Electronic Colloquium on Computational Complexity - Reports Series 1996 - available via:

E(:(:(: FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW:

http://www.eccc.uni-trier.de/eccc/
T R96- 062 Email: ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

[5]

[8]

[9]

[10]

[11]

[12]

13]

[14]

[15]

[16]

[17]

T. FEDER AND M. VARDI. Monotone monadic SNP and constraint satisfaction. Proceedings
of the 25th Annual Symposium on Theory of Computing, ACM, 1993.

M. GOEMANS AND D. WiLL1AMSON. New 3/4-approximation algorithms for MAX SAT. STAM
Journal on Discrete Mathematics, 7:656—-666, 1994.

M. GOEMANS AND D. WILLIAMSON. Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming. Journal of the ACM, 42:1115-
1145, 1995.

S. KHANNA AND R. MoTwANI. Towards a Syntactic Characterization of PTAS. Proceedings
of the 28th Annual Symposium on Theory of Computing, ACM, 1996.

S. Kuanva, R. MoTrwaNni, M. SupanN, AND U. VAazIiRANI. On Syntactic versus Compu-

tational Views of Approximation. Proceedings of the 35th Symposium on Foundations of
Computer Science, IEEE, 1994, pp. 819-830.

S. KHANNA AND M. Supan. The Optimization Complexity of Constraint Satisfaction Prob-

lems. FElectonic Colloguium on Computational Complexity, Technical report no. TR96-028,
1996.

S. KHaNNa, M. SUDAN AND L. TREVISAN. In preparation.

R. LADNER. On the structure of polynomial time reducibility. Journal of the ACM, 22:1, pp.
155-171, 1975.

C. PAPADIMITRIOU AND M. YANNAKAKIS. Optimization, approximation and complexity
classes. Journal of Computer and System Sciences, 43, pp. 425-440, 1991.

E. PETRANK. The Hardness of Approximation: Gap Location. Computational Complexity, v.
4, 1994.

T. ScHAEFER. The complexity of satisfiability problems Proceedings of the 10th Annual
Symposium on Theory of Computing, ACM, 1978.

L. TrEVISAN, G. SORKIN, M. SUDAN AND D. WILLIAMSON. Gadgets, approximation and

linear programming. Proceedings of the 37th Symposium on Foundations of Computer Science,
IEEE, 1996.

M. YANNAKAKIS, On the approximation of maximum satisfiability. Journal of Algorithms, vol.
17, pages 475-502, 1994.

27

o g(W;,Yi,....Y,), for 1 <j<k+1
o 9(Z;,Ye,...,Y;,), for 1 <j<n.
o g W;, Zi ..., Z;_), for 1 <j<k+1.
o 9, Ziy,.. s Zi), for1 <5 <.

We now show that the instance of MAX ONE(F) created above has a non-zero satisfying
assignment if and only if the instance of SAT(F’) has a satisfying assignment. Let s = s155...8;
be a satisfying assignment for the non 1-valid constraint f chosen above. First if Vq,...,V,, form a
satisfying assignment to the instance of SAT(F’), then we claim that the assignment W; = s; for
1< <k, Wepr=1land Y; = Z; =V, for 1 < j < nis a satisfying assignment to the instance
of MAX ONE(F) which has at least one 1 (namely Wj4q). Conversely, let some non-zero setting
Wi, ooy Wiy, Y1,..., Y, 21, ..., Z, satisfy the instance of MAX ONE(F). W.l.o.g./ assume that
one of the variable Wy, ..., Wi41,Y1,...,Y, is a 1. Then we claim that the setting V; = Z;,1 < j <
n satisfies the instance of SAT(F’). It is easy to see that the constraints C;(Vi,, ..., Vi,), 1 <i<m/,
are satisfied. Now consider a constraint C;(Vi,,..., Vs,) = ¢g(0,V;, ..., Vi,)A (1 | A (N
Since at least one of the variables in the set Wy,..., W} is a 0 and at least one of the Varlables in
the set Wq,...,Wgy1,Y1,...,Y, is 1, we know that both ¢(0, Z;,,..., Z;,_,) and g(1, Z;,, ..., Z;,_,)
are satisfied and hence C; (VZI, . Vzk ,) = 1. Thus the reduced instance of MAX ONE(F) has a

non-zero satisfying assignment if and only if the instance of SAT(F’) is satisfiable. [|

5.4 Case 5: Finding Any feasible Solution is NP-Hard

The following lemma proves Case 5 of Theorem 2.3.
Lemma 5.30 If, for all j € {1,...,8}, F ¢ F;, then deciding SAT(F) is NP-hard.

Proof: Follows from Schaefer’s theorem. []

Acknowledgments

Many thanks to Nadia Creignou, Oded Goldreich, Greg Sorkin and Luca Trevisan for their valuable
comments.

References

[1] S. AroraA, C. LunDp, R. MoTwaNI, M. SUDAN, AND M. SZEGEDY. Proof verification and the
intractability of approximation problems. Proceedings of the 33rd Symposium on Foundations
of Computer Science, IEEE, 1992.

[2] T. AsaNo, T. OnNo, AND T. HIRATA. Approximation algorithms for the maximum satisfia-
bility problem. Scandanavian Workshop on Algorithmic Theory 96 Proceedings, Lecture Notes
in Computer Science Vol. 1097, ed., Springer-Verlag, 1996.

[3] M. BELLARE, O. GOLDREICH, AND M. SuDAN. Free bits, PCP and non-approximability —
towards tight results. (Version 3). ECCC Technical Report number TR95-024, 1995.

[4] N. CrEIGNOU. A Dichotomy Theorem for Maximum Generalized Satisfiability Problems. Jour-
nal of Computer and System Sciences, 51:3, pp. 511-522, 1995.

26

9()

00...0 00..0 00..0 00..0 1

sy 00..0 00.0 11..1 11.1 1
sy 00..0 11..1 00..0 11.1 1
s1®sy 00..0 11..1 11..1 00..0 0

00..0 XX..X YY.Y ZZ.Z

Fixing the above variables to 0’s as shown in the last row, and assigning replicated copies of
three variables X,Y and 7, we get a constraint A(X,Y, 7) with the truth-table in Figure 1. The
lemma now follows using an analysis identical to the one used in Lemma 5.23. [|

5.3 Case 4: Finding a Solution of Positive Value is NP-Hard

The following two lemmas prove Case 4 of Theorem 2.3.
Lemma 5.28 If 7 C Fg, then SAT(F)is in P.

Proof: Follows trivially since every instance is satisfiable. The assignment of 0’s to every
variable is a satisfying assignment to every instance. [|

Lemma 5.29 If 7 ¢ F;, for any j € {1,...,7}, then the problem of finding solutions of non-zero
value to a given instance of (unweighted) MAX ONE(F) is NP-hard.

Proof: Given a constraint f : {0,1}* — {0,1} and an index i € [£], let f|; be the constraint
mapping {0,1}*~" to {0,1} given by

def
f|2'(X1, . ,Xk) = f(Xb . -7Xz'—17 1,Xz'_|_1, . .,Xk) A f(Xl, . .,Xi_l,O,Xz'+1, . ,Xk)

Let F’ be the set of constraints defined as follows:
FEFU: | feFielkl)

Le., F' is the set of constraints obtained by setting none or one of the variables of F to 1. We
will argue that deciding SAT(F’) is NP-hard and then that deciding SAT(F’) reduces to finding
non-zero solutions to MAX ONE(F).

First observe that 7' ¢ F;, for j € {1,...,8}. In particular it is not 0-valid, since F is not

strongly 0-valid. Hence, once again applying Schaefer’s result, we find that deciding SAT(F’) is
NP-hard.

Now given an instance of SAT(F’) on variables Vq,...,V,, with constraints C4,...,C,,, with
Ciy..yCp € Fand Cpyiyq,y...,Cp € F'\ F, consider the instance of MAX ONE(F) defined on
variable set

Wi, oo o Wi, Ve, oo Yo 24,000 2y,

with the following constraints:

1. Let f be a non-1-valid constraint in F. We introduce the constraint f(Wq,..., Wy).

2. For every constraint Cy(Vi,,..., Vi), 1 <i < m/, we introduce two constraints C;(Y;, , ..., Yi,)
and Ci(Zz'” ey Zik)'

3. For every constraint Cy(Vi,, ..., Vi,_,), m'+1 <i < m, we introduce 2(n+ k 4 1) constraints.
For simplicity of notation, let Cy(Vi,,...,Vi,_,) == (1, Viy, .., Vi,_) A g(0, Vi), ..., Vi)

where g € F. The 2(n + k 4 1) constraints are:

25

Proof: let C = (Xl + .. -+Xp +Yi 4+ Yq) be a maxterm in f with more than one negation
i.e. p > 2 (such a maxterm exists since f is not weakly positive). Substituting a 0 in place of
variables Y7,Y;,...,Y,, and existentially quantifying over all variables not in C', we get a constraint
g such that (X; 4+ Xo 4 -+ + Xp) is a maxterm in g. Consider an unsatisfying assignment s for ¢
with the smallest number of 1’s and let & denote the number of 1’s in s; we know k£ > 0 since the
original constraint 0-valid. WLOG assume that s assigns value 1 to the variables Xy, X5, ..., X},
and 0’s to the remaining variables. It is easy to see that by fixing the variables Xpy1, Xp4o2,..., X,
to 0, we get a constraint ¢’ = (X7 + Xy + ++-+ X;). If £ > 1, then this perfectly implements the
constraint ()_(1 4+ 4)_(k) and we are done.

Otherwise k£ = 1, i.e. there exists an unsatisfying assignment s which assigns value 1 to exactly
one of the X,’s, say X;. Now consider a satisfying assignment s’ which assigns 1 to X; and has
a minimum number of 1’s among all assignments which assign 1 to X;. The existence of such an
assignment easily follows from C' being a maxterm in g. WLOG assume that s’ = 1°0P~*. Thus the
constraint ¢ looks as follows:

X1 X2 X3X2 XZ'+1...Xp g()
st 0 0 00..0 00...0 1
39 1 0 00..0 00...0 0
=353 1 1 11...1 00...0 1
sqg 0 1 e 00...0 ?
Existential quantification over the variables X3, X4, ..., X; and fixing the variables X;;, through

X, to 0 yields a constraint g’ which is either (X; + X3) or REP(Xy, X3). The lemma follows. ®

If we can perfectly implement X + Y, then the following lemma shows that we can essentially
perfectly implement a 1, and thus we can reduce to Case I. We use the constraint function 7'(X;) =
X; to represent constraints X; = 1.

Lemma 5.26 If MAX ONE(FU{X +Y})is a-approximable for some function a, then sois MAX ONE(FU
{T}).

Proof: Given an instance Z of MAX ONE(FU{7'}) we construct an instance Z' of MAX ONE(FU
{X +Y}) as follows. The variable set of 7’ is the same as that of Z. Every constraint from F in
7 is also included in Z’. The only remaining constraints are of the form X; = 1 for some variables
X; (imposed by the constraint 7'). We simulate this constraint in Z' with n — 1 constraints of the
form X;+ X; for every j € {1,...,n}, j # i. Every non-zero solution to the resulting instance Z’ is
also a solution to Z, since the solution must have X; = 1 or else every X; = 0. Thus the resulting
instance of MAX ONE(F U {X + Y}) has the same objective function and the same feasible space
and is hence at least as hard as the original problem. [|

Now by Lemma 5.25 the only remaining subcase is if we can perfectly implement REP. The
following lemma shows that in this case we can either perfectly implement X +Y or X + Y. If we
can do the former, we are done, and if the latter, we can use X + Y to perfectly implement the 7’
constraint, and reduce to the previous case. Hence in either case we are finished.

Lemma 5.27 If f is 0-valid constraint and non-affine, then MAX ONE({f, REP}) perfectly imple-
ments either the constraint (X + Y) or the constraint (X + V).

Proof: Schaefer [15] shows that if f be a non-affine constraint, then there exist two satisfying

assignments s; and sg such that sy @ sy is not a satisfying assignment for f. Using this fact and
the fact that f is 0-valid, we essentially have the following situation:

24

Lemma 5.23 Let g be a non-affine constraint. Then the constraint set {g, REP, XOR}|o 1 can either
perfectly implement the constraint (X +Y) or (X 4+ V).

Proof: Since g is non-affine, we essentially have the following situation for three satisfying
assignments $1, sz and sg for g.

9()

51 00..0 00..0 00..0 00.0 11.1 11..1 11.1 11..1 1

So 00..0 00..0 11..1 11..1 00..0 00..0 11.1 11..1 1

Sa 00..0 11..1 00..0 11..1 00.0 11..1 00..0 11..1 1

s1® sy ®sy 00..0 11..1 111 00..0 1L.1 00..0 00..0 11.1 0
00.0 XX.X YY.Y ZZ.Z ZZ..Z YY.Y XX..X 11..1

Fixing the above variables to 0’s and 1’s as shown in the last row, and assigning replicated copies
of three variables X,Y and Z (and their negations using XOR), we get a constraint ~(X,Y, Z) with
the truth-table in Figure 1.

yz

X 00 01 11 10

Figure 1: Truth-table of the constraint h(X,Y, 7)

The undetermined values in the table are indicated by the parameters A, B,C and D. The
following analysis shows that for every possible value of these parameters, we can indeed perfectly
implement an OR constraint using the constants 0 and 1.

IXWY,Z)=Y + 7
h0,Y,Z2)=Y + Z
hX,0,2)=X+7
X, Y, 1)= X+ Z
R(L,Y,Z)=Y + Z

Ly

Lemma 5.24 The constraint set {X 4+ Y, XOR} perfectly implements the constraint X + VY.

Proof: To perfectly implement X + Y, we create an auxiliary variable X’. We now add two
constraints, namely X’ 4 Y, and XOR(X, X’). Clearly, all constraints are satisfied only if X + Y
is satisfied. [|

Thus in all cases we are able to implement the constraint X+Y.

Case II : F can perfectly implement all constraints in F|o and all constraints are 0-valid.
We now show that either we can perfectly implement X + Y, or perfectly implement a 1. If the
former occurs, we are done, and if the latter, we can reduce to the previous case.

Lemma 5.25 If f is 0-valid and not weakly positive, then the constraint set {f}|y either perfectly
implements X7 + ..+ X} for some k > 2 or it perfectly implements X + Y or REP.

23

set to one form a clique of size [. If [< k, output any singleton vertex. Thus in all cases we obtain

a clique of size at least [/(k — 1) vertices. Thus the existence of an a-approximation algorithm for

the MAX ONE({f}) problem implies the existence of a (k — 1)a-approximation algorithm to the

clique problem. The poly-APX-hardness of clique now implies the lemma. [|
The following lemma divides the remainder of the proof into two cases.

Lemma 5.19 If 7 C F; for some i € {5,6,7}, but F ¢ F; for any j € {1,2,3,4}, then either F
perfectly implements every constraint in F|o 1 or F perfectly implements F |y and every constraint in F

is 0-valid.

To prove this lemma, we first need to show that there exists a non-C-closed constraint in F.

Lemma 5.20 If 7 C F; for some i € {5,6,7}, but 7 ¢ F; for any j € {1,2,3,4}, then there exists
a non-C-closed constraint in F.

Proof: Notice that a C-closed 0-valid constraint is also 1-valid. A C-closed weakly positive
constraint will also be weakly negative. Lastly a C-closed 2CNF constraint is a affine constraint
of width 2. Thus if F is 0-valid, then the constraint which is not 1-valid is not C-closed. If F
is weakly negative, the constraint which is not weakly positive is not C-closed. Similarly if F is
2CNF, then the constraint that is not affine is not C-closed. [|

Proof of Lemma 5.19: By Lemma 5.20 there exists a non C-closed constraint f in F. Also
since F is not 1-valid, there exists a constraint g € F which is not 1-valid. By Lemma 5.10 the set
{f,g} can implement an existential zero and hence F can perfectly implement every constraint in
the constraint set F|o. Furthermore, if 7 contains a non 0-valid constraint then it can perfectly
implement F|o 1 (again by Lemma 5.10), else every element of F is 0-valid. |

We now show that in the first case of Lemma 5.19, we can perfectly implement X + Y. We
will then turn to the case in which all constraints are 0-valid and show that we can either perfectly
implement X; 4 - - -4 X or an existential one. If we can implement an existential one, then we are
in the same situation as the first case. This will complete the proof of poly-APX-hardness.

Recall that we have a constraint in F that is not weakly positive and a constraint that is not
affine.

Case I : F perfectly implements every constraint in F|g .

Lemma 5.21 If f is not weakly positive, then the constraint set {f}|o1 perfectly implements either

XOR or X +Y.

Proof: let C = (Xl + -+ Xp +Yi+---+ Yq) be a maxterm in f with more than one
negation i.e. p > 2. Substituting a 1 in place of variables X3, X4,..., X,, a 0 in place of variables
Y1,Ys, ..., Y,, and existentially quantifying over all variables not in C', we get a constraint f’ such
that (X7 4+ X3) is a maxterm in f’.

By definition of maxterm, f/ must be satisfied whenever X1 @ X, = 1. Now if [/ is also satisfied
when X7 = X, = 0, we get the constraint X, 4+ X, else we get the constraint XOR(X1, X3). []

Lemma 5.22 The constraint set {XOR} can perfectly implement the constraint REP.

Proof: To perfectly implement REP(X,Y), we include the constraints XOR(X, Z) and XOR(Y, 7)
for an auxiliary variable 7. [|

22

Proof: First observe that f can also implement the constraint REP since X; &Y = 1 and
Y & X5 = 1 implement the constraint X; & Xy = 0.

Next observe that we can assume w.l.o.g. that b = 0. If not the constraints X, @-- -9 X,_1 @Y =
land Y @ X, = 1 implement the constraint X, ¢ .. @ X, = 0.

Now if p is odd, then the constraints X; & ---@® X, = 0 and REP(X4, X5), REP(Xg, X7) and
so on up to REP(X,_1, X,,) implement the constraint X; & X, @ X3 = 0.

Lastly, if p is even, then the constraints Xy &+ @ X, = 0 and REP(X5, X6), REP(X7, X3) and
so on up to REP(X,_1, X,,) implement the constraint X; & Xo@® X3® X4 = 0. [|

Theorem 5.16 If 7 C Fy and 3f; € F—F; forevery i € {1,2,3} then MAX ONE(F) is APX-hard.

Proof: Let g(Xi,...,X,) be an affine constraint which not of width-2. As in the proof of
Lemma 5.9 we use the fact that we can partition the variables of g into sets 2’ and 2" such that
there exists a matrix A and vector b such that every assignment to " with the setting 2’ = Az" @b,
is a satisfying assignment to g. If every row of A has only one 1, then the constraint g has width-2.
Hence there exists a row with at least two ones. By renaming the variables, this constraints can be
expressed as saying X, = X1®-+-®X,_1®0/1, where p—1 > 2. Then the constraint 3X,14,..., X,
s.t. g(X1,...,X,) = 1 perfectly implements the constraint X164 Xo@ @ X, = 0/1. Now let f be
a non-1-valid constraint. If {f} implements the existential zero property, then by Lemma 5.14 the
set {f,g} can implement XOR3. Else, by Lemmas 5.10 and 5.15, { f} perfectly implements XOR
and {f, g} either perfectly implements {XOR3} or {XOR4}. Thus in any case {f, ¢} can either
perfectly implement the constraint XOR3 or the set {XOR, XOR4}, either of which is APX-hard.

|

5.2.3 Case 3: The poly-APX-Complete Case

We first show that the problems in this case are in poly-APX.

Lemma 5.17 If 7 C F; for some i € {1,2,3,4,5,6,7} then MAX ONE(F) can be approximated to
within a factor of n.

Proof: Schaefer’s results imply a polynomial-time algorithm to compute a feasible solution. If
the feasible solution has at least one 1, we are done. Else, iteratively try setting every variable to
one and computing a feasible solution. Note that if F is affine (or 2CNF), then the constraints
obtained by restricting some variable to be 1 remains affine (or resp. 2CNF), and thus this new
class is still decidable. Lastly, a strongly 0-valid constraint set remains 0-valid after this restriction
and is still decidable. If the decision procedure gives no non-zero solution, then the optimum is
zero, else we output a solution of value at least 1. [|

We now turn to showing that this class of problems is poly-APX-hard. Our goal will be to
perfectly implement the constraint X; +-- -4 X}, for some k > 2. The following lemma shows that
this will imply poly-APX-hardness.

Lemma 5.18 If f = X; 4+ -+ + X}, then MAX ONE({f}) is poly-AP X-hard.

Proof: We do a reduction from MAX CLIQUE, which is known to be poly-APX-hard [1]. Given
a graph G, construct a MAX ONE({f}) instance consisting of a variable for every vertex in GG and
the constraint f is applied to every subset of k vertices in G which does not induce a clique. It may
be verified that the optimum number of ones in any satisfying assignment to the instance created in
this manner is max{k — 1,w(G)}, where w((G) is the size of the largest clique in GG. Given a solution
to the MAX ONE({f}) instance with [> k ones, the set of vertices corresponding to the variables

21

can be applied to perfectly implement the /’ and I’ constraints which are special cases of existential
zero and one respectively. Lastly if f is C-closed, then by part (1) we can implement REP and
XOR. We use these and ¢ as follows: Let s be a satisfying assignment for g such that s does not
satisfy s. W.l.o.g., assume that s = 071? and p > 0. Add the constraints g(Xq,..., X, Y1,...,Y))
and the constraints REP(Xq, X;) for all ¢ € {2,...,p} and the constraints XOR(Xy,Y;) for all
j €{1,...,q}. This forces X; to be assigned 0 and thus perfectly implements the F' constraint.
Using XOR we can now easily perfectly implement the I’ constraint.

Part (3) follows from the fact that if f is C-closed, then Part (1) applies, else we can apply Part

(2) to {f, f}- u

Definition 5.11 The constraint XORy is defined to be the constraint XOR3(X,Y, 7) = 1if and only
if X®Y @& Z = 0. The constraint XOR, is defined to be the constraint XOR4(W, X,Y,7) = 1if and
only it W XaY dZ=0.

Lemma 5.12 The weighted problem MAX ONE({XOR3}) is APX-hard.

Proof: We reduce the MAX CUT problem to the weighted MAX ONE({XOR3}) problem as
follows. Given a graph G = (V, F) we create a variable X, for every vertex » € V and a variable X,
for every edge e € F. The weight w,, associated with the vertex variable X, is 0. The weight w, of an
edge variable X, is 1. For every edge e between u and v we create the constraint X, ® X,, & X, = 0.
It is clear that any 0/1 assignment to the X,’s define a cut and for an edge e = {u, v}, X, is one
iff # and v are on opposite sides of the cut. Thus solutions to the MAX ONE problem correspond
to cuts in G with the objective function being the number of edges crossing the cut. [|

Lemma 5.13 The weighted problem MAX ONE({XOR4, XOR}) is APX-hard.

Proof: The proof is similar to that of Lemma 5.12. In this case, given a graph G = (V, F),
we create the variables X, for every v € V, X, for every e € £ and one global variable Z (which

is supposed to be zero) and m 2k auxiliary variables y1,...,yn. For every edge e = {u,v} in
(G we impose the constraints X, @& X, & X, & Z = 0. In addition we throw in the constraints
Z @y = 1for every i € {1,...,m}. Finally we make the weight of the vertex variables and 7
zero and the weight of the edge variables and the auxiliary variables y; is made 1. The optimum
to this MAX ONE problem is MAX CUT(G) + m. Since MAX CUT(G) > m/2, we find that
an a-approximation algorithm for MAX ONE({XOR4, XOR}) yields an o/ = z=%—-approximation
algorithm for MAX CUT. Notice that o’ — 1 as @ — 1. The APX-hardness of MAX CUT now
implies the APX-hardness of MAX ONE({XOR4, XOR}). [|

Lemma 5.14 Suppose {f} implements the existential zero property and ¢ is the constraint (X; @
- @ X, = b) for some integer p > 3 and some b € {0,1}. Then the constraint set {f, g} perfectly
implements XOR3.

Proof: Since {f} perfectly implements the existential zero property, the set {f, g} can perfectly
implement {f,g}|o (using Lemma 5.7). In particular, {f, g} can implement the constraints X; ¢
Xy =band X1P Xy8 X3 = b. Notice finally that the constraints X;1 $ Xo @Y =band Y § X3 =15
perfectly implement the constraint X; & Xo & X3 = 0. Thus {f, ¢} perfectly implements the
constraint XORs. [|

Lemma 5.15 Suppose {f} perfectly implements the XOR constraint and g is the constraint (X; @
-+ @® X, = b) for some integer p > 3 and some b € {0,1}. Then the constraint set {f, g} either
perfectly implements XOR3 or XOR,.

20

variables. Setting these variables may create new clauses of a single literal; set these variables and
continue the process until all clauses have at least two literals or until a contradiction is reached, in
which case no feasible assignment is possible. In the former case, setting the remaining variables to
one satisfies all constraints, and there exists no feasible assignment with a greater weight of ones.

In the case that F is affine with width 2, we reduce the problem of finding a feasible solution
to checking whether a graph is bipartite, and then use the bipartition to find the optimal solution.
Notice that each constraint corresponds to a conjunction of constraints of the form X; = X; or
X; # X;. Create a vertex X; for each variable X; and for each constraint X; # X, add an edge
(Xi, X;). For each constraint X; = X, identify the vertices X; and X;; if this creates a self-loop,
then clearly no feasible assignment is possible. Check whether the graph is bipartite; if not, then
there is no feasible assignment. If so, then for each connected component of the graph choose the
larger weight side of the bipartition, and set the corresponding variables to one. [|

5.2.2 Case 2: The APX-complete case

To prove Case 2, we must first show that the problems in this Case are in APX.
Lemma 5.9 If 7 C F,, then the weighted MAX ONE(F) problem is in APX.

Proof: By Lemmas 5.4 and 5.2 it suffices to consider the unweighted case. In this case when
all constraints are affine, then satisfying all constraints is essentially the problem of solving a linear
system of equations over GF[2]. If the system is overdetermined, then no feasible solution exists.
If the system is exactly determined, then the setting of all variables is forced, and we find the
assignment with the maximum possible number of ones. If the system is underdetermined, then
setting some number of variables arbitrarily determines the remainder of the solution; to be more
precise, the variables X can be partitioned into X" and X" such that X' = AX" & b for some 0/1
matrix A and some 0/1 vector b (where matrix arithmetic is carried out over GF[2]). Setting the
variables in X" to 1 with probability 1/2 thus ensures that the probability of each variable is 1
with probability 1/2. The expected number of ones is n/2, no worse than a factor of two from the
maximum number. [|

We now must show that the problems in Case 2 are APX-hard. The basic idea of this proof
is to show via implementations that all such problems can be reduced to MAX CUT. Recall the
definitions of C-closed constraints and the constraints XOR and REP from Section 4. From here
onwards all of our implementations will be perfect implementations. We begin with a preliminary
lemma that we will need.

Lemma 5.10 Given a constraint f which is not 1-valid, the following hold:
1. If fis C-closed, then f perfectly implements REP and XOR.

2. If g is a constraint which is not C-closed, then {f, g} implements an existential zero. If f is not
0-valid then {f, g} also implements an existential one.

3. {f} either implements an existential zero or perfectly implements the constraints REP and XOR.

Proof: If fis C-closed, then it is not 0-valid and we can use Lemma 4.14 to perfectly implement
XOR and use XOR to implement REP (by using the constraints X & 7, Z @ Y for an auxiliary
variable 7). This gives us Part (1) above.

For Part (2), if f is 0-valid, then the constraint f(X4,..., Xz) implements an existential zero.
Hence we can assume that f is neither 0-valid nor 1-valid. If f is not C-closed then Lemma 4.15

19

The target constraints in the following definitions are the constraints which force variables to being
constants (either 0 or 1). However, sometimes we are unable to achieve this. So we end up
implementing a weaker form which however suffices for our applications. We next describe this

property.

Definition 5.5 [Existential Zero] A constraint set F can implement the existential zero property if
there exists a set of m constraints fi,..., f,, over n variables X and an index k& € {1,...,n} such that
the following hold:

o There exists an assignment Viy1,...,V, to Xgy1,..., X, such that assigning 0 to the first k
variables X1, ..., X}, satisfies all constraints.

o Conversely, every assignment satisfying all the constraints must make at least one of the variables
in X1,..., Xy zero.

An Fuzistential One can be defined similarly.

Definition 5.6 Given a constraint f of arity k and a set S C {1,...,k}, the constraint f|(50) is a
constraint of arity k — [.S] given by f(s,0)(X1,..., Xp_15)) = f(X1,0,0,X2,...,X}_5),0,0), where
the zeroes occur in the indices contained in . For a constraint set F, the 0-closure of F, denoted F|
is the set of constraints {f(so)|f € 7,5 C {1,...,k}}. (1-closure may be defined similarly.)

Notice that F|o essentially implements every constraint that can be implemented by F U {F},
except the constraint {#'}, where I’ stands for the unary constraint “false”. We define F|; similarly.

Then f|0’1 = f|0) f|1

Lemma 5.7 If a constraint set F can implement the existential zero property, then F perfectly im-
plements every constraint in the constraint set F|,. Similarly, if a constraint set F can implement the
existential one property, then F perfectly implements every constraint in the constraint set F|;.

Proof: We show how to implement the constraint f(0,Xy,...,Xx—1). The proof can be
extended to other sets by induction. Let the comstraints fi,..., f,, implement the existential
zero property on variables Yq,...,Yx with auxiliary variables Y 41,...,Yxy. Then the constraints
F(Yi, Xq,..., Xp—q), for 1 <4 < K, along with the constraints f,..., f,, on the variables Yq,..., Yy
perfectly implement the constraint f(0, Xy,..., Xx—1). (Observe that since at least one of the Y;’s
in the set Y7,..., Yk is zero, the constraint f(0, Xq,..., Xx_1) is being enforced.) Furthermore, we
can always set all of Y7,...,Yx to zero, ensuring that any assignment to Xy,..., Xj_1 satisfying
f(0, Xq,..., Xr_1) does satisfy all the constraints listed above. [|

5.2 Proof of Main Theorem
5.2.1 Case 1: The Polynomial Time Solvable Case

We now begin our proof of Theorem 2.3 with a relatively simple case.

Lemma 5.8 The weighted MAX ONE(F) problem is in P if F is 1-valid or is weakly positive or is
affine with width 2.

Proof: If F is 1-valid, then setting each variable to 1 satisfies all constraint applications with
the maximum possible variable weight.

If F is weakly positive, consider the CNF formulae for the f; € F such that each clause has at
most one negated variable. Clearly, clauses consisting of a single literal force the assignment of these

18

j1th variable in the first position, joth variable in the second position and so on. The weight of all
variables isAl.

Let N = 377_; N; denote the number of variables in Z3. We will now show that given o'(N)-
approximate solution to Z3, we can reconstruct a a(n)-approximate solution to Z. It is easy to verify
that any solution to Z3 can be modified to have all copies of a variable assigned to 1 or all assigned

to zero, without changing any 1 to a 0. Thus every solution to Zy of weight w can be transformed to

a solution of weight -7 - 2 for 73 and vice versa. Thus given a solution of weight at least %)I—al,

we can reconstruct (in polynomial time) a solution of weight at least %)I—Q for Zy. To conclude
the argument it suffices to show that this can be used to construct an a(n)-approximate solution
to Il.

Our candidate solutions will be the solution which assigns 1 to X; and the solution to the
instance Z,. If the value of the o/(N)-approximate solution to Z3 is w, then the value of a solution so
returned is at least max{w;, w — ew;} which is at least {37. (The inequality max{w{, w —ew;} > 7%

+e

follows from a simple averaging argument.) Since w > OPT(Z;)/a/(N) and OPT(Zy) < OPT(Z,),
OPT@) _ OPT@
(1+e)o’(N) ™ (14e)a’(N)

we find that this solution has value at least Thus this solution is a (1 +
€)a’(N') approximate solution to Z.
Finally observe that since N < %, this is also an (1 + €)a’(n?/¢) = a(n)-approximate solution

to the instance Z. []

The ability to work with weighted problems in combination with Lemma 3.5 allows us to use
existential quantification over auxiliary variables and the notion of perfect implementations of
constraints.

As our examination will eventually show, there is really no essential difference in the approx-
imability of the weighted and unweighted problems. For now we will satisfy ourselves by stating
this conditionally.

Corollary 5.3 For any strongly decidable constraint set 7, the MAX ONE(F) problem is APX-hard
if and only if the weighted MAX ONE(F) problem is APX-hard. Similarly, the MAX ONE(F) problem
is poly-APX-hard if and only if the weighted MAX ONE(F) problem is poly-APX-hard.

Before concluding we show that most problems of interest to us will be able to use the equivalence
between weighted and unweighted problems.

Lemma 5.4 If 7 C F; for some j € {1,...,7}, then F is strongly decidable.
Proof: For a constraint f € F and an index i € {1,...,k}, let f* be the constraint:
(X LX) S A, X1, X, - X).
Further let F* be the constraint set:
F Y FUfrIf e Frie k).

First observe that the problem of strong decidability of F is the decision problem SAT(F*). Further,
observe that if 7 C F; for j € {1,2,3,4,6,7}, then F* C F; as well. Lastly, if 7* C Fs, then
F* C Fs. Thus in each case we end up with a problem from SAT(F) which is in P by Schaefer’s
theorem. [|

Lastly we describe one more tool that comes in useful in creating reductions. This is the notion
of implementing a property which falls short of being an implementation of an actual constraint.

17

affine constraints, F5 the strongly 0-valid constraints, Fs the weakly negative constraints, F; the
2CNF constraints and Fg the 0-valid ones. Theorem 2.3 can be restated as follows. For a constraint
set F if ¢ is the smallest index such that 7 C F, then if i € 1,2,3 then MAX ONE(F) € P,ifi =4
then MAX ONE(F) is APX-complete, if i € 5,6,7 then MAX ONE(F) is poly-APX-complete, if
i = 8 then SAT(F) is in P but MAX ONE(F) is not approximable and if no such 7 exists then
finding any satisfying assignment for MAX ONE(F) in NP-hard.

5.1 Preliminaries

In this subsection, we prove a few preliminary lemmas that we will need in the proof of the theorem,
particularly in Cases 2 and 3. We first show that in these cases, it is essentially equivalent for us
to consider the weighted or unweighted MAX ONE(F) problem.

We begin with a slightly stronger definition of polynomial-time solvability of SAT(F) that we
will need. We then show that given this stronger form of SAT(F) that insofar as APX-hardness
and poly-APX-hardness are concerned, the weighted and unweighted cases of MAX ONE(F) are
equivalent. We conclude by showing that in Cases 2 and 3 the stronger form of SAT(F) holds.

Definition 5.1 We say that a constraint satisfaction problem SAT(F) is strongly decidable if given
m constraints on n variables Xy,..., X, and an index i € {1,...,n}, there exists a polynomial time
algorithm which decides if there exists an assignment to X,..., X,, satisfying all m constraints and
additionally satisfying the property X; = 1.

Lemma 5.2 For every strongly decidable constraint set F, for every ¢ of the form 1/l for some
positive integer / and for every non-decreasing function a : Z+ — Z*, a-approximating the weighted

MAX ONE(F) problem reduces to o’-approximating the (unweighted) MAX ONE(F) problem, where

a'(n) = a((]ﬁ).

Proof: We use the shorthand notation ()Z', c, W) to denote an instnance of a weighted MAX ONE
problem consisting of constraint applications Cy,...,C,, on variables Xy,..., X, with weights
w1, ..., w,. Given an instance 7 = ()?,C_", @) of a weighted MAX ONE(F) problem, we create a
sequence of instances of weighted MAX ONE(F) problems with the final instance having N < %
variables, with the weight of every variable being 1, and with the property that given an o/(N)-
approximate solution to the final instance we can obtain an a(n)-approximate solution to the
instance 7.

Assume w.l.o.g. that w; > wy > --+ > w,. From here onwards ¢ will denote the smallest index
such that there exists a feasible solution to 7 with X; = 1. Notice that ¢ can be computed in
polynomial time. The instance 7 is defined to be ()?,C_", @'), where w’ = w; if j > i and w} =0
otherwise. Since no solution of 7 has X; = 1 for j < 4, this change in the weight function does not
alter the value of any solution. Thus Z; is essentially equivalent to Z. Notice that the weight of
the optimal solution to Z; is at least w?.

The instance 7, is defined to be ()?, c, u?”), where w is w’ rounded up to the nearest integral
positive multiple of % Notice that the net increase to the weight of any solution by this increase
in the weights is at most cw!.

Finally the (unweighted) instance 73 has as its variables N; copies of every variable X;, where
N; = (w+ Notice that by the definition of w”’s, the N;’s are integral and 1 < N; < 2. Given
ew! [n) 7o J J €

a constraint C; on variables X ,..., X;,, the instance Z3 has N; X N;, X «-+ X N;, copies of the
constraint C; applied to all different collections of k-tuples of variables containing a copy of the

16

satisfiable in a constant fraction of the constraints. This is termed hardness at gap location 1
by Petrank [14] who highlights the usefulness of such hardness results in other reductions. The
essential observation needed is that perfect implementations preserve hardness gaps located at 1
and that Schaefer’s proofis based on perfect implementations. Thus we have the following theorem:

Theorem 4.18 For every constraint set F either SAT(F) is easy to decide, or there exists ¢ = ¢z > 0
such that it is NP-hard to distinguish satisfiable instances of SAT(F), from instances where 1 —¢ fraction
of the constraints are not satisfiable.

4.4 Strengthening Schaefer’s Dichotomy Theorem

Schaefer’s proof of NP-hardness in his dichotomy theorem relies on the ability to replicate variables
within a constraint application. We observe that this assumption can be eliminated by creating a
perfect implementation of the function REP. Since given a perfect implementation, we can replace
any p replicated copies of a variable X by p new variables X;, X,,..., X}, and add constraints
of the form REP(Xy, X3), REP(X1, X3), ..., REP(X7, X,,). We now show how to create a perfect
implementation of the REP function.

Lemmas 4.14 and 4.15 show that MAX CSP({ fo, f1, f2}), where fy is not 0-valid and f; is not
1-valid, can be used to create either a perfect implementation of the function REP or a perfect
implementation of both unary functions 7" and F. In the latter case, we can show the following
lemma.

Lemma 4.19 If f is not weakly negative then MAX CSP({f, T, F'}) can perfect implement either the
function z @ y, or the function z + y. Similarly, if f is not weakly positive then MAX CSP({f, T, F'})
can perfect implement either the function « & y, or the function z + 7.

Proof: We only prove the first part - the second part follows by symmetry. We know that f has
a maxterm S with at least two positive literals. We consider the function f’ which is f existentially
quantified over the variables not in 5. Let z; and zy be the two positive literals in 5. Set all
other variables in S to the value which does not make S true. Then the assignment zq = x93 = 0
is a non-satisfying assignment. The assignments zq1 = 0 # 25 and 21 # 0 = 25 must be satisfying
assignments ny the definition of maxterm. While the assignment z; = 25 = 1 may go either way.
Depending on this we get either the function z § y or = + y. [|

Corollary 4.20 If f, is not weakly positive and f; is not weakly negative, then MAX CSP({ fa, f5,7, F'})
perfectly implements (at gap 1) the XOR function.

Since the SAT(F) problems that we need to establish as NP-hard in Schaefer’s theorem satisfy the
condition that there exists fo, f1, f2, f3 € F such that fy is not 0-valid and f; is not 1-valid, f; is
not weakly positive and f3 is not weakly negative, we conclude that we can perfectly implement
the XOR function. This, in turn, can be used to create a perfect implementation of the function
REP(z,y) by using the constraints {z & z,y & 2z} for some auxiliary variable z. Thus replication
can be eliminated from Schaefer’s proof.

5 The Classification Theorem for MAX ONE

In this section, we establish Theorem 2.3, the MAX ONE classification theorem. We use the
following shorthand notation for the eight constraint classes of importance. Let F; denote the class
of 1-valid constraints, F, the weakly positive constraints, F3 the affine width-2 constraints, F4 the

15

variable in Sy is set to one in this case. Finally, using the constraints on the constraint f; which
is not 1-valid, it is easy to conclude that in fact Z = Sx.

Now let s = 10717 be a least hamming weight satisfying assignment for fy; p, ¢ may be zero but s
contains at least a single one as fj is not 0-valid. Then the constraint fo(X, X1, X, ..., X, Y1,VY5,..., Y,
can be satisfied iff X = 1. Thus all the constraints in Zy and Z; are satisfied along with above
constraint iff X = 1 and otherwise, we can still satisfy all the constraints in Zy and Z;. Hence this
is indeed an implementation of the constraint 7°(.). The constraint F'(.) can be implemented in an
analogous manner.

|

4.2.6 Unary Constraints Help Implement either REP or MAX SNP-Hard Constraints

Lemma 4.16 Let f be a constraint which is not 2-monotone. Then {f, T, F'} can strictly implement
either the XOR or the REP constraint.

Proof: Since f is not 2-monotone and non-trivial, it must be sensitive to at least two variables.
Consider the boolean k-cube with each vertex s labeled by the function value f(s); where & is the
arity of constraint f. Let V; denote the set of vertices labeled 7, ¢ € {0,1}. If |V;| < |Vi_;|, we
claim that it must be the case that there exists a vertex in V; which has at least two neighbors in
Vi_;. This is readily seen using the expansion properties of the k-cube; any set S of at most 25!
vertices must have expansion factor at least one. Furthermore, the expansion factor is precisely one
only when the set S induces a boolean (k — 1)-cube. But the latter case can’t arise since it would
imply that f is a single variable constraint. Hence there must exist a vertex s € V; which has two
neighbors in Vi_;.

Let s; and s; be these two neighbors of s, differing in the i and the jm bit position respectively.
Without loss of generality, we may assume that ¢ = 1 and 7 = 2. Consider now the input instance
which has a constraint of the form f(Xq, Xg,VYs,VYs,...,Ys) and constraints of the form T(Y;) for
each i in O(s) — {1,2} and of the form F(Y;) for each i in Z(s) — {1,2}. It is now easy to verify
that this set of constraints strictly implement one of the constraints X; & Xy, X1 & X, X7 + Xo,
X4 X, or X;4 X;. The first two are the constraints XOR and REP respectively. By Lemma 4.10,
either of the constraints X; 4+ X, or X; + Xy along with {7, F} strictly implement XOR, and by
Lemma 4.11 the family {X; + Xy, T, F'} strictly implements REP. |

Lemma 4.17 If F is a constraint set such that there exist (1) fo € F which is not 0-valid, (2) f; € F
which is not 1-valid and (3) f, € F which is not 2-monotone, then MAX CSP(F) is MAX SNP-hard.

Proof: If either fy or f; is C-closed then using Lemma 4.14, we can strictly implement the
XOR constraint.

If neither fu nor f1 is C-closed, then using Lemma 4.15 {fo, f1, f2} strictly implements the
unary constraints 7'(.) and F'(.), and then using the Composition Lemma along with Lemma 4.16,
we conclude that { fo, f1, f2} strictly implements either the XOR constraint or the REP constraint.
In the latter case, we can use Lemma 4.13 to conclude that {fo, fi, fo} can strictly implement the
XOR constraint.

Thus is every situation, F strictly implements the XOR constraint. The lemma follows from the
fact that MAX CSP(XOR) is APX-hard (Lemma 4.9) and the approximation preserving property
of strict implementations (Lemma 3.4). [|

4.3 Hardness at Gap Location 1

Schaefer’s dichotomy theorem can be extended to show that in the cases where SAT(F) in NP-
hard to decide, it is actually hard to distinguish satisfiable instances from instances which are not

14

e
s 0 00..0 11..1 0
s 1 00..0 11...1 1
5 0 11..1 00..0 1
s 1 11..1 00...0 0

We add the constraints f(X, X1, Xo, ..., X, Y1, Ys, ..., Y,) and f(Y,Y1,Ys, ..., Yy, X1, Xo, ..., X).
If X =1, then to satisfy the constraint f(X, Xy, Xo,..., X}, Y1,Y5,...,Y,), we must have Z = Sx.
Otherwise, we have X = 0 and then to satisfy the constraint f(X, Xy, Xg,..., Xp, Y1,Y5,...,Y,) we
must have Z = Sy . In either case, the only way we can also satisfy the constraint

f(Ya Y17Y27 "'7Yp7X17)(27 "'7Xq)

is by assigning Y the complementary value. Thus these set of constraints perfectly and strictly
implement the constraint X @ Y; all constraints can be satisfied iff X # Y and if X = Y there
exists an assignment to variables in Sx and Sy such that precisely 1 constraint is unsatisfied.

|

4.2.5 Implementing the Unary Constraints

If the constraint(s) which is (are) not 0-valid and 1-valid is (are) not closed under complementation,
then they can be used to get rid of the unary constraints. This is shown in the next lemma.

Lemma 4.15 Let fy and f; be two non-trivial constraints, possibly identical, which are not 0-valid
and 1-valid respectively. If neither fy nor f; is C-closed, then {fy, fi} perfectly and strictly implement
both the unary constraints 7°(.) and F(.).

Proof: We will only describe the implementation of constraint 7(.); the analysis for the con-
straint F'(.) is identical. Assume, for simplicity, that both f;, i € {0,1}, are of arity k. We
build on the implementation in the proof of Lemma 4.14. We start with a set of 4k variables
Sx ={X1,..., X9} and Sy = {Y1,...,Yar}. For each 7 € {0, 1}, for each satisfying assignment s
of f;, if 7 is the number of 0’s in s we place the (2.k) (kz_k]) constraints f; with all possible subsets
of Sx appearing as the zero set and all possible subsets of Sy appearing as the one set. Now we
argue that any solution which satisfies all the constraints in Zy and Z; must set all variables in Sy
to 0 and all variables in Sy to 1.

So we have two constraints fy and fi such that neither is C-closed. Suppose |Sx N O| > k then
we must have |Sy N O] > k. To see this, consider a satisfying assignment s such that f,(3) = 0;
there must exist such an assignment since fo is not C-closed. Now if |Sy N Z| > k, then clearly
at least one constraint corresponding to s is unsatisfied - namely, the one in which the positions
in O(s) are occupied by the variables in (Sy N Z) and the positions in Z(s) are occupied by the
variables in (Sx N O). Thus we must have |[Sy N O| > k. But if we have both [Sx N O| > k and
|Sy N O| > k, then there is at least one unsatisfied constraint in the instance Z; since f; is not
1-valid. Thus this case cannot arise.

So we now consider the case [Sx N Z| > k. Then for constraints in Zy to be satisfied, we must
once again have |Sy N O| > k; else there is a constraint with all its inputs set to zero and is hence
unsatisfied. This can now be used to conclude that Sy N Z = ¢ as follows. Consider a satisfying
assignment with smallest number of ones. This number is positive since fy is not 0-valid. If we
consider all the constraints corresponding to this assignment with inputs from Sy and Sx N Z only,
it is easy to see that there will be at least one unsatisfied constraint if Sy N Z # ¢. Hence each

13

o constraints F(X;) for (p+qg+r+t+u+1)<i<(p+qg+r+t+u+v),
o constraints T(X;) for (p+¢+r+t+u+v)<i<(p+q+r+t+u+ v+ w),and finally

o the constraint f(Xy, Xo,..., Xz) where k= (p+qg+r+t+u+v+w).

It is now easy to verify that for a = (k — 1), this is a strict a-implementation of the constraint
X1 4 Xptgtrt+t+1- Again, the claim now follows immediately from Lemma 4.10.

Finally, the case in which f violates the property (¢) above, can be handled in an analogous
manner. |

4.2.4 Implementing the REP Constraint

We now start on the goal of removing the use of the unary and replication constraints above. In
order to do so we use the fact that we have available to us constraints which are not 0-valid and
not 1-valid. It turns out that the case in which the same constraint is not 0-valid and not 1-valid

and further has the property that its behavior is closed under complementation (i.e., f(s) = f(5))
is somewhat special. We start by analyzing this case first.

Lemma 4.14 Let f be a non-trivial constraint which is C-closed and is neither 0-valid nor 1-valid.
Then {f} perfectly and strictly implements the XOR constraint.

Proof: Let k denote the arity of f and let kg and %y respectively denote the maximum number
of 0’s and 1’s in any satisfying assignment for f; clearly kg = k1. Now let Sx = { X1, Xo, ..., Xor}
and Sy = {Y1,Ys,...,Yor} be two disjoint sets of 2k variables each. We begin by placing the
constraint f on a large collection of inputs as follows: for each satisfying assignment s, we place
(22.]”") (kz_ki) constraints on the variable set Sx U Sy such that every i-variable subset of Sx appears
in place of 0’s in s and every (k — i) variable subset of Sy appears in place of 1’s in the assignment
s, where 7 denotes the number of 0’s in s. Let this collection of constraints be denoted by Z.

Clearly, any solution which assigns identical values to all variables in Sx and the complementary
value to all variables in Sy, satisfies all the constraints in 7. We wish to show the converse, i.e.,
every assignment satisfying all the above constraints assigns identical values to all variables in Sy
and the complementary value to every variable in Sy.

Let Z and O respectively denote the set of variables set to zero and one respectively. We claim
that any solution which satisfies all the constraints must satisfy either Z = Sx or Z = Sy.

To see this, assume without loss of generality that |Sx N 7| > k. This implies that |Sy NO| > k
or else there exists a constraint in Z with all its input variables set to zero and hence is unsatisfied.
This in turn implies that no variable in Sx can take value one; otherwise, there exists a constraint
with k1 + 1 of its inputs set to one, and is therefore unsatisfied. Finally, we can now conclude that
no variable in Sy takes value zero; otherwise, there exists a constraint with kg 4+ 1 of its inputs
set to zero and is therefore unsatisfied. Thus, Z = Sx. Analogously, we could have started with
the assumption that [Sx N O] > k and established 7 = Sy. Hence an assignment satisfies all the
constraints in 7 iff it satisfies either the condition Z = S'x or the condition Z = Sy.

We now augment the collection of constraints as follows. Consider a least hamming weight
satisfying assignment s for f. Without loss of generality, we assume that s = 10719, Clearly then,
s = 0PT117 is not a satisfying assignment. Since f is C-closed, we have the following situation :

12

Lemma 4.13 For any constraint f which is not 2-monotone, {f, T, I, REP} strictly implements the
constraint XOR.

Proof: We prove this by using the Lemma 4.12 for 2-monotone constraints. Let k& denote the
arity of f. If f is not 2-monotone, it must violate one of the three conditions (@), (b) and (¢) stated
in the Lemma 4.12.

Suppose f violates the property (a) of Lemma 4.12. Then for some satisfying assignment s, there
exist two assignments sy and sy such that Z(s) C Z(sg) and O(s) C O(s1), but f(sg) = f(s1) = 0.
Without loss of generality, we assume that s = 0719, so = 0P+?197% and s, = 07~°19%?, where
p+ ¢ = k. Thus we have the following situation :

10

s 00..0 00.0 Tr.1 Ti.1 1
so 00..0 00..0 00..0 11..1 0
st 00..0 1.1 1.1 11.1 0
s5 00..0 11..1 00..0 11.01 _

Observe that both a and b are non-zero. Consider the following set of constraints on variables
X1,X2,...,Xk :

e constraints F(X;) for 1 <i < (p—a),

o constraints REP(X,_qt1, Xp_ays) for 2 <i < a,
o constraints REP(X 41, X,4;) for 2 <4 < b,

e constraints T(X;) for (p+a+ b+ 1) <i <k, and
o the constraint f(Xy, Xo,..., Xi).

It is easy to verify that for @« = (k — 1), this is a strict implementation of the constraint
Xp—at1 @ Xpt1 if f(s2) = 1 and Xp—441 Xpt1, otherwise. The claim now follows immediately from
Lemma 4.10.

Next suppose f violates the property (b) of Lemma 4.12. Then there exists an unsatisfying
assignment s to f satisfying V4 N V2 C O(s). Notice that O(s) cannot contain V; or V; (since V4
and V3 are 1-consistent for f). Thus s sets all variables in V3 NV; to 1, and at least one variable in
each of V1 \ (ViNV,) and V5 \ (ViNV;) to 0. Consider one such unsatisfying assignment s. Without
loss of generality, we have the following situation :

Vi
Vs
Vi\O(s) Vinv, V2\O(s)
— —N —
s 00..0 11..1 11..1 11..1 00..0 00..011...1
—— =~ Ht,_/ —— NS~
P q r % v w
Consider the following set of constraints on variables X1, X5, ..., X}, :

e constraints REP(Xy, X;) for 2 <7 < p,
o constraints T(X;) for (p+ 1) <i<(p+q+r+1),

o constraints REP(Xptqqrteq1, Xppgprteqi) for 2 <i <,

11

Proof: We observe that MAX CSP(XOR) captures the MAX CUT problem shown to be APX-
hard by [13, 1]. Given a graph G = (V, £) with n vertices and m edges, create an instance Zg
of MAX CSP(F) with one variable X, for every vertex u € V and with constraints XOR(X,, X,)
corresponding to every edge {u,v} € K. It is easily seen there is a one-to-one correspondence
between (ordered) cuts in G and the assignments to the variables of Zg which maintains the values
of the objective functions (i.e., the cut value and the number of satisfied constraints). []

Lemma 4.10 Forany f € {X +Y, XY, X +Y}, {f,T, I} strictly implements the XOR constraint.

Proof: If f = X+Y, then theinstance {f(X,Y), f(X,Y), F(X), F(Y)} is a strict 3-implementation
of X ®Y;if f = XY, then the instance {f(X, Y) fly,)()} is a strict 1-implementation of X @Y
and ﬁnaﬂy, if f= X + Y, then {f(X,Y), f(X,Y),T(X),T(Y)} is a strict 3-implementation of
X3Y. [|

Lemma 4.11 {f,T, F'} strictly implements the REP constraint if f is the constraint X + Y.

Proof: The instance {f(X,Y), f(X,Y), F(X),T(Y)} is a strict 3-implementation of the con-
straint REP. |

4.2.2 Characterizing 2-Monotone Constraints

In order to prove the hardness of a constraint which is not 2-monotone, we require to identify
some characteristics of such constraints. The following gives a characterization that turns out to
be useful.

Lemma 4.12 A constraint f is a 2-monotone constraint if and only if all the following conditions are
satisfied:

(a) for every satisfying assignment s of f either Z(s) is 0-consistent or O(s) is 1-consistent.

(b) if V4 is 1-consistent and V5 is 1-consistent for f, then V3 NV, is 1-consistent, and

(c) if V1 is O-consistent and V3 is O-consistent for f, then V3 NV, is 0-consistent.

Proof: We use the fact that a constraint can be expressed in DN form as a disjunction of
conjunctions (sum of terms). For a 2-monotone constraint this implies that we can express it as
a sum of two terms. Every satisfying assignment must satisfy one of the two terms and this gives
Property (a). Properties (b) and (c) are obtained from the fact that the constraint has at most
one term with all positive literals and at most one term with all negative literals.

Conversely consider a constraint f which satisfies properties (a)-(c). Let sq,...,s; be the sat-
isfying assignments of f such that Z(s;) is O-consistent, for ¢ € {1,...,l}. Let t1....,t; be the
satisfying assignments of f such that O(%;) is 1-consistent, for j € {1 . k}. Then Z = N;Z(s;)
and O = N;0(t;) are 0-consistent and 1 consistent sets for f respectlvely (usmg (b) and (c)) which
cover all satisfying assignments of f. Thus f(X) = (AiezX;) V (AjeoX;), which is 2-monotone. W

Observe that a 2-monotone constraint is always either 0-valid or 1-valid or both.

4.2.3 MAX SNP-hardness of Non 2-Monotone Constraints

We now use the characterization from the previous subsubsection to show that if one is allowed
to “force” constants or “repetition” of variables, then the presence of non-2-monotone constraint
gives hard problems. Rather than using the ability to force constants and repetitions as a binding
requirement, we use them as additional constraints to be counted as part of the objective function.
This is helpful later, when we try to remove the use of these constraints.

10

o For each edge e = (z,t) with weight w., we create the constraint f3(X) with weight w..

o For each edge e = (z,y) with weight w, and such that z,y & {s,t}, we create the constraint
f2(X,Y) with weight w..

Given a solution to this instance of MAX CSP(F), we construct an s-f cut by placing the
vertices corresponding to the false variables on the s-side of the cut and the remaining on the
t-side of the cut. It is easy to verify that an edge e contributes to the cut iff its corresponding
constraint is unsatisfied. Hence the optimal MAX CSP(F) solution and the optimal s-¢ min-cut
solution coincide. |

4.2 Proof of APX-completeness

In this section we prove that for every F that is not 0-valid or 1-valid or 2-monotone, the problem
MAX CSP(F) is APX-complete. The proof of containment in APX follows from the fact that
MAX CSP is contained in MAX SNP which was shown to be in APX by Papadimitriou and Yan-
nakakis [13]. It remains to show that that a constraint set which is not entirely 0-valid or entirely
1-valid or entirely 2-monotone gives a APX-hard problem. The main APX-hard problem which
we reduce to any of these new ones is the MAX CUT problem shown to be hard by the results of
Papadimitriou and Yannakakis [13] and Arora et al. [1]. Initially (in Lemma 4.13) we consider the
case where we are essentially allowed to repeat variables and set some variables to true or false.
This provides a relatively painless proof that if a constraint is not 2-monotone, then it provides
a APX-hard problem. We then use the availability of constraints that are not 0-valid or 1-valid
to strictly implement constraints which force variables to be 1 and 0 respectively, as well as to
force variables to be equal. This eventually allows us to use Lemma 4.13. We first start with some
notation.

4.2.1 Notation

Given an assignment s to an underlying set of variables, Z(s) denotes the set of positions corre-
sponding to variables set to zero and O(s) denotes the set of positions corresponding to variables
set to one. More formally, given an assignment s = s13;...8, to Xy, Xo, ..., X,;, where s; € {0, 1},

we have Z(s) ={t | s;=0}and O(s)={i | s; =1}.

Definition 4.5 [Unary Constraints] The constraints 7(X) = X and F(X) = X are called unary
constraints.

Definition 4.6 [XOR and REP Constraints] The constraint f(X,Y) = X ¢ Y is called the XOR
constraint and its complement constraint, namely X =Y, is called the REP constraint.

Definition 4.7 [C-closed constraint] A constraint f is called C'-closed (or complementation-closed)
if for all assignments s, f(s) = f(3).

Definition 4.8 [0/1-Consistent Set] A set V' € {1,...,k} is 0-consistent (1-consistent) for a con-

straint f : {0,1}* — {0,1} if and only if every assignment s with Z(s) D V (resp. O(s) D V)is a
satisfying assignment for f.

Lemma 4.9 MAX CSP(XOR) is APX-hard.

4.1 Polynomial Time Solvability

From this subsection onwards, we omit the notation F' (as discussed in Section 2) and assume that
we have a constraint set F such that F = F'.

Lemma 4.1 The problem weighted MAX CSP(F) is in P if each f; € F is 0-valid.

Proof: Set each variable to zero; this satisfies all the constraints. [|
Lemma 4.2 The problem weighted MAX CSP(F) is in P if each f; € F is 1-valid.

Proof: Set each variable to one; this satisfies all the constraints. [|
Lemma 4.3 The problem weighted MAX CSP(F) is in P if each f; is a 2-monotone constraint.

Proof: We reduce the problem of finding the maximum number of satisfiable constraints to the
problem of finding the minimum number of unsatisfied constraints. This problem, in turn, reduces
to the problem of finding s-t min-cut in directed graphs. 2-monotone constraints have the following
possible forms : (a) X;, X;,...X; , (b) X, Xj;,...X;,, and (¢) X;, X,...X; 4+ X;, Xj,...X;, where
p,q > 1.

Construct a directed graph G with two special nodes F and T and a vertex X; corresponding
to each variable in the input instance. Let oo denote an integer larger than the total weight of

ip?

constraints. Now we proceed as follows for each of the above classes of constraints :

o lor a constraint C' of weight w of the form (a), create a new node ec and add an edge from
each X; to e¢ of cost oo and an edge from ex to T of cost w.

e For a constraint C' of weight w of the form (b), create a new node €z and add an edge of cost
oo from €g to each X; and an edge from F to €z of cost w.

¢ Finally, for a constraint C' of weight w of the form (c), we create two nodes ec and ez and
connect e to X;,, X;,,...and connect ¢ to X;,, X;,,... as described above and replace the

edges of cost w from F’ and to T by an edge from ec to ¢ of cost w.

Using the correspondence between cuts and assignments which places vertices corresponding to
true variables on the I’ side of the cut, we find that the cost of a minimum cut separating I’ from
F equals the minimum weight of constraints that can be left unsatisfied. [|

The next lemma shows that s-t min-cut problem is in weighted MAX CSP(F) for some 2-
monotone constraint set F. Since the previous lemma shows how to solve MAX CSP(F) for any
2-monotone constraint set F by reduction to s-£ min-cut problem, it seems that s-f min-cut problem
is the hardest (and perhaps the only interesting) problem in MAX CSP(F) for constraint sets F
that are 2-monotone.

Lemma 4.4 The s-t min-cut problem is in weighted MAX CSP(F) for some 2-monotone constraint
set F.

Proof: Let F be a constraint set of three constraints { fi, fa, f3} such that f1(X) = X, fo(X,Y) =
X +Y and f(Y)=Y.

Now given an instance G = (V, £) to s-t min-cut problem, we construct an instance of MAX CSP(F)
on variables X1, X, ..., X,, where X; corresponds to the vertex X; € V :

o For each edge e = (s, 2) with weight w., we create the constraint f;(X) with weight w..

Notice that the denominator is positive if § < 1+ ﬁ Further, if 3 = 1 + ¢, then (' is

bounded by 1+ ¢ (ﬁz—j‘%) and thus #’ — 1 and 8 — 1. Thus a S-approximation algorithm for

MAX CSP(F;) yields a '-approximation algorithm for MAX CSP(F;), where 3’ = m
It is easy to see that §’ — 1 as # — 1 and thus the APX-hardness of MAX CSP(F;) implies the

APX-hardness of MAX CSP(Fy). |

Lemma 3.5 Given constraint sets F7, F,, such that the weighted MAX ONE(F;) problem has a a(n)-
approximation algorithm and every constraint f € F; can be perfectly implemented by the constraint
set F, then there exist constants c,d such that the weighted MAX ONE(F;) problem has a a(cn?)-
approximation algorithm.

Proof: Let | = || and k be the maximum arity of any constraint f € F;. Let K be the
largest number of auxiliary variables used in perfectly implementing any constraint f € F; by Fs.
Notice that K is a finite constant for any fixed Fy, Fs.

Given an instance Z of MAX ONE(F;) with m constraints Cy,...,Cp, on nvariables Xq,..., X,
with n real non-negative weights wy,...,w,, we create an instance Z' of MAX ONE(F;) as fol-
lows: Z' has the variables X,..., X, of 7 and in addition “auxiliary” variables {Y;]}Z';’{"Fl The
weights corresponding to Xy,..., X, is wq,...,w, (same as in Z) and the auxiliary variables Yij
have weight zero. The constraints of Z' perfectly implement the constraints of Z. In particular the
constraint f;(X;,,..., X;,) of 7 is implemented by a collection of constraints from F;, (as dictated
by the perfect implementation of f; by F3) on the variables (X,,,..., X;,, Y, ..., V,X).

By the definition of perfect implementations, it is clear that the every feasible solution to 7 can
be extended (by some assignment to the Y variables) into a feasible solution to Z’. Alternately,
every solution to Z’' immediately projects on to a solution of Z. Furthermore, the value of the
objective function is exactly the same (by our choice of weights). Thus a §-approximate solution
to 7' gives a (3-approximate solution to Z.

It remains to study this approximation as a function of the instance size. Observe that the
instance size of 7’ is much larger. Let N denote the number of variables in Z'. Then N is
upper bounded by K'm + n, where m is the number of constraints in Z. But m, in turn, is at
most In*. Thus N < (K + 1)in*, implying that an a(N)-approximate solution to 7, gives an
a((K +1)in*)-approximate solution to Z. Thus an a(N)-approximation algorithm for the weighted
MAX ONE(F,) problem yields an a(en?)-approximation for the weighted MAX ONE(F;)-problem,
forc= (K + 1)l and d = k. []

Corollary 3.6 If weighted MAX ONE(F;) is APX-hard and F; perfectly implements every constraint
in F1, then weighted MAX ONE(F;) is APX-hard. Similarly, if weighted MAX ONE(F;) is poly-APX-
hard and F; perfectly implements every constraint in 77, then weighted MAX ONE(F;) is poly-APX-
hard.

4 The Classification Theorem for MAX CSP

In this section, we prove Theorem 2.2. Section 4.1 discusses the cases for which MAX CSP(F)
is in P, while Section 4.2 proves APX-completeness for the remaining cases. Sections 4.3 and 4.4
show how some of the results derived in this section can be used to strengthen Schaefer’s original
theorem.

We now consider the case when the a;- and ag-implementations satisfy property (d) and show
that in this case also the collection of constraints above satisfies property (b). Given an assign-
ment to X satisfying f there exists an assignment to Y satisfying a; constraints from C4,...,Cy,,.
Say this assigment satisfied v clauses from the set Cy,...,Cg and a; — v constraints from the set
Cg41y-+.,Cpy. Then forevery j € {1,..., 3} such that the clauses C} is satisfied by this assignment

to X,}_;, there exists an assignment to Z’j satisfying ay clauses from the set C7 ;,...,C}, .. Fur-
thermore, for the remaining values of 7 € {1,...,3} there exists an assignment to the variables Z’j

satisfying g — 1 of the constraints C' C! . . (here we are using the strictness of the ay imple-

/
17j7 T /7‘)’1/2,‘7-

mentations). This setting to Y, Z’l, e, Z’g satisfies yag + (B —7)(a2—1)+ a1 —y = a1 + f(az—1)
of the m constraints. This yields property (b). A similar analysis can be used to show property

(d). []
We next show a simple monotonicity property of implementations.

Lemma 3.3 For integers o, o’ with a < o/, if F a-implements f then F o'-implements f. Further-
more strictness and perfectness are preserved under this transformation.

Proof: Let constraint applications C4,...,C,, from F on)?, Y form an a-implementation of f.
Let g be a constraint from F that is satisfiable and let £ be the arity of g. Let C\riq1, ..., Crigtarea
be o/ — a applications of the constraint g on new variables Z;,...,7Z;. Then the collection of
constraints C'y,...,Cp, 44—, On variable set X, 37, 7 form an o'-implementation of f. Furthermore
the transformation preserves strictness and perfectness. [|

The next two lemmas show how we can use implementations to prove the hardness of MAX CSP
and weighted MAX ONE problems respectively.

Lemma 3.4 If MAX CSP(F;) is APX-hard and every constraint of F; can be strictly implemented
by a constraint of 73, then MAX CSP(F;) is APX-hard.

Proof: Assume without loss of generality that every constraint in F; is satisfiable (i.e., 7| =
Fy). Then for every constraint f € F; of arity k, an assignment s chosen uniformly from {0, 135 s
a satisfying assignment with probability at least 1/2*. Let I be the maximum over all f € F; of
2Fs where ky is the arity of f. Then notice that for any instance 7 with m constraints, the value
of the optimum is at least m/L.

Let a be a postive integer such that there exists a strict a-implementation of every constraint in
Fi using Fj; notice that the Lemma 3.3 implies that such an a does exist. Suppose there exists a -
approximation algorithm for MAX CSP(F;) then we will show that there exists a §’-approximation
algorithm for Fy, where 8/ — 1 as 8 — 1. We focus on the case when 3 < 1 + W For larger
values of 3 we produce an L-approximate solution by using a random assignment to variables.

Given an instance Z of MAX CSP(F;) with m constraints and optimum o, we replace every
constraint of 7 by its strict implementation using the constraints of 5. This produces an instance
7" of MAX CSP(F;) with optimum o + (o — 1)m. Given a solution which satisfies m’ of these
constraints, the projection on to the variables of 7 satisfies at least m’ — (a— 1)m constraints of Z.
Thus if this solution is the output of the -approximation algorithm (i.e., m’ > %(0 + (a = 1)m)),
then this yields a solution which is a #'-approximate solution to Z, where 3’ is bounded by:

Fs %((a—l)m+0)—(a—1)m
1
g (e =52
< p

(a) no assignment of values to X and Y can satisfy more than a constraints from C4,...,C),.

(b) for any assignment of values to X such that f()?) is true, there exists an assignment of values to
Y such that precisely a constraints are satisfied,

(c) for any assignment of values to X such that f()?) is false, no assignment of values to Y can satisfy
more than (a — 1) constraints.

An implementation which satisfies the following additional property is called a strict a-implementation.

(d) for any assignment to X which does not satisfy f, there always exists an assignment to Y such
that precisely (a — 1) constraints are satisfied.

A collection of m constraints is a perfect implementation of f if it is an m-implementation of f.
A constraint set F (strictly / perfectly) implements a constraint f if there exists a (strict / perfect)
a-implementation of f using constraints of F for some o < oco. We refer to the set X as the constraint
variables and the set Y as the auxiliary variables.

A constraint f 1-implements itself strictly and perfectly. While properties (a)-(c) have perhaps
been used implicitly elsewhere, property (d) is more strict (hence the name), but turns out to be
critical in composing implementations together. The following lemma shows that the implementa-
tions of constraints compose together, if they are strict or perfect.

Lemma 3.2 If F; strictly (perfectly) implements a constraint f, and F, strictly (perfectly) implements
a constraint g € Fy, then (Fy \ {g}) U F, strictly (perfectly) implements the constraint f.

Proof: Let C4,...,C,, be constraint applications from Fy on variables)?,}7 giving an oq-
implementation of f with X being the constraint variables. Let C7,...,C], be constraint appli-

cations from F, on variable set X' , 7 yielding an aj-implementation of g. Further let the first
constraints of C'y,...,C),, be applications of the constraints g.
We create a collection of m; + §(my — 1) constraints from ({Fs\ {g})U F, on a set of variables

—

, ,Z’l, ..., Z'g as follows: We include the constraint applications Cg4q,...,C)y,, on variables

,Y and for every constraint application C; on variables V; (which is a subset of variables from

,Y') we place the constraints C7 ;,...,C},,
variables.

We now show that this collection of constraints satisifies properties (a)-(c) with a = a3 + f(az —
1). Additionally we show that perfectness and/or strictness is preserved. We start with properties
(a) and (c).

Consider any assignment to X satisfying f. Then any assignment to Y satisfies at most ay
constraints from the set C'y,...,C,,,. Let v of these be from the set Cy,...,Cg. Now for every j €

!
yns,j- Furthermore

if the constraint C; was not satisfied by the assignment to X,}_}, then at most ay — 1 constraints
are satisfied. Thus the total number of constraints satisfied by any assignment is at most y(ag) +
(B—=7)az—1)+ (an —7) = a1 + B(ay — 1). This yields property (a). Property (c) is achieved
similarly.

We now show that if the a;- and aj-implementations are perfect we get property (b) with
perfectness. In this case for any assignment to X satisfying f, there exists an assignment to Y

By Sy ey
L=y

on variable set \7j, Z’j with Z’j being the auxiliary

{1,..., 3} any assignment to Z’j satisfies at most ay of the constraints Cy ..., C

satisfying C1,...,Cy,,. Furthermore for every j € {1,..., 5}, there exists an assignments to Z’j
satisfying all the constraints C'{J-, .. .,C'q’nz’j. Thus there exists an assignment to)2, 57, A TVAN

satisfying all mq 4+ B(mg — 1) constraints. This yields property (b) with perfectness.

Theorem 2.2 (MAX CSP Classification Theorem) For every constraint set F, the problem
MAX CSP(F) is always either in P or is APX-complete. Furthermore, it is in P if and only if 7’
is 0-valid or 1-valid or 2-monotone.

We need to give two more classes of constraints to give our result for MAX ONE. We say a
constraint is affine with width 2 if it can be expressed as a conjunction of linear equalities over
GF(2) with at most two variables per equality constraint. A constraint f is strongly 0-valid if it is
satisfied by any assignment with less than or equal to 1 ones.

Theorem 2.3 (MAX ONE Classification Theorem) For every constraint set 7, MAX ONE(F)
is either solvable exactly in P or APX-complete or poly-APX-complete or decidable but not approx-
imable to within any factor or not decidable. Furthermore,

1. If F is 1-valid or weakly positive or affine with width 2, then MAX ONE(F) is in P.
2. Else if F is affine then MAX ONE(F) is APX-complete.

3. Else if F is strongly 0-valid or weakly negative or 2CNF then MAX ONE(F) is poly-APX
complete.

4. Else if F is 0-valid then SAT(F) is in P but finding a solution of positive value is NP-hard.

5. Else finding any feasible solution to MAX ONE(F) is NP-hard.

As stated previously, Theorem 2.2 was independently discovered by Creignou [4]. One funda-
mental point of difference between our result and hers is that we do not allow the use of variable
replication in a constraint application. This is enforced by our definition of constraint application
which insists that the indices %1, ..., must be distinct. Our theorem shows that this does not
ultimately matter, but this is not obvious a priori. For instance, a problem whose approxima-
bility has often been studied is the MAX EXACT kSAT problem: Given a collection of clauses
of length exactly k, satisfy as many as possible. This problem is known to be approximable to
within 1 4 27%/(1 — 2=%). However this problem cannot be captured as a MAX CSP problem
under Creignou’s notion of constraint application. The related problem that she can capture is
MAX ESAT: Given a collection of clauses of length at most k, satisfy as many as possible. The
best known approximation for this problem is only slightly smaller than 4/3 [17, 6, 7, 2]. Thus
replications do end up altering the approximability of optimization problems and we take care to
study the approximability of problems without the use of replications.

3 Implementations

We now describe the main technique used in this paper to obtain hardness of approximation results.
Suppose we want to show that for some constraint set F, the problem MAX CSP(F)is APX-hard.
We will start with a problem that is known to be APX-hard, such as MAX CUT, which is the
same as MAX CSP({X @& Y }). We will then have to reduce this problem to MAX CSP(F). The
main technique we use to do this is to “implement” the constraint X ¢ Y using constraints from
the constraint set F. We show how to formalize this notion next and then show how this translates
to approximation preserving reductions.

Definition 3.1 [Implementation] A collection of constraint applications C4,...,C), over a set of
variables X = {Xq, Xy,..., X} and Y = {V¥7,Y,,...,Y,} is called an a-implementation of a constraint
f(X) for a positive integer o iff the following conditions are satisfied:

f is the first part of C”.

For a given set of constraints F, SAT(F), MAX CSP(F), and MAX ONE(F) are as defined
above. If for a given instance of MAX CSP(F) (MAX ONE(F)) the weights w; = 1 for all 4,
we call this an unweighted instance of MAX CSP(F) (MAX ONE(F)). An instance which is not
unweighted is weighted. We define the class of problems MAX CSP (MAX ONE) to be the set of
all problems in MAX CSP(F) (MAX ONE(F)) taken over all possible sets of constraints F.

We now need some definitions from the theory of approximation algorithms. Given an NPO (NP
Optimization) problem II and a function o : Zt — Z* (with a(-) > 1), we say that an algorithm
A is an a-approximation algorithm for 1l if for every instance Z of Il of size n, A produces, in
time polynomial in n, a solution s to Z of value in the range [OPT(Z)/a(n),a(n)OPT(Z)]. We
say 1l is a-approximable if such an algorithm exists. We define APX to be the class of all NPO
problems which have constant-factor approximation algorithms, and poly-APX to be the class of
NPO problems which have polynomial-factor approximation algorithms.

We also need to define what it means to be hard to approximate a problem Il to within a
factor of @. For a function @ : ZT — Z* with a(-) > 1, an NP maximization problem II is
hard to approximate to within a factor of a if there exists a polynomial time reduction f from
SAT to II which maps instances of SAT of length n to instances of II of length /(n) and for
every n and for any two instances ¢y, ¢ of size n of SAT such that ¢; € SAT and ¢ € SAT,
OPT(f(¢1))/OPT(f(¢2)) > a(l(n)). Thus a problem II is APX-hard if there exists a constant
function amr > 1 such that II is hard to approximate to within ar. A problem II is poly-APX-hard
if there exists an € > 0 such that Il is hard to approximate to within n. A problem is APX-complete
(poly-APX-complete) if it is in APX (poly-APX) and is APX-hard (poly-APX-hard).

It is usual to define completeness for approximation classes in terms of reducibility, rather than
the hardness of approximation of the problem. However, Khanna et al. [9] have shown that these
two notions are equivalent provided the right approximation preserving reductions are used. We
will not go into these definitions here, and refer the reader to their paper for details.

We now describe the main constraint classes that are identified by Schaefer’s and our results.
We say a constraint f is 0-valid (1-valid) if f(0) = 1 (f(1) = 1). It is weakly positive (weakly
negative) if it can be expressed in conjunctive normal form, with all the disjuncts having at most
one negated literal (positive literal). A constraint f is affine if it can be expressed as a conjunction
of linear equalities over GF(2). And, finally, a constraint f is 2CNF if it can be expressed in
conjunctive normal form with all disjuncts having at most two literals.

The above six constraint classes can now be used to describe Schaefer’s result. In what follows
we use phrases such as “F is 0-valid” to imply that “every function f € F is 0-valid”. We stress
that when we say something like “F is 0-valid or 1-valid”, we mean that “every function in F is
0-valid or every function in F is 1-valid”.

Theorem 2.1 [Schaefer’s Theorem [15]] For any constraint set F, SAT(F) is either in P or is NP-
complete. Furthermore, SAT(F) is in P if and only if F is 0-valid or 1-valid or weakly positive or weakly
negative or affine or 2CNF.

We now provide the definitions required to state our main classification result for MAX CSP.
For starters, observe that for the approximability of MAX CSP(F) does not change by removing
(or adding) functions from F which are not satisfiable. Hence, given a constraint set F, we define
the constraint set F’ to be the set of constraints f in F which are satisfiable. We also need to
define one more class of constraints before we can give our result: we say a constraint f of arity
k is 2-monotone if there exist indices 41,...,7, C {1,...,k} and ji,...,5, C {1,...,k} such that
F(X0, oo, X)) = (Xig A A X) V(X Ao AKX,

constraints F, we show that if F has certain properties, then it can be used to enforce other
constraint functions f. We show that under suitable conditions, implementations can be composed,
so that the constraints of F can be used to implement the constraints of other problems (such as
MAX CUT or MAX CLIQUE) whose approximability is well known. The central difficulty of the
proofs is showing that this can be done in an exhaustive way for all possible sets of constraints F.
Our definition of an implementation here is inspired by the notion of a gadget in Bellare et al. [3]
and we unify their many definitions (they have different definitions for every f and F that they
consider) into a single one. Our definition has in turn been used by Trevisan et al. [16] to derive
improved hardness of approximation results and improved approximation algorithms.

Our results prove formally for these classes of problems some results about approximability
which to this point have only been empirical observations. For example, the study of MAX SNP has
revealed so far that every NP-hard MAX SNP problem is also hard to approximate to within some
constant factor. Our result on MAX CSP serves as a formal basis for this empirical observation.
Similarly, in the search for polynomial-time approximation algorithms, optimization problems so
far either have exact algorithms, or approximation schemes, or constant or (poly)logarithmic or
polynomial approximation algorithms — but this list is virtually exhaustive. There have been no
“natural” problems that are approximable to within intermediate factors, such as 2'°8° ™ or log log n
and no better. In addition, for many natural optimization problems the best known approximation
algorithm guarantees logarithmic factor approximability, and yet none of them is a mazimization
problem. Once again, our results show that these observations are not simply due to a lack of
knowledge, but have some formal basis.

One of the original motivations for this work was to find some simple rules which characterize the
approximability of any given optimization problem. However the very general question, “Given an
optimization problem, determine its approximability” is undecidable (by Rice’s Theorem). Hence
we turned to restricted classes of uniformly presented optimization problems and this allowed us
to achieve our goal. A natural next step in this research agenda is to broaden the classes of
problems covered by this approach. Khanna et al. [11] have already extended this line of research
to minimization problems, obtaining a complete classification for MIN CSP and MIN ONES. Other
possible research directions include: (1) extending the function families that are studied (to include,
say, functions of bounded range or functions of unbounded arity); (2) placing restrictions on the
nature of the interaction between constraints and variables (such as bounding the number of times
a variable can appear in a constraint). One such restriction which has been explored by Khanna
and Motwani [8] is the case where the interaction graph of the constraint applications and the
variables is planar.

The rest of the paper is structured as follows. In Section 2, we present some definitions and state
our main results. We also state the ways in which our result for MAX CSP(F) strengthens that of
Creignou. Section 3 defines implementations and states some basic properties of implementations.
Section 4 presents the proof of the MAX CSP(F) result. Finally, Section 5 gives the proof of our
result for MAX ONE(F).

2 Definitions and Main Results

We begin with some definitions. A constraint f is as defined above, and a constraint application is a
pair (f, (i1,...,1)), where the i; € [n] indicate to which k of the n boolean variables the constraint
is applied. We require that i; # i;; for j # j'. While the distinction between constraints and
constraint applications is important, we will often blur this distinction in the rest of this paper.
In particular we may often let the constraint application C' = (f,(i1,...,1)) refer just to the
constraint f. In particular, we will often use the expression “C' € F” when we mean “f € F, where

1 Introduction

In this paper, we study the approximability of optimization versions of boolean constraint satisfac-
tion problems (CSPs). A boolean CSP consists of a collection F of boolean functions f : {0,1}* —
{0, 1} called constraints. An instance of such a problem is a set of “constraint applications”. Each
application is a constraint drawn from F and applied to a specified subset of n boolean variables.

The decision version of a boolean constraint satisfaction problem asks whether there is an
assignment to the variables such that all constraint applications are satisfied (that is, for each
application the specified boolean function evaluates to 1 on the given subset of variables). For a
collection of constraints F, we call this problem SAT(F). Thus, for example, 3SAT is a decision
version of boolean CSP with the constraint functions fi(z,y,z) =2 VyVz, fo(z,y,2)=ZVyV z,
and so on. Schaefer [15] studied the decision version of these problems and proved a remarkable
result: for every such problem, either it is in P or it is NP-complete. This dichotomy is especially
interesting in light of Ladner’s theorem [12], which states that if P#ZNP, then there exist infinitely
many problems of complexity between P and NP-complete. Thus although problems SAT(F) could
in principle display a wide range of complexity, they in fact fall into distinct and quite separate
classes (assuming P#NP). An additional property of Schaefer’s result is that his characterization
of the problems in P is compact. He gives six classes of functions, and if all functions in F fall
entirely within any one of these classes, then SAT(F) is in P, otherwise it is NP-complete.

In this paper, we consider two different maximization versions of SAT(F) and completely classify
the approximability of all such problems. In so doing, we find that these optimization problems also
fall into distinct and separate classes, bypassing the many intermediate levels of approximability
which are possible in principle. As we describe later, this classification proves formally for these
problems some results which to this point have only been empirical observations. Furthermore,
our classification of the problems also has a compact description. For both types of maximization
versions of SAT(F), we refine Schaefer’s classes, and the level of approximability of a problem for
a given F is determined by which of these classes contain F.

In the first maximization version of SAT(F) that we consider, for each instance of a problem
we are also given a nonnegative weight w; for each constraint application 7, and we must try to find
an assignment to the variables which maximizes the weight of the satisfied constraint applications.
For any set of constraints F, we call this associated maximization problem MAX CSP(F), and we
call the class of all such problems MAX CSP. It follows almost immediately from its definition
that MAX CSP is contained in the well-studied class MAX SNP. Conversely, it also contains many
of its complete problems. For example, MAX 3SAT and MAX CUT can be cast as MAX CSP(F)
problems. We show that each problem MAX CSP(F) is either solvable exactly in polynomial time
or is MAX SNP-hard. Thus there is no problem in this class which has an approximation scheme
but is not solvable in polynomial time. This result has been obtained independently by Creignou
[4]; however our result is stronger in certain technical senses which we discuss later.

In the second maximization version of SAT(F) that we consider, for each instance of the problem
we are also given a nonnegative weight w; for each boolean variable, and we must try to find a
boolean assignment of maximum weight that satisfies all constraint applications. For any set of
constraints F, we call this associated maximization problem MAX ONE(F); for example, MAX
CUT and MAX CLIQUE can be cast as MAX ONE(F) problems. We show that each problem
MAX ONE(F) must fall into one of five classes: first, it is solvable exactly in polynomial time;
second, it can be approximated to within some constant factor but no better; third, it can be
approximated to within some factor that is polynomial in the number of variables, but no better;
fourth, it is NP-complete to find a satisfying assignment of non-zero value; fifth, it is NP-complete
to find any satisfying assignment.

The central idea of our proofs is a new concept we call an implementation. Given a set of

A Complete Classification of the
Approximability of Maximization Problems
Derived from Boolean Constraint Satisfaction*

Sanjeev Khanna' Madhu Sudan? David P. Williamson®

December 3, 1996

Abstract

In this paper we study the approximability of boolean constraint satisfaction problems. A
problem in this class consists of some collection of “constraints” (i.e., functions f : {0,1}F —
{0,1}); an instance of a problem is a set of constraints applied to specified subsets of n boolean
variables. Schaefer earlier studied the question of whether one could find in polynomial time a
setting of the variables satisfying all constraints; he showed that every such problem is either
in P or is NP-complete. We consider optimization variants of these problems in which one
either tries to maximize the number of satisfied constraints (as in MAX 3SAT or MAX CUT)
or tries to find an assignment satisfying all constraints which maximizes the number of variables
set to 1 (as in MAX CUT or MAX CLIQUE). We completely classify the approximability of
all such problems. In the first case, we show that any such optimization problem is either in
P or is MAX SNP-hard. In the second case, we show that such problems fall precisely into
one of five classes: solvable in polynomial-time, approximable to within constant factors in
polynomial time (but no better), approximable to within polynomial factors in polynomial time
(but no better), not approximable to within any factor but decidable in polynomial time, and
not decidable in polynomial time (unless P = NP). This result proves formally for this class of
problems two results which to this point have only been empirical observations; namely, that
NP-hard problems in MAX SNP always turn out to be MAX SNP-hard, and that there seem
to be no natural maximization problems approximable to within polylogarithmic factors but no
better.

Keywords : Approximation algorithms, combinatorial optimization, complete problems,
computational complexity, computational classes, constraint satisfaction
problems, hardness of approximation, polynomial reductions.

AMS Subject Classification : 68Q25.

*An early version of this paper appeared as a ECCC Tech. Report [10]. This version extends and subsumes the
earlier version.

Tsanjeev@theory.stanford.edu. Department of Computer Science, Stanford University, Stanford, CA 94305.
Supported by a Schlumberger Foundation Fellowship, an OTL grant, and NSF Grant CCR-9357849.

‘madhu@watson.ibm.com. IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598.

§dpw@watson.ibm.com. IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598.

