17, 18]. Informally
speaking it says: Any nontrivial semantic property of programs is undecidable. More
formally it can be stated this way:

Theorem 1 (Rice 1953) Let A be any nonemply proper subset of the partial recur-
sive functions. Then the halting problem or its complement is many-one reducible to
the following problem: Given a program p, does il compute a function from AY

The theorem and its proof only use elementary notions of Recursion Theory. But
the most interesting point about Rice’s Theorem is that it has messages to people
in practical computing: Tt tells programmers that for example there is no program
which finds infinite loops in given programs, or that there is no program which checks
if some given program does a specified job.

Intrigued by the simple beauty of Rice’s Theorem we tried to find some sister
of it in Complexity Theory. The first observation we made is the following. The
typical undecidable problem in Recursion Theory is the halting problem, which is
a problem on programs, whereas the typical hard problem in Complexity Theory is
the satisfiability problem, which is a problem on circuits (in this paper we prefer
circuits instead of CNF-formulas because they are the nonuniform counterpart of po-
lynomial-time computations). Therefore, if we want to look for some analogue of
Rice’s Theorem in Complexity Theory we should look at problems on circuits. This
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approach is different from the one of Kozen [14] who studies problems which have as
inputs programs with given resource bounds.

Note that for circuits we have the same syntax/semantics dichotomy like we have
for programs: a circuit is the description of a Boolean function like a program is the
description of a partial recursive function. In other words, circuits (programs) are
the syntactical objects whereas Boolean functions (partial recursive functions) are
the corresponding semantic objects. Note that the question whether two syntactical
objects describe the same semantic object is hard in both worlds: it is II;-complete
for programs and co-NP-complete for circuits.

By these considerations, the perfect analogue of Rice’s Theorem would be the
following: Let A be any nonempty proper subset of the set of Boolean Functions.
Then the following problem is NP-hard: Given a circuit ¢, does it compute a function
from A? Unfortunately, there is the following simple counterexample for this claim.
Let A be the set of Boolean functions which have the value 0 on the all-0-assignment.
For a given circuit ¢ this question can be computed in polynomial time. Therefore
the statement above is false unless P=NP.

So we had to look for a more restrictive requirement for the set A for which
a modification of the statement may be true. What we found is the (indeed very
restrictive) requirement of counting: Let A be a set of Boolean functions for which
membership in A only depends on the number of satisfying assignments, like for
example the set of all Boolean functions which have at least one satisfying assignment,
or the set of Boolean functions which have an odd number of satisfying assignments.
We will call the corresponding sets of circuits absolute counting problems. In a similar
fashion we will define gap counting problems and relative counting problems: they also
incorporate the non-satisfying assignments in their definition. For example, the set of
circuits which have more satisfying than non-satisfying assignments is a gap counting
problem because it can be stated the following way: the gap (= difference) between
the number of satisfying assignments and the number of non-satisfying assignments
has to be greater than 0. And the same problem is a relative counting problem because
it can be stated the following way: the relative number of satisfying assignments has
to be greater than one half.

For each of these three types of counting problems a theorem in the fashion of
Rice’s Theorem can be shown:

Any nontrivial absolute (gap, relative) counting property of circuits is
UP-hard with respect to polynomial-time Turing reductions.

This result will be extended in terms of approximable sets and also in terms of ran-
domized reductions.

For the following (somehow artificial) notion, which is the nonuniform counterpart
of nondeterministic polynomial-time computation, a perfect analogue of Rice’s Theo-
rem could be found: Let an existentially quantified circuit be a circuit in which some
variables are existentially quantified. Each such circuit describes in a natural way a
Boolean function on its non-quantified variables. Here it can be shown: Let A be
any nonempty proper subset of the set of Boolean functions which not only depends
on arity. Then the following problem is NP-hard: Given an existentially quantified
circuit ¢, does it describe a function from A?



2 Preliminaries

The standard notions of Theoretical Computer Science like words, languages, poly-
nomial-time reductions, P, NP, etc. follow the book of Papadimitriou [16]. A central
notion of this paper is the notion of a Boolean function which is defined to be a
mapping from {0,1}" to {0,1} for some integer n which is called its arity. Circuits
are a standard way of representing Boolean functions. We will just assume that
they are encoded as words in some standard way, for the details concerning circuits
we refer for example to [16]. Remember that a given circuit can be evaluated on a
given assignment in polynomial time. Fach circuit ¢ describes a Boolean function
F(zi,...,2,). Note that here we have an example of the classical syntax/semantics
dichotomy like we have it for programs: The circuits (programs) are the syntactical
objects, which we have as finite words at our fingertips, whereas the Boolean functions
(partial recursive functions) are the corresponding semantic objects far away in the
mathematical sky!. Note that every Boolean function can be represented by a circuit,
in fact it is represented by infinitely many circuits. The problem whether two circuits
represent the same Boolean function is co-NP-complete.

As it was pointed out in the introduction one would like to have a theorem like:
Every nontrivial semantic property of circuits is NP-hard. Unfortunately, there are
counterexamples for this statement unless P=NP. First of all there is the counterex-
ample consisting of the set of circuits with an odd number of satisfying assignments,
this set 1s complete for P and not known to be NP-hard or co-NP-hard. So we have
to replace in the statement above the class NP by some class which is contained in
NP and &P. The class UP would be a natural choice for that. But unfortunately
there is an even stronger counterexample: the set of all circuits which evaluate to 0
on the all-0-assignment. This property of circuits is in fact a semantic property and it
is nontrivial, but it can be checked with a polynomial-time algorithm. So we can only
hope for an analogue of Rice’s Theorem (stating UP-hardness) if we restrict ourselves
to stronger semantic properties. We tried several approaches, for example by con-
sidering the equivalence relations like Boolean isomorphism presented in [1, 6]. Note
that the above counterexample is also a counterexample under Boolean isomorphism.
The restriction for which we could find the intended hardness result is the restriction
to the counting properties which will be introduced in the next section.

3 Three Types of Counting Problems on Circuits

Given a Boolean function one can ask different question about the number of satis-
fying assignments: (a) what is the number of satisfying assignments? (b) what is the

!One might argue that here we have a different situation than in the case of partial recursive
functions because Boolean functions are finite objects: one can represent an n-ary Boolean function
just by the length-2" 0-1-sequence of its values on the 2" assignments. This in fact guarantees
decidability of the usual semantic questions, but we are interested in finer questions: even if semantic
properties are decidable, how difficult is it to decide them? And the difficulty for deciding the
semantic questions (like satisfiability) stems basically from the fact that Boolean functions are not
given as the length-2" 0-1-sequence of the function values but in a compressed way, namely as circuits.



difference between the number of satisfying and non-satisfying assignments? (c) what
is the share of the satisfying assignments compared with the total number of assign-
ments? If the arity of the Boolean function is known then all question are equivalent.
But if we do not fix the arity then the three questions are pairwise incomparable, i.e.,
given an answer to (a) we can not infer an answer to (b) and so on.

For a circuit ¢ let #o(c) and #(¢) denote the number of non-satisfying assignments
and satisfying assignments, resp., of the Boolean function represented by ¢. According
to the different questions (a), (b) and (c) from above we will introduce the following
three types of counting problems. Note that the answer to (a) is a natural number,
the answer to (b) an integer and the answer to (c¢) a dyadic number in the interval
[0, 1], we will denote this set by D = {7 | n,m € N,0 <m < 27},

Definition 2 (a) Let A be a subset of N. The absolute counting problem for A,
Absolute-Counting(A), is the set of all circuits ¢ such that #4(c) € A.

(b) Let A be a subset of Z. The gap counting problem for A, Gap-Counting(A),
is the set of all circuils ¢ such that #1(c) — #o(c) € A.

(¢) Let A be a subset of D. The relative counting problem for A, Relative-Count-

ing(A), is the set of all circuils ¢ such that the relative number of accepling assignments

#1(¢)
Folc) + (0 <

1s in A:

¢ € Relative-Counting(A) <

Examples of absolute counting problems. The satisfiability problem for cir-
cuits, which we will denote here as SAT (though SAT traditionally refers to the
satisfiability problem on CNF’s), is by its definition an absolute counting problem,
i.e. SAT = Absolute-Counting({1,2,3,...}). Remember that SAT is NP-complete.
Likewise, the set of unsatisfiable circuits equals Absolute-Counting({0}), this prob-
lem is co-NP-complete. Another example is the set of circuits with an odd number of
satisfying assignments, by definition it equals Absolute-Counting({1,3,5,...}), this
problem is &P-complete. Another example is the set 1-SAT consisting of the circuits
with exactly one satisfying assignment, i.e. 1-SAT = Absolute-Counting({1}), the
complexity class for which this problem is complete is usually called 1-NP.

Examples of gap counting problems. The set C_SAT of circuits which have as
many satisfying as non-satisfying assingments, is a gap counting problem: C_SAT =
Gap-Counting({0}). The set PSAT of circuits which have at least as many accept-
ing as non-accepting assignments, is a gap counting problem: PSAT = Gap-Count-
ing({0,1,2,3,...}). Remember that C_SAT and PSAT are complete for the classes
C_P and PP, respectively. Another example is the set Gap-2-SAT consisting of the
circuits with exactly two more satisfying than non-satisfying assignments, i.e. Gap-2-

SAT = Gap-Counting({2}).

Examples of relative counting problems. The two gap counting problems PSAT
and C_SAT from above are also relative counting problems: C_SAT = Relative-
Counting({3}), and PSAT = Relative-Counting({z € D;z > 1}). SAT = Relative-



Counting(D — {0}) is also a relative counting problem. The tautology problem equals
Relative-Counting({1}).

Note that only relative counting has the following natural property. If we have a

circuit ¢(z1,...,x,) and add some dummy variables z,,41,...,2, so that the whole
new circuit ¢/(z1,...,Tm,...,x,) represents a Boolean function on n > m inputs then
we have ¢(z1, ...,z,) € Relative-Counting(A) < (z1,...,Tm,...,x,) € Rela-

tive-Counting(A). In a way one would consider the Boolean functions represented
by ¢ and ¢ to be “basically the same”. So if we identify Boolean functions modulo
independent variables then only relative counting respects this natural identification.

A counting problem in a general sense we define the following way. Let a se-
quence (A,) be given for which A, is a subset of {0,...,2"}. The counting prob-
lem for (A,) is the set of all circuits ¢(zy,...,z,) such that #:(c) € A,, see [12]
for an analogous definition of (general) counting classes. In this way, absolute, gap
and relative counting problems are counting problems. It is easy to give an ex-
ample of a (general) counting problem which is nontrivial but in P, for example
the set of all circuits with an odd arity (it is the counting class for the sequence
0,{0,1,2},0,{0,1,...,8},0,{0,1,...,32},0,...).

It was already mentioned that the three types of counting problems from Definition
2 are incomparable as mathematical sets. But the question appears if they are com-
parable in terms of <P -complexity. For example, the tautology problem, which is a
relative counting problem, is provably not an absolute counting problem, nevertheless
there is an absolute counting problem, namely the non-satisfiability problem, which
has the same <P -complexity (both are co-NP-complete). But even for this weaker
form of comparison the three types of counting problems seem to be incomparable:
PSAT and C-SAT are gap and relative counting problems but do not seem to be
<P —equivalent to some absolute counting problem. SAT is an absolute and relative
counting problem but does not seem to be <P -equivalent to some gap counting prob-
lem. 1-SAT is an absolute counting problem but does not seem to be <P -equivalent
to some gap or relative counting problem. Gap-2-SAT is a gap counting problem but
does not seem to be <P -equivalent to some absolute or relative counting problem.

Remark. Analogously to the way we defined the three types of counting problems
we can define three types of counting classes: for a given subset A of N (Z, D) the
absolute (gap, relative) counting class for A consists of the languages L for which
there is a polynomial-time nondeterministic machine M such that a word x 1s in L iff
the number of accepting paths (the difference of the number of accepting paths and
non-accepting paths, the share of the accepting paths compared with the total number
of paths) of M on input z is in A. This definition of gap countable classes equals the
definition of nice gap definable classes in Fenner, Fortnow & Kurtz [9]. As a special
case of the main result in [5, 21] it follows that an absolute (gap, relative) counting
problem is <2 -complete for the corresponding absolute (gap, relative) counting class.
In other words, absolute (gap, relative) counting problems and the corresponding
absolute (gap, relative) counting classes are just two sides of the same medal. Note
that the <P -comparability question we discussed above is therefore equivalent to the
set comparability question of the three types of counting classes.



4 Some Rice-Style Theorems for Counting Prob-
lems

In this section we will state and prove the theorems which show UP-hardness of
all nontrivial counting problems of the three types defined in the previous chapter.
Remember that the class UP, which was defined first in [19], is the promise class
consisting of the languages L such that there is a polynomial-time nondeterministic
machine M such that on every input the machine M has at most one accepting path
and an input z is in L if M running on input x has an accepting path. Such machines
are called unambiguous. By definition UP is a subset of NP. A classical result tells
that UP equals P if and only if one-way functions exist [11]. The primality problem is
a typical example of a problem in UP not known to be in P [8]. The following theorem
implies that any nontrivial absolute counting property of circuits is UP-hard.

Theorem 3 Let A be any nonempty proper subset of N. Then one of the following
three classes is <P -reducible to Absolute-Counting(A): NP, co-NP, UP & co-UP.

Proof. The proof distinguishes the following three cases.

First case: A has a maximum a. Then co-NP 1s <P -reducible to Absolute-Count-
ing(A): Let a language L in co-NP be given and let M be a machine for L in the
sense that = € L iff no path of M(z) is accepting. Let m(z) denote the number of
accepting paths of M(z). Cook [7] established a method to construct in polynomial
time a circuit Cook with inputs y1,...,y, (n depends on z and is bounded by
a polynomial in the length of z) such that accepting computation paths of M(z)
and satisfying assignments of Cook (y1,...,y,) correspond to each other. Therefore,
CookM (yy,...,y,) evaluates to 1 for exactly m(z) assignments. Using a additional
variables z1,...,z, the circuit given by the following specification evaluates exactly
a+ m(;c) assignments to 1:

CookM (y1,...,yn) if 21+ ...+ 2z, = 0

" 1 ifz; 4. +2,=1
N VA T
x,a(yl Yns 21 ) and y1 + ... 4+ y, = 0;
0 otherwise.

Thus dM is in Absolute-Counting(A) iff m(z) = 0iff z € L. So the mapping = — d%a
gives a an—reduc‘rlon from L to Absolute-Counting(A).

Second case: A has a maximum b. Given a set L in NP recognized by the nonde-
terministic machine M, an analogous construction as in the previous case is used in
order to obtain a circuit d which evaluates exactly b+ m(:v) assignments to 1. Now
x € Liff m(z) > 0 iff d E Absolute-Counting(A). And so one obtains the desired
<P -reduction.

Third case: neither A nor A has a maximum. Then there is a € A with a + 1 ¢ A
and b ¢ A with b+ 1 € A. For a language L = 0L’ U1L" in UP & co-UP let M’ and
M" be the unambiguous machines for L' and L”, respectively. The mapping which
assigns to an input Oz the circuit dMa and to an input 1z the circuit d, b " realizes the
<P -reduction from L to Absolute- Countlng(A) O
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Gupta [13] and Ogiwara & Hemachandra [15] introduced the class SPP as the promise
class consisting of the languages I such that there is a polynomial-time nondetermin-
istic machine M such that for every input x for the machine M either half of the
computation paths are accepting of half of them plus 1 are accepting, and = € L if
the second case is true. Note that the class SPP contains both UP and co-UP. Fenner,
Fortnow & Kurtz [9] proved the following result which states that the class SPP is
<P -reducible to any gap counting problem.

Theorem 4 (Fenner, Fortnow & Kurtz 1994) Let A be any nonemply proper
subset of Z. Then SPP <? Gap-Counting(A).

Now that we have UP-hardness for absolute and gap counting problems we turn to
relative counting problems and will show UP-hardness for the more powerful polyno-
mial-time Turing reducibility. Note that the classes NP, co-NP, and SPP are above
UP.

Theorem 5 Let A be any nonempty proper subset of D. Then Relative-Counting(A)
is <t -complete for NP or co-NP, or SPP <}, Relative-Counting(A).

Proof. First consider the special case that A(p) = A(q) for all dyadic numbers
p,qg with 0 < p < ¢ < 1. In this special case, A is one of the following six sets:
{0},{1},{0,1},D—{0},D—{1},D—{0, 1}. It is easy to see that the relative counting
problems for first three sets are co-NP-complete, for example, Relative-Counting({1})
is the tautology problem. Similarly the relative counting problems for the last three
sets are NP-complete, for example, Relative-Counting(D — {0}) is the satisfiability
problem.

So it remains the case where there are dyadic numbers p, g such that 0 < p < ¢ < 1
and A(p) # A(q). It will be shown that in this case SPP can be <}-reduced to Rela-
tive-Counting(A). Let M be a machine which witnesses that a language L is in SPP.
Consider for an input z the circuit Cook (y1,...,y,) defined in the proof of Theorem
3. Recall that if € L then CookM evaluates 2"~! + 1 assignments to 1 and if z ¢ L
then Cook™ evaluates 2"~! assignments to 1. Furthermore there is an m such that
27" <p<q<1—=27". Now the Turing-reduction works as follows:

e Search for p/,¢' with p <p' < ¢ <q, ¢ —p' =27""" and A(p') # A(¢).

A query to A can be translated into a query to Relative-Counting(A) as follows:
Let r = 0.ay...a; < 1 be a dyadic number and let ¢, denote the circuit which
assigns to (yi,...,yx) the value 1 iff 0.yy ...y < 0.ag...ap. risin Aiff ¢, €
Relative-Counting(A).

Using this mechanism it is possible to find p" and ¢’ with interval search: starting
with p = p’ and g = ¢’ one takes that m +n-bit dyadic number r which is nearest
to # and finds out whether A(p') = A(r) or A(¢') = A(r). In the first case, p/
is replaced by r, in the second, ¢’ is replaced by r. This search is continued until

the difference between p’ and ¢’ is 27™7". Note that A(p) = A(p') # A(q) =
A(q').



e Now a circuit d; is computed with Relative-Counting(A)(d,) = A(¢') for x € L
and Relative-Counting(A)(d,) = A(p') for © ¢ L. Let z = 0.2y ... 2zp4, be the

dyadic number determined via the binary representation of the variables.

CookM (zpi1y vy Zman) if 2 <27
dp(z15- s 2mpn) = 4 1 if27m <z <p 427
0 if pf +27m"1 < 2,

So the relative number of accepting assignments is the sum of the p’ — 27"~!
hard wired assignments from the second line of the case-distinction plus 2771
(2_7”_1 + 27™7") from the circuit ¢, in the case of + ¢ L (¢ € L). Then
the whole relative number is p’ for z ¢ L and ¢ for « € L. It follows that
x € L iff Relative-Counting(A)(d;) = A(q'). So the last query whether d, is in
Relative-Counting(A) completes the decision procedure for L.

In short words: the first part of the construction uses the fact that A <? Relative-
Counting(A) in order to search sufficiently close dyadic numbers p’ and ¢’ between
p and ¢ such that A(p’) # A(q). The next step produces a circuit d, whose relative
number of satisfying assignments is p’ for ¢ L and ¢ for # € L. So L(z) can be
computed with m 4+ n 4+ 1 queries to Relative-Counting(A). Therefore, in this sec-
ond case, Relative-Counting(A) is SPP-hard with respect to polynomial-time Turing
reductions. O

The preceding three Theorems 3, 4, 5 can be summarized the following way.

Conclusion 6 Any nontrivial absolute (gap, relative) counting property of circuils is
UP-hard with respect to polynomial-time Turing reducibility.

So we also obtain the following conclusion.

Conclusion 7 A nontrivial absolute (gap, relative) counting problem on circuits is
not solvable in polynomual-time unless P=UP.

5 Extensions and Limitations of the Main Results

In this section first the result is extended to randomized reductions and computations.
After that it is shown that no nontrivial absolute (gap, relative) counting problem on
circuits is approximable unless P=UP. Furthermore it is pointed out that it is unlikely
that Theorem 5 holds with polynomial-time many-one-reduction in place of the poly-
nomial-time Turing reduction. In the last part a perfect analogue of Rice’s Theorem
is given for the world of existentially quantified circuits.

5.1 Randomized Computations

Valiant and Vazarani [20] showed, that using randomized reductions, detecting unique
solutions is as hard as solving the satisfiability problem. In particular they showed



that every algorithm f which satisfies the following specification also already allows
to solve the satisfiability problem in a randomized context:

circuit  has no solution = f(z)=0;
=1.

circuit x has exactly one solution = f(z)

The algorithms to reduce UP to the counting problems in Theorems 3, 4, 5 satisfy
these requirements. So they allow to decide the set SAT = { circuits @ : z has a
solution} via a nondeterministic machine which has no accepting path for ¢ SAT
and which has more accepting than rejecting paths for & € SAT. Thus the following
holds for all three counting problems, in particular for relative counting.

Theorem 8 If B = Relative-Counting(A) is not trivial then NP C RP®.

For absolute and gap counting, the result can be improved by showing that SAT is
randomized polynomial-time reducible to B or to B. Valiant and Vazirani [20] defined
that a randomized polynomial-time reduction from some set A to another set B is
given via a machine M which computes for every z and path p a circuit M(z,p) such
that

r€A = M(x,p) € B for at least n(z) paths p;
q

(length of z)
t¢ A = M(x,p) ¢ B for all paths p.

where ¢ is a suitable polynomial and n(z) is the number of computational paths of M.
Valiant and Vazirani [20, Theorem 1.1] constructed a randomized polynomial-time

reduction from SAT to USATg where

0 if # has no solution;
USATg(z) =<1 if z has one solution;
@(z) if z has at least two solutions;

and where the reduction is independent of the values Q(z) for all z. The result is
a direct combination of this construction and the constructions for <? -reducing UP
to B or B in Theorems 3 and 4 which indeed are <? -reductions of some suitable set
USATq to B or B, respectively.

Theorem 9 SAT or its complement is randomized polynomial-time reducible to any
nontrivial absolute and gap counting problem.

5.2 Approximable Sets

A set A is approximable [4] iff there is a constant j and an algorithm which computes
for each input zy,...,z; in polynomial time j bits y1,...,y; such that A(zy) = yr
for some h. Beigel [2, 3] analyzed the notion of approximable sets and showed that
no NP-hard set is approximable unless P = UP. This result can be transferred to the
following theorem which is an extension of Conclusion 7.

Theorem 10 If P £ UP then no nontrivial absolute (gap, relative) counting problem
is approximable.



Proof. The proofs are all direct combinations of Beigel’s techniques with those to
show the UP-hardness of these sets. Thus we restrict ourselves to show the most
involved case of relative counting sets.

If a problem is NP-complete or co-NP-complete then it is not approximable under
the hypothesis P # UP [2, 3]. So one has only to adapt the main case in the proof of
Theorem 5.

So let I be any language in UP, note that UP C SPP. The first part of the Turing
reduction from L to Relative-Counting(A) is exactly the same as in the proof of
Theorem 5. In the second part it starts to differ at the definition of the circuit d,.
Based on the definition of d;, n variants d,,; are defined via fixing one variable to 1
in the circuit Cook:

Cookiw(zm_i_l, ceey zm+n) if 2 <27 and zp4; = 15
0 if z< 2™ and z,., =0
dmi e m4n ) = m+e
’ (Zl, )Z + ) or p/ + 2—m—1 S Z,
1 if 27" <z < pl 4270,
Recall that for @ € L there is exactly one satisfying assignment (as,...,a,) and

for + ¢ L no one. So the relative number of the accepted assignments of d,; is
dg=p +27 " ifx € LANa;, =1 and p’ otherwise.

As Beigel [3, Theorem 9] pointed out, there is an algorithm which computes for
input (ds1,...,ds,) in polynomial time O(n’) n-bit-vectors v such that one of these
vectors is the characteristic function of A on the input-vector. So for each such v =
(vi,...,v,) one computes the assignment (ai,...,a,) given via a; = 1 for v; = A(q)
and a; = 0 for v; = A(p'). If Cook¥ has a satisfying assignment, then one of these
(ay,...,a,) must be one. By evaluating Cook on these assignments it is found out
whether € L or ¢ L. Thus if Relative-Counting(A) is approximable then L is in
P and P = UP. O

5.3 Relative Counting and BPP

For relative counting, we could not state UP-hardness in terms of <? -reducibility.
Under the hypothesis that UP is not contained in the class BPP the following Theo-
rem 11 gives nontrivial relative counting problems which are not UP-hard with respect
to many-one reduction.

Recall that BPP, first defined in [10], is the class of all languages L such that
there is an € > 0 and a polynomial-time nondeterministic machine M such that for
all inputs x the share of accepting paths (all of them must have the same length) is
either less than % — € or greater than % + ¢, and z is accepted in the second case.

Theorem 11 There is a set A C D such that for every computable set L the following
equivalence holds: L <P Relative-Counting(A) iff L € BPP.

Proof. There are uncountably many reals r between 0 and 1 and for each such real
r, the set A = {¢q € D : ¢ < r} is unique. Thus, using a natural representation of
dyadic numbers by words, there is a set A of this form which is not enumerable. So
fix such a set A and r.

10



(=) : Let L be a computable set which is <? -reducible to Relative-Counting(A)
via a function f. Let m(z) denote for each = the relative number of satisfying assing-
ments of the circuit f(z), m(z) can be computed from f(z) using exponential time.
Since m(z) is in A iff z is in L, the set

B={¢eD:(3z e L)[g<m)]}

is an enumerable subset of A. Since A is not enumerable, the supremum of B must
be below that of A: sup(B) < r. There is a dyadic number s strictly between these
two numbers. So there is some € > (0 such that sup(B) <s—2and r > s+ 2 Let
n(z) be the number of inputs of circuit f(z). Now the following machine M witnesses

that L is in BPP.

M(z)(yo, - Yn()) = or yo =1 and 0.y1 ... Yn@) > 5

0 otherwise.

{ 1 if yo = 0 and f(z) evaluates (yi,...,Yn()) to 1

The relative number k(z) of the accepting assignments is the sum of two numbers:

(=)

the number == from the simulation of f(z) and the number 152 from the hard-wired
paths with yo = 1. So if € L then m(z) € A, m(a) < s —2¢ and k(z) < 1 — ¢ if
z ¢ L then m(;v) ¢ A, m(;v) > s+ 2¢ and k(m) > %—l— €. Since the constant e does not
depend on = and n(z), M witnesses that L is in BPP.

(<) : Now let I € BPP. There is a real number e with |[r — 1] < e < 1. For L
there is now a BPP-machine M which works with this ¢, see for example [16, Chapter

11]. Let M have path length n(z) on input z. Now one assigns to each z the circuit

1—s

—CookM (yy,. .. s Yn(z))- The relative number of the satisfying assignments for each
circuit Cooky is above % +e¢>rfor z ¢ L and below ]5 —e<rforx e L. So the
mapping z — —Cook is an <? -reduction from I to Relative-Counting(A). O

Remark. The classes PP, C_P and Mod;P could be defined as the class of all
languages which are <? -reducible to some suitable relative counting problem. For
example, C_P is the set of languages <? -reducible to Relative-Counting({3}). In
addition to the above mentioned limitation, Theorem 11 shows that the class BPP
can be defined similarly within the class of all computable sets.

5.4 A Perfect Analogue of Rice’s Theorem for Existentially
Quantified Circuits

It was mentioned before that the problem whether two programs compute the same
partial recursive function is complete for Il; in the Arithmetical Hierarchy, whereas
the problem whether two circuits compute the same Boolean function is complete for
co-NP = TII{ in the Polynomial-Time Hierarchy. So the difficulty of the two equiva-
lence problems is on different levels in the respective hierarchies. Therefore, we have
been looking for some representation of Boolean functions such that the equivalence
problem is complete for II5. Such a representation is given by existentially quanti-
fied circuits which are defined to be circuits in which some (but not necessarily all)
variables are existentially quantified (in prenex normal form). Such an existentially
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quantified Boolean circuit with n free variables defines a Boolean function with arity
n the following obvious way: for an assignment a to the free variables all possible
assignments to the quantified variables are checked and if and only if one of them
lets the circuit evaluate to 1 the final value for the assignment a is 1. For example,
the existentially quantified circuit 3z((2 V 2) A (y V —z)) describes the same Boolean
function as the circuit = V y. It is easy to see that it is a II}-complete problem to
check whether two given existentially quantified circuits describe the same Boolean
function. Note that existentially quantified circuits are the nonuniform counterpart
of polynomial-time nondeterministic computation, i.e. polynomial-size existentially
quantified circuits equals NP /poly, see [16] for the notations.

We will prove an analogue of Rice’s Theorem for existentially quantified circuits,
even the proof is analogous.

Theorem 12 Let A be a set of Boolean functions which not only depends on arity.
Then SAT or co-SAT is <P -reducible to the following problem: Given an existentially
quantified Boolean circuil, does the Boolean function described by it belong to AY

Proof. Because A does not only depends on arity there is an arity n such that one
Boolean function of that arity is in A and another one is not in A. Assume as the first
case that A does not contain the n-ary constant-O-function and let f = f(zq,...,z,)
be a circuit which describes an n-ary Boolean function in A. We give an <P -reduction
of SAT to the set of existentially quantified Boolean circuits which describe a Boolean
function in A. Let a circuit ¢ = ¢(z1,...,2,) be given. Construct the existentially
quantified circuit e = Jzq ... Jz,(c(z1, ..., 2m) A f(Ya, ..., yn)). If ¢ is satisfiable then
e describes the same function as f; otherwise e describes the n-ary constant O-function.

If A does contain the n-ary constant-0-function then we can in an analogous fashion
reduce co-SAT to the problem in question. a

Remark. The restriction for A of being dependent on the arity is necessary because
for example for the set of Boolean functions with odd arity the decision problem in
question is polynomial-time computable.

If a problem is not decidable one still can have hope that it is recursively enumer-
able. The following extension of Rice’s Theorem has a criterion for semantic properties
of programs to be not even recursively enumerable.

Theorem 13 (Rice 1953) Let A be a set of partial recursive functions. If there
exist two functions f,qg such that f is contained in A, g is not contained in A and
[ < g (ie. if f(n) terminates then f(n) = g(n)) then the following problem is not
recursively enumerable: Given a program p, does it compute a function from A?

We can state the analogue of the above theorem. Also the proof is analogous.

Theorem 14 Let A be a set of Boolean functions with two n-ary Boolean functions
F and G such that F is in A, G is not in A and F(as,...,a,) < G(ay,...,a,) for
all assignments (a1, ...,a,). Then co-SAT is <P -reducible to the following problem:
Given an existentially quantified Boolean circuit, does the Boolean function described
by it belong to A¥

12



Proof. Let f(x1,,...,2,) be a circuit for F' and let g(z1,,...,2,) be a circuit for
G. We give a < -reduction of co-SAT to the set of existentially quantified Boolean

circuits which describe a Boolean function in A. Let a circuit ¢ = ¢(zq,...,z,) be
given. Construct the existentially quantified circuit e = Jzq ... 3z, (f(y1,,. .., yn) V
(c(zr,...;2m) A g(y1,-..,yn))). If ¢ is not satisfiable then e describes the Boolean
function I, and otherwise e describes the Boolean function G. O

6 Conclusion

We presented some results in Complexity Theory which have similarities with Rice’s
Theorem. Our main result of that kind is that all nontrivial absolute, gap, and relative
counting properties of circuits are UP-hard with respect to polynomial-time Turing
reductions.

We consider the presented results as first steps of a “Rice program” in Complexity
Theory: Proving lower bounds for problems which are defined by semantic properties
of subrecursive objects (like circuits).
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