Electronic Colloquium on Computational Complexity - Reports Series 1996 - available via:
E(:(:(: FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW: http://www.eccc.uni-trier.de/eccc/

T R96- 063 Email: ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

The Linear-Array Problem
in Communication Complexity

Resolved

Martin Dietzfelbinger*
Fachbereich Informatik
Universitat Dortmund
D-44221 Dortmund, Germany
email: dietzf@ls2.informatik.uni-dortmund.de

November 6, 1996

Abstract

Tiwari (1987) considered the following scenario: k + 1 processors
Py, ..., P, connected by k links to form a linear array, are to compute
a function f(z,y),z € X,y € Y, on a finite domain X X Y, where the
xz-part of the input is only known to Py, the y-part is only known to Py;
the intermediate processors Py, ..., Pr—1 do not have any information.
The processors compute f(z,y) by exchanging binary messages across
the links, according to some protocol ®. Let Dy(f) denote the minimal
complexity of such a protocol @, i.e., the total number of bits sent
across all links for the worst case input, and let D(f) = D1(f) denote
the (standard) 2-party communication complexity of f. Tiwari proved
that D(f) > k-(D(f)—0(1)) for almost all functions, and conjectured
this inequality to be true for all f. His conjecture was falsified by

*Partially supported by DFG grant Di 412/2-2. This paper appears as Research Report
Nr. 632/1996, Fachbereich Informatik, Universitat Dortmund, Dortmund, Germany

Kushilevitz, Linial, and Ostrovsky (1996): they exhibited a function
[for which Dy(f) is essentially bounded above by 3k- D(f). The best
general lower bound known is Dy(f) > k- (\/D(f) —logk — 3). We

prove a weakened form of Tiwari’s conjecture:

Di(f) Z v k- D),

for arbitrary functions f, where v = %10g2(3/2) > 0.146.

Applying the general framework provided by Tiwari, we may de-
rive lower bounds for the communication complexity of computing
functions in general asynchronous networks on the basis of the two-
party communication complexity of the function: If the network can
be decomposed into layers Vo, ..., Vi, where links are only allowed to
connect nodes in the same layer and nodes in adjacent layers, and the
input parts z and y are given to nodes in Vg and Vi, respectively, then
the total number of bits that have to be communicated for computing
f(z,y) is bounded below by Q(k - D(f)/logw), where w is an upper
bound on the number of links connecting any two successive layers.

Moreover, we consider the nondeterministic case. Let Ny(f) de-
note the nondeterministic communication complexity of f in an ar-
ray with k links, N(f) the two-party complexity. The best known
(trivial) bound is Ni(f) > k- (N(f) — logk — 2), which is useless for
functions with very small nondeterministic communication complex-
ity. We prove that Ny(f) > [k/2]-(N(f) — 2). Similarly, the method
can also be applied to public coin randomized two-party protocols,
with consequences for the private coin model.

Our result also implies that lower bounds on the deterministic
communication complexity of functions can be used directly to derive
corresponding lower bounds for the time complexity of the function on
deterministic one-tape Turing machines. The question whether this
was possible has been open for a long time.

1 Introduction: Background and Summary

In his fundamental paper on communication complexity of computing func-
tions in networks, Tiwari [20] studied as a basic problem the communication
complexity in a linear array of processors. Following Tiwari, we consider a
simple network, consisting of £+ 1 processors Fy, ..., P, in which processors

P,_1 and P; are connected by a bidirectional link, for 1 < ¢ < k. These
processors are to compute a function f : X x Y — {0,1} for certain finite
sets X, Y.! At the beginning of the computation, Py receives z € X, Py re-
ceives y € Y, and processors Py, ..., P,_y are in an initial state that does not
depend on the input (“know nothing”); at the end of the computation, P,
and Py know f(z,y). For the computation, the processors exchange binary
messages across the links, following a deterministic protocol ® fixed before-
hand. (Protocols and their properties will be discussed in detail in Section 2.
For understanding the remainder of the introduction, these details are not
necessary. For a thorough introduction to communication complexity, see
[5] or [10].) For measuring performance, the cost of internal computations
carried out by each processor is neglected; we are only interested in the cost
L®(z,y), which is the total number of bits exchanged on all links taken to-
gether in carrying out ® on input (z,y). The worst-case cost of ®, denoted
by L®, is defined as the maximum of all L®(z,y). The complexity of f on
an array of length k is defined as

Di(f) = min{L® | ® is a protocol for f on a linear array of length k}.

We wish to compare Di(f) with the (standard) two-party communication
complexity D(f) = Dy(f). It is clear that Dy(f) < k- D(f), since any
two-party protocol can be run on the linear array: the inner processors only
pass on the bits they receive. It is quite natural to conjecture, as Tiwari
did, that Di(f) > k- (D(f) — O(1)), since there is no obvious way how
the inner processors can act as anything but relays. Tiwari showed that his
conjecture is true for almost all functions if | X| = |Y|, essentially by proving
that Di(f) > k - log(ranky(My)) where M; is the “communication matrix”
(f(2,9))ex yey of fand Fis an arbitrary field.? He also showed that “fooling
set” arguments for proving lower bounds can be “lifted” from the two-party
situation to the array. However, it has been known for a long time (see, e. g.,
[16]) that D(f) may be much larger than log(ranky(Mjy)), and that for many
functions f fooling set arguments yield bounds very far away from D(f).
Thus, Tiwari’s methods alone were not sufficient to establish the conjecture.

Recently, Kushilevitz, Linial, and Ostrovsky [9] refuted Tiwari’s conjecture
by exhibiting a function f for which Dy(f) is (essentially) bounded above by

!For notational convenience, we will assume that X,Y C {0,1}" for some n.
2Unless indicated otherwise, all logarithms in this paper are to the base 2.

%k - D(f). Their proof of this result is interesting because of two aspects:
first, it shows that for functions with a suitable, cleverly chosen structure the
presence of intermediate processors does indeed help; second, it introduces
an important new technique for establishing lower bounds on D(f). The
question what the largest possible distance between k- D(f) and Dy(f) is
becomes even more interesting after this result. The best lower bound known
until now is
Di(f) 2 k- (yD(f) —logk —3),

which is obtained as follows [9]: It is easy to transform a deterministic pro-
tocol for the array of complexity Dy(f) into a Las Vegas (i.e., zero-error
randomized) two-party protocol of complexity at most +Dy(f) + [logk],
thus showing that the Las Vegas complexity Ro(f) is bounded above by this
term. Then one may apply the well-known relation D(f) < (Ro(f) + 2)?
(1, 4, 13].

In this paper, we prove, for arbitrary k£ and f, that
Di(f) z - k- D(f),

where v = ilog(3/2) > (0.146. As an intermediate step of the proof, we show
that
Di(f) = [k/2] - 1og(CT(f)),

where CT(f) is the protocol cover complexity of f, which is the minimum
number of different message sequences occurring in any two-party protocol
that computes f. With the exception of the new methods from [3] and [6],
all existing lower bound proofs for the two-party complexity of a function
f work by establishing C”(f) > b for some bound b and then concluding
D(f) > logb. Combined with the method presented in this paper, each
proof of this type entails that Dy(f) > [k/2]-logb, improving in the constant
factor the bound achieved by combining the inequalities Dy(f) > v- k- D(f)
and D(f) > log b.

The new proof method can also be used to (less dramatically) improve bounds
on the complexity of nondeterministic protocols for the array. TLet Ni(f)
denote the nondeterministic communication complexity of f on an array of
length k&, N(f) the two-party complexity. The following lower bound on
Ni(f) in terms of N(f) is easily established:

N(f) > k- (N(f) = log k —2).

4

This bound is useless for functions with nondeterministic communication
complexity smaller than log k. We prove

Ni(f) 2 [k/2] - (N(f) = 2),
for arbitrary f and k.

We also consider randomized protocols. Just as for nondeterministic proto-
cols, it is easy to establish certain types of bounds, which cover a wide range
of parameters, but do not work for functions with small complexities on long
arrays. Our method allows us to fill this gap to some extent. As above, let
Ro(f) denote the Las Vegas complexity of f in the two-party model. Fur-
ther, let R.(f) and R!(f) denote the complexity of f in the two-sided error
model (error e, 0 < e < %, i.e. the randomized protocols ® admitted satisfy
Prob(the result of ® on input (z,y)is f(z,y)) > 1 —¢), and in the one-sided
error model, respectively. The corresponding complexities for the array of
length k are denoted by Rox(f), Rei(f), RLi(f), respectively. It is easy to
establish the following bounds:

Row(f) = k- (Ro(f) — [log k]);

Row(f) = 6k (Reps(f) — [logh]), for0 <e <e+8 <1

RL(f) = nk-(Rly_ 4, (f) = [logk]), for 0 <e<land 0 <n <1,
By applying standard methods for dealing with probabilistic algorithms, as
can be found, e.g., in [12], it is not hard to conclude from the last two
inequalities that there is a constant By > 1 so that

Rex(f)
RL,(f)

It is clear that all these bounds are useless for two-party complexities smaller
than log & and that the bounds for two-sided error protocols are weak if the
error ¢ is close to % Bounds without these disadvantages can be obtained
by a detour via public-coin protocols, which fit together well with our lower
bound method. Let ROy (f), BPV(f), Ri¥™, RE™(f), RP™(f), RLP" be
the versions of the randomized complexity bounds for the public-coin model.
Using the relationship between the communication complexity with respect

Q(min{l —e,1/loge™'} -k-(R.(f) — Bologk)), for 0 <e < 1
Q((1/loge) -k-(RL(f) — Bologk)), for 0 < e < 1.

to public and private-coin protocols established by Newman [14], we can
prove the following (recall that we assume that X, Y C {0,1}"): There are

constants B, By, By > 1 such that
Rox(f) = BRG(F) =9k B8 (f)) = Qk - (Ro(f) — B -logn));

Rox(f) = RPP(f) =k R™(f))
= Qk-(RA(f) — Bllogn—Bglog(m))),for0<6< %;
RL(f) > RIP™(f) = Q(k- RIP™(f))

Q(k - (RN(f) — Bilogn — By log())), for 0 < e < 1.

1
e(1—¢)
We must leave it as an open question whether it is possible to obtain bounds
for private-coin protocols without incurring a loss by applying Newman’s
method.

Finally, we turn to applications. First, one should recall that Tiwari [20]
showed how bounds on communication complexity for the array can be trans-
formed into bounds on the communication complexity, i. e., the total number
of bits transmitted across links, for computing functions on arbitrary asyn-
chronous networks. More specifically, he showed the following. Assume that

k

so that links only run between nodes in the same layer or between nodes in

the network can be split into a sequence of k£ + 1 layers numbered 0, ... , k,
neighboring layers, and that w is an upper bound on the maximal number of
links connecting two neighboring layers. If processors in layer 0 know part
x of the input, processors in layer k& know part y of the input, then com-
puting the value f(x,y) requires that Q(Dx(f)/logw) bits are transmitted
overall. (It is quite easy to see that corresponding assertions hold for the
nondeterministic and for the randomized case.) Tiwari demonstrated the
power of his method by applying it to a sequence of concrete functions for
which the rank method or the fooling set method for proving lower bounds
could be applied. Our method, together with Tiwari’s construction, yields a
general lower bound of Q(k- D(f)/log w) for the communication complexity
of f in a network as described. Since the reduction from the general network
to the array introduces constant factors in the lower bounds anyway, from
the point of view of these applications it does not seem to be too important
whether the array bound involves a constant factor or not.

As a second application, we show how our method can be applied to transfer
communication complexity bounds to time bounds for one-tape Turing ma-
chines. Consider the following situation. Let f :U,>; ({0,1}" x {0,1}") —
{0,1} be a computable function. The restriction of f to {0,1}" x {0,1}"

6

is called f,. Let timep(n) denote the worst case running time on inputs
from {0,1}" x {2}*()=1 5 £0,1}" of a Turing machine M that computes the
function f, where

f(z2¥M1y) = f(zy), for arbitrary =,y € {0,1}".

(The 2- and y-parts of the input are separated by a “bridge” [17] or a “desert”
of length k(n) —1.) Similarly as in the array case in the randomized setting,
one may show by known methods that

timepr(n) = Q (k(n) . (D(f,) — min{log k(n), B - log n}>> ,
for some constant B > 1. The obvious question was whether
timepr(n) = Q(k(n) - D(f,))

or not. This statement is an easy consequence of our theorem for the array.
Looking a little closer, we may also obtain

T(n) = Q(D(f.)?),

where T'(n) is the running time of a Turing machine computing f on inputs
from {0,1}" x {0,1}". Similar results may be obtained for the nondetermin-
istic and randomized situation. Note, however, that in these models for func-
tions with communication complexity at least (14 (1)) log k£ bounds can be
obtained almost trivially. It should also be mentioned that Paturi and Si-
mon [17] have provided a method that can be used to derive the same bounds
for nondeterministic one-tape Turing machines in terms of nondeterministic
communication complexity (without making the constants explicit). This
method explicitly utilizes the fact that the Turing machine is a uniform com-
putational model and do not carry over to arrays of processors, which are a
nonuniform model. In the randomized setting, Kalyanasundaram and Schnit-
ger [7] have introduced a very powerful method for proving lower bounds for
randomized one-tape Turing machines with an extra input tape on the basis
of communication complexity bounds; these methods, however, only apply
to very special functions. The results obtained in [17] on the relationship
between randomized communication complexity and randomized one-tape
Turing machines refer to the unbounded error model, which is quite different
from the more standard bounded-error model used in this paper.

2 Preliminaries: Deterministic protocols and
their basic properties

In order to make the paper self-contained, we recall here some basic concepts
concerning two-party and array protocols that are important for the later
proofs; moreover, we prove some fundamental facts for later use.

It is a slightly delicate issue to specify what a protocol for a linear array
should be. Tiwari gave a detailed description of such a concept. In his
setting, it was essential for obtaining optimal bounds (taking constant factors
into account) that an inner processor in the array was not allowed to “listen”
to both its links in the array at the same time. Here, we give a slightly more
generous definition, which may also be more natural. Nonetheless, Tiwari’s
methods apply; thus, all results from [20] are also valid in our model. The
specification will serve as a sound basis for our own lower bound proofs.

2.1 Two-party protocols

We first recall how two-party protocols are specified (cf. [10]). There are
two players, A(lice) and B(ob). Let (z,y) € X x Y be an input. Alice gets
the z-part, Bob gets the y-part. The players communicate by exchanging
messages consisting of one bit each. The order in which they are allowed to
send bits is given by a “protocol tree”, which is a rooted binary tree with
the following structure: inner nodes are labeled by either “A” or “B” and
have two outgoing edges labeled by 0 and 1. After ¢ communication steps the
sequence § = by - - - b; of bits communicated so far determines a node v in the
tree. (Follow the edges labeled by,...,b:.) If v is an inner node, its label A
or B determines which of Alice and Bob is to send the next bit. If v is a leaf,
the communication is finished. It is a trivial observation that the complete
message sequences that are possible with such a tree form a prefix-free set of
binary strings; each leaf of the tree corresponds to such a message sequence.
Moreover, note that from the message sequence the whole communication,
i.e., the information which party has sent which bit, can be reconstructed.
How do Alice and Bob decide which bit to send? In deterministic protocols,

the actions of Alice and Bob are determined by functions
®4: X x {0,1}* = {0,1, L} and % : {0,1}* x Y — {0, 1, L},

so that ®4(z,s) € {0,1}, i.e., not undefined, if and only if s corresponds to
a node in the tree labeled with A; similarly, ®2(s,y) € {0,1} if and only
if s corresponds to a node labeled with B. (Since the tree is finite, ®4 and
®5 are really finite objects.) In nondeterministic protocols, these functions
allow for making nondeterministic choices, i.e.,

4 X x {0,1}* — {0,{0},{1},{0,1}}

and

P . {0,1}* xY — {0,{0},{1},{0,1}}.

If s corresponds to an inner node of the protocol tree with label A, then
®4(z,5) # 0 for all € X. If ®4(z,s) = {b} for b = 0 or 1, Alice will
send bit b on previous message sequence s and input z; if ®4(z,s) = {0,1},
she nondeterministically chooses to send 0 or 1. Similar rules apply to Bob.
In randomized protocols (the “private coin” version), the functions ®4 and
®5_ if defined, associate a probability distribution on {0, 1} with (z, s) resp.
(s,1); technically,

4 X x {0,1} = [0,1]U{L} and @7 : {0,1}* x YV = [0,1]U {L}.

If s corresponds to a node with label A, then ®4(z,s) # L for all z € X,
and for p = ®4(z,s), Alice will flip a coin that turns up heads (“17) with
probability p and tails (“0”) with probability 1 — p, and she will send the
resulting bit. Similar rules apply to Bob.

All three types of protocols use one fixed tree. It remains to determine what
the result of a computation represented by a complete message sequence s
is, i.e. one that corresponds to a leaf. We restrict our attention to boolean
functions; the possible outcomes are 0 or 1. We adopt the convention that
at the end of the computation both parties “know the result”, i.e., Alice
can compute it from z and s, Bob can compute it from s and y. Using the
basic fact that the set of inputs that results in a message sequence s forms a
“rectangle” X' x Y’ for some Y’ C Y, X' C X, one easily sees that the result
bit is a function of s alone. We may thus assume that the leaf of the protocol

9

tree that corresponds to s is labeled with this result bit. This assumption
can also be justified in the nondeterministic and the randomized case. The
assumption will be made for all protocol trees used in the following.

We say that a deterministic protocol (consisting of a protocol tree and de-
terministic functions ®* and ®%) computes f : X x Y — {0,1} if for all
(z,y) € X XY the result of the computation is f(z,y). The complexity
of the protocol is the depth of the tree, i.e., the length of the longest pos-
sible message sequence. A nondeterministic protocol computes f if for all
(z,y) € f~1(1) there is a computation with result 1, but for (z,y) € f71(0)
there is none. The complexity of the protocol is

max min{|s| | s is a computation on (z,y) with result 1},
(zy)ef~1(1)
the nondeterministic complexity N(f) of f is the minimum complexity of a
protocol that computes f. It is well known that for nonconstant f this is
[log, (1 + Cn(f))] or 1 + [log,(1 + Cn(f))], where Cn(f) is the minimum
number of not necessarily disjoint monochromatic rectangles needed to cover
the 1’s in the communication matrix Mj.

For randomized protocols, we use the standard notation. The complexity
of a protocol that is allowed to make errors is the depth of its tree. Such a
protocol computes f with (two-sided) error 0 < ¢ < $ if for all (z,y) € X xV
we have

Prob(result of protocol on input (z,y) equals f(z,y)) > 1 —e.

The randomized complexity R.(f) is the minimum complexity of a protocol
that computes f with error . One-sided error protocols are allowed to give
wrong answers only for inputs (z,y) with f(z,y) = 1; apart from that, the
one-sided error randomized complexity R!(f) (for 0 < ¢ < 1) is defined in
analogy to the two-sided error case. The complexity of a zero-error protocol,
which must always compute the correct result, on an input (z,y) is the
expected number of bits exchanged on this input.

A different concept is that of a “public-coin” randomized protocol, which
really is a probability distribution on a set of deterministic protocols. The
corresponding complexity measures Rf)’ub, RIPub - RPub are defined as usual.
(A rigorous definition for the array is given in Section 5.) Note that public

10

coin protocols are the only type that use different protocol trees for a single
function.

2.2 Protocols for the array

In this section, we define protocols for the array of length £, and explore some
of their basic properties. Such arrays consist of processors Py, Py, ..., Py,
where P;_; and P; are connected by a bidirectional link, numbered i, for
1 <4 < k. (Our definition differs slightly, but not essentially, from that one
given by Tiwari [20].)

Roughly, a computation for a function f runs as follows. Processor Fy is
given the first part z of the input, processor Pj the second part y. Then
the processors send messages to their neighbors and receive messages from
them, in a fully asynchronous manner. Without loss of generality, messages
are assumed to consist of single bits. In order to decide whether to send
a message or not, a processor P; will look only at the messages exchanged
previously with its neighbors P,_y and Py (if 1 < ¢ < k) or at its part of
the input and the messages exchanged previously with its one neighbor (if
i = 0ori= k). Processors may put off sending a message and a message
may be delayed on a link for an indefinite (but finite) period of time. We
require, however, that bits sent across the same link reach their destination
in the same order in which they are sent. After a finite number of messages
has been exchanged, all processors Fy, Py, ..., P, must (consistently) know
the bit that is the result f(z,y) of the computation. (Tiwari demanded that
Py and Py know the result and observed that it it easily seen that this entails
that all processors know the result. We incorporate this property in the
definition. Alternatively, one could consider a different convention, namely
that only one processor P ,) knows the result at the end, and that each
processor P;, i # i(x,y) knows whether P, is to the right or to the left
of P;. The results that can be obtained for this variant are essentially the
same.)

We now give a more detailed description of the type of rules used to specify
such a protocol. First, consider the link between P;_; and P;, for some
1 <1 < k. After some steps, a sequence of bits has been sent back and

11

forth across this link. Both processors decide exclusively on the basis of this
history which one of them is next to send a bit across the link. Technically,
the communication across the link is governed by a communication tree just
as in two-party protocols. Of course, due to delays on the links, the two
neighbors may disagree on what the previous sequence of bits is, e.g., if P
has sent the last bits, it may see a longer sequence of previous messages than
P;_1. Note, however, that there will be no crosstalk: at any time, at most one
of the processors is allowed to speak, and at points in time when the speaker
changes, both views of the previously exchanged messages are the same. As
in the two-party situation, the set of possible complete message sequences on
the link forms a prefix-free set of binary strings. Also, it is clear that from
such a message sequence the whole communication can be reconstructed.

Next, we describe how processors decide which bit to send. In order to
avoid tedious case distinctions, it is convenient to regard the inputs = and
y as message sequences s € {0,1}* and sx4q1 € {0,1}* on virtual links
on which communication is fixed and finished right at the beginning of the
computation. For each link ¢, 1 < ¢ < k, there is a function

®F - {0,1}* x {0,1}* — {0,1, L}, (s54_1,5) — ®F (5,1, i),
which tells P,_; which bit to send to F;, if any, and a function
@2_ : {07 1}* X {07 1}* - {07 17 J—}v (Sia‘si-l-l) = (I)i_(sivsi-}-l)v

which tells P; which bit to send to F;_y, if any. If, e.g., the previous com-
munication on link ¢ is s;, and P;_; is next to send a bit to F;, it may send
®F (s;_1,s;), if this value is different from |, and nothing (yet) if it equals L
(“undefined”). The rules for sending bits from right to left are symmetric.
There are some simple rules that will ensure that the computation termin-
ates with all communications on links finished and that the computation is
uniquely determined in spite of the asynchrony.

(1) (Consistency with protocol trees.) If the node of the protocol tree
for link 2 that corresponds to s; is labeled with P; or is a leaf, then
®F(s;_1,5;) is undefined for all 5, ;; a symmetric rule applies for

O (si, 8i41), if the node corresponding to s; is labeled with P;_;.

k3

(2) (No deliberate blocking.)

12

(i) Let 1 <i < k. If 5; and s,41 are such that P; is next to speak on
both its links, then at least one of ®; (s;,s,41) and <I>;-"+1(5z-,32-+1)
is defined.

(ii) Let 0 <4 < k. If s; is such that the communication on link 7 is
finished (in particular for s; = so = z), and P; is next to speak on
link i+ 1, then @, | (s, s;41) is defined. (A symmetric rule applies
for &7, 1 <1< k.)

(3) (No reversing decisions.) Let 1 <i < k. If ®f(s;_4, ;) is defined, and
s;_1t;_1 = s'_, is an extension of s,_;, then ®f (s!_,,s;) = ®F(5,_1,5;).
(This means that more information received on link 7 — 1 or messages
sent across link 2 — 1 by P,_; will not change the message sent next
across link 7. A symmetric rule applies for @7, 1 < < k.)

(4) (Unanimity.) After the protocol has finished, the result bits at the
leaves of the & protocol trees that are reached all coincide.

In order to illustrate that the rules are sound and make it possible to formu-
late natural protocols, we recall the obvious way of how to simulate a given
two-party protocol for Alice and Bob on the array. Processor Py acts exactly
as A would, processor Pj, as B. The protocol trees for the links are identical
to the protocol tree of the two-party protocol. Inner processors just take all
bits they receive on their left links and send them out at any time they wish
through the right link; they pick up all bits that appear on the right link and
send them out through the left link.

No assumptions are made regarding the time at which a processor sends its
messages. Indeed, rules (1)—(4) make it possible to completely disregard the
notion of time, as is shown by the lemmas to follow. The following lemma,
which is central for showing that the concept of complexity of f on an array
is well-defined, and will be the technical basis for our proofs, was also stated
in Tiwari’s paper [20], but no proof was given.

Lemma 2.1 Let ® be a deterministic protocol for inputs from X XY on an
array of length k. Then for each fized input (x,y) € X x Y, any execution
of ® will generate exactly the same k message sequences 81,... ,8, on links

1 k.

9oy

13

Proof. See Appendix A.]

The lemma justifies the following definitions.

Definition 2.2 (a) Let ® be a protocol for inputs from X xY on an array
of length k.

(i) For input (x,y) € X XY, the unique message sequence generated
on link 1 is called s? (z,y) (or s;(z,y) when ® can be deduced from
the context). The concatenation s®(z,y)---s¥(z,y) is denoted by
s2(z,y) or s(z,y).2

(ii) The cost of ® is
L? = max{|s®(z,y)| | (z,y) € X x Y},
where |s| denotes the length of the binary string s.
(b) Let f: X xY — {0,1} be a function.

(i) A protocol ® computes f if the result of the computation on (z,y)
(i. €., the unique result bit at the leaves corresponding to si(x,y),

t Sk('ray)) is equal to f(‘ray)'
(ii) The complexity of f is Dp(f) = min{L®| ® is a protocol for the
array of length k that computes f}.

The following very intuitive lemmas are easy consequences of Lemma 2.1. As
they are crucial for the further development, we sketch the (mostly straight-
forward) proofs.

Lemma 2.3 Let ® be a deterministic protocol that computes f : X xY —
{0,1} on an array of length k. Then for each 1, 1 <1 < k, there is a two-
party protocol U; for f that uses the protocol tree of ® for link ¢ and on input
(z,y) produces the message sequence s¥(x,y), for each v € X,y € Y.

7

3Because the possible complete message sequences on the same link form a prefix-free
set, k-tuples (s1(z,y),...,sk(z,y)) and bit sequences s;(2,y) - - sp(z,y) are in a one-to-
one correspondence.

14

Proof. Let ® be given. We construct ¥; be describing the action taken by
Alice and Bob when given inputs @ and y respectively. Alice simulates ®
on Pp,...,FP,_1, Bob simulates ® on F;,..., P;. The simulation is done in
24 |s2(x,y)| phases. Assume phase ¢t — 1 has been completed, Alice and Bob
have performed an initial segment of the simulation in their parts, and that

t — 1 bits s;1,...,8;4_1 have been exchanged. If ¢+ < |s¥(z,y)|, one of the
two players, Alice, say, is to send the next bit. She advances her simulation
of the part of the computation on P;,..., P,_; in any order until the next

bit s;; is produced that is to cross link ¢. She sends this bit to Bob, and
phase ¢ is finished. If t — 1 = |s®(z,y)|, Alice and Bob, in two more phases,
independently finish their simulations without further communication. By
Lemma 2.1, it is inessential in which order in time Alice and Bob run their
respective simulations: the two parts taken together yield the unique compu-
tation s1(z,y),...,sk(z,y); in particular, the communication between Alice
and Bob produces s;(x,y). Since the leaf of the protocol tree is labeled with
f(z,y), protocol ¥; will also yield this result. [|

Lemma 2.4 (Cut-and-paste Lemma) Let ® be a protocol for an array of
length k. If 1 <i < k and (z,y),(2",y") € X x Y are such that s¥(z,y) =
s(z',y"), then

K3

s (,y) = s1(x,y) - si@,y) sl y') sz
N——’

Proof. Choose computations of ® for (z,y) and (2,y’). We may combine the
part of the computation for (z,y) on processors Py, ..., P,_; with the part of
the computation for (2',y") on P;, ..., P in order to construct a computation
for (z,y’) on the whole array. The details are similar to the construction in
the proof of Lemma 2.3. By Lemma 2.1 the resulting computation produces
s®(z,y"). [|

The following lemma, again intuitively clear, will be crucial for our lower
bound argument.

Lemma 2.5 (Bracket Lemma) Let ® be a protocol for an array of length
k, and let + < j. Then the message sequences at link 1 and j determine

15

the message sequences at all intermediate links, in the following sense: if
si(@,y) = i(@',y') and s;(2,y) = s;(2", ") for inputs (x,), (¢',") € X XY,
then si(x,y) = si(2',y'), forall I, ¢ <1 < k.

Proof. By Lemma 2.4, applied for link 7, we have

s(z,y') = si(z,y) - sica(zy)si(z’ y') - ose(ay y).

By applying Lemma 2.4 again, this time to link j and inputs (x,y’) and
(z,y), we get

s(x,y) =s1(x,y) - sica(@,y)si(@,y') - 552, y") s (@, y) - sk, y).

By the uniqueness property stated in Lemma 2.1 this entails s;(2',y") =
si(z,y), for e <1 < k.]

3 The lower bound for
deterministic protocols

In this section, we prove the main result for deterministic protocols. Accord-
ingly, “protocol” means “deterministic protocol” throughout. At the end of
the section, we state the general lower bound for arbitrary networks.

Lemma 3.1 (Main Lemma) Let ® be a protocol that computes f on an
array of length k. Then the following holds.

(a) There exists a two-party protocol for f that uses no more than oL /Tk/2]
different message sequences.

(b) There exists a two-party protocol U for f of complexity at most

2. L9
[k/2] -log(3/2)

16

Proof. (a) Consider link [= [k/2]. According to Lemma 2.3, ® induces a
two-party protocol W¥; for f that uses the same protocol tree as ® on link /.
Let ¢ denote the number of leaves of this tree, where it may be assumed that
each leaf is reached by some input. Obviously, it is sufficient to show that

® > [k/2] -loge.

For this, fix ¢ inputs (21,31),..., (2. y.) that lead to different message se-
quences

Sl(-rlayl)a B 751($cayc)

on link [. Assume that k is odd. (The argument for even k is practically the
same, with even simpler calculations.) Clearly, we have

1
L? > = Z |3($Tay7)|'

¢ 1<r<e

For 1 <r < ¢, we split s(x,,y,) = s1(xr,y,) - - sk(xr,y,) into (k—1)/2 pairs
of message sequences at positions ¢ and k — ¢+ 1, 1 < i < k/2, so that the
central link [is located between these positions, and the message sequence
si(xy,y,) itself:

|5($ray7‘)| = |81(.’177~,‘y7~)| + Z |Si(:67‘7yT)Sk—i+1($7‘ay7‘)|a
1<i<l

for 1 <r < e¢. This implies

L? > = D syl + Z © 2 Isienyr)si—ina(er g).

¢ 1<r<e 1<2<l 1<r<e (31)

By construction, the sequences s;(x,,y,), 1 < r < ¢, are different; clearly,
they form a prefix-free set. In addition, we have that for each 2, 1 <1 < [,
the double sequences

Si(xrayr)sk—i-}-l(xmyr); 1 S r § c,
are different. Indeed, suppose for a contradiction that for some r # ¢ we have
52'(377‘7 yT)Sk—H-l (xTa yT> = Si(:ﬂta yt)sk—i—}-l (:Eta yt)
Since the message sequences at link ¢ form a prefix-free set, this implies

Si(fﬂrayr) = si(xt,yt) and Sk_i_}_l(x“yr) = 3k—i+1($t,yt)-

17

Using that ¢ <! < k — 1+ 1, we conclude from Lemma 2.5 that s;(z,,y,) =
si(x¢,y¢), which is the desired contradiction.

It is also easy to see, using the fact that both the message sequences at link 2
and at link k—¢+1 form prefix-free sets, that the set {s;(z,, y,)sp—it1(2r, ys) |
1 <r < ¢} is prefix-free. Thus, we may apply the following well-known fact.
(Tt was used in [20] in a similar way.)

Fact 3.2 If ty,... ,t. are strings in {0,1}*, and none of the t, is a proper
prefix of another, then

1

- Z |tr| > logc.

c

1<r<e

If we apply this fact to each of the [average values in equation (3.1), we obtain
that the right hand side is bounded below by log ¢+ <;; log ¢ = [k/2]-log ¢;
thus, -

L® > [k/2] - loge,

as desired.

(b) To derive (b) from (a), we apply a folklore fact that relates the “pro-
tocol cover complexity” and the deterministic communication complexity of
a function f [10]. The fact and the proof are closely related to a similar
relation between formula size and depth that has been proved by Spira [19].
It seems that a proof has not been published before, excepting in the forth-
coming book [10]; so for the convenience of the reader, we supply one in an
Appendix.

Fact 3.3 If f has a two-party protocol with at most ¢ > 1 different message
sequences (i.e., the protocol tree has ¢ leaves), then f has a two-party protocol
of complexity at most 2log), c.

Proof. See Appendix B. []

Part (a) established the upper bound logec < L®/[k/2] for the number of
leaves in the protocol tree for W;. Applying Fact 3.2 yields another protocol

18

U for f of complexity bounded by

219
[k/2] -log(3/2) ’

as claimed.]

2loggyc < 21og(3/2) ' loge <

Theorem 3.4 For arbitrary f: X xY — {0,1} and k > 2 we have

Di(f) > 5 lo8(3/2) - [k/2] - D(J),

which entails

Di(f) > 0.146 - k - D().

Proof. Immediate from part (b) of the Main Lemma. n

Remark 3.5 A brief comment on the methods employed in the proof of the
Main Lemma may be in order. Already in Tiwari’s paper the approach via
an average over certain inputs and the use of Fact 3.2 was taken in all lower
bound arguments for the array, including the proof of the rank lower bound.
The essential new part of the present proof is the use of the Bracket Lemma
2.5.

Remark 3.6 Excepting the arguments from [6, 9], all known lower bound
proofs for the deterministic communication complexity D(f) of a function f
work in two steps: show that every protocol tree for f has at least b leaves
and conclude D(f) > logb. By part (a) of the Main Lemma, any such proof
will entail that Dy(f) > [k/2] - log b, which will be sharper than the bound
given by combining the inequality Dy(f) > 0.146k - D(f) from the Main
Theorem with the bound D(f) > logb.

We finish our discussion of the deterministic case with a formulation of the
consequence the Main Theorem has for computing in arbitrary asynchronous
networks.

19

Theorem 3.7 Assume (G is a network with bidirectional links whose node set
can be split into k + 1 layers Vo, Vi, ..., Vi, so that links only connect nodes
within one layer V; or nodes in V;_y with nodes in V; for some 1 <1 < k.
Let w be the maximal number of links connecting nodes from V;_i with nodes
from V;, for 1 <1 < k. Assume that G asynchronously computes a function
f: X xY = {0,1} in such a way that input part x is made known to nodes
in Vo and input part y is made known to nodes in Vi, and that the processors
of the other layers start in some fized initial state. Then the total number of
bits that are sent through edges in the computation on the worst case input

is bounded below by
NIy
1 + logw

Proof. This follows by combining Theorem 3.4 with the proof of Theorem 12
in [20].]

4 The lower bound for
nondeterministic protocols

Before stating results, we must briefly describe what a nondeterministic pro-
tocol for computing f on an array is, and how we measure the cost of such
a protocol. Exactly as in the deterministic case (cf. Section 2.2), communic-
ation on each link ¢ is governed by a protocol tree for processors P;_; and
P;, whose leaves also give the result (0 means “reject”, 1 means “accept”)
of the communication. Only the way the processors decide which message
to send changes. The value of the mappings ®; (s;, ;11), @} (s:-1,5;) may
now be () (which corresponds to L and means that nothing is sent now),
{0} or {1} (send this bit), or {0,1} (send either bit, nondeterministically).
Rules (1), (2) (no deliberate blocking), and (3) (no reversing decisions) ap-
ply without changes. Thus, every legal computation reaches leaves in all k
protocol trees. Of course, the outcome of a computation now depends on the
nondeterministic choices of the processors. However, if these are fixed (for
O (si,8:41) = {0,1}, pick one the the two values beforehand, similarly for

20

the ®*-functions), the resulting communication on the links is fixed, which
means that Lemma 2.1 applies with minor modifications.

Exactly as for the deterministic protocols, we demand that at the end of any
legal computation all processors agree on the result, i.e., in all & protocol
trees an accepting leaf has been reached or in all protocol trees a rejecting
leaf has been reached.

Definition 4.1 Let ® be a nondeterministic protocol for inputs from X x Y.

(a) We say that ® accepts (x,y) if there is a computation of ® on (z,y)
in which on all links an accepting leaf is reached (an accepting compu-
tation). Otherwise ® rejects (x,y) (all computations end at a rejecting

leaf on all links).

(b) ® computes f: X XY — {0,1} if ® accepts exactly those (z,y) € X XY
with f(z,y) = 1.

We need the counterparts of Lemmas 2.1 through 2.5 from Section 3.

Lemma 4.2 Let ® be a nondeterministic protocol on an array of length k.
If the nondeterministic choices of the ®; - and ®; -functions are fized in an
arbitrary way, then the message sequences that appear at the links on an
input (x,y) are the same for every way of running the protocol.

Proof. Fixing the nondeterministic choices renders a deterministic protocol.
Thus Lemma 2.1 applies. []

We now define the cost of a nondeterministic protocol. For this, we only
count accepting computations and among those only the cheapest one. This
is justified since we are proving lower bounds on the complexity in the array.
Note that it is not obvious (in contrast to the two-party case) how one could
cut down the cost of all computations to the cost of the cheapest computation
on the worst case input (z,y) € f~(1).

21

Definition 4.3 (a) Let ® be a nondeterministic protocol that computes f
on an array of length k. The complexity of ® on an input (z,y) €

FH1) s

Lq)('rv y) = min {|S(I7 y)| | S(:Z?,‘y) = 81(‘177 ’y)Sz(JJ, y) e Sk(&?,‘y)
is an accepting computation of ®

on input (z,y)}.
The complexity of ®, denoted by L®, is the mazimum of the values
L®(x,y), taken over all inputs (x,y) € f~1(1).

(b) The nondeterministic complexity of f on the array is

Ni(f) = min {Lq> | ® is a nondeterministic protocol that computes f}

Lemma 4.4 (Lemma 2.3, nondeterministic version) Let ® be a non-
deterministic protocol for the array of length k, and let 1 < ¢ < k be ar-
bitrary. Then there is a nondeterministic two-party protocol V; on the basis
of the same protocol tree that is used by ® on link 2, so that a message
sequence s; is legal for (x,y) in V; if and only if there is a computation
S = 818988 for (x,y) in ©.

Proof. Practically the same as in the deterministic case. []

Lemma 4.5 (Nondeterministic Cut-and-paste Lemma) Let ® be a
nondeterministic protocol for the array of length k, and let 1 < ¢ < k. If
§ = 818 18 an accepting computation for (z,y) and s’ = s} ---s} is an
accepting computation for (z',y’), and if s; = s., then the mizved sequence
81+ 8i_18.85 4 - -+ 8} 15 an accepting computation for input (x,y’).

Proof. As in the deterministic case. []

As a consequence, we can note obvious bounds on Ni(f). Let N(f) = Ni(f)
be the two-party nondeterministic communication complexity of f.

Observation 4.6 (a) Ni(f) < k- N(f).

22

(b) Ne(f) = k- (N(f) —logk —2).

Proof. (a) Executing an arbitrary two-party protocol with Py,..., Py as
relays will yield a protocol for the array, cf. Section 2.2.

(b) Let ® be a nondeterministic protocol for the array of complexity ® =
Ni(f). We describe a two-party protocol for players Alice and Bob. On input
(z,y), Alice nondeterministically chooses a link ¢ and an accepting message
sequence s; for link 2z of length at most %Nk(f). She checks whether @ admits
an (accepting) computation on processors Fy,..., P,_1, with respect to her
input part z and some y’ € Y, that produces the message sequence s; on
link 2. If not, she sends a code for the number 0. If so, she sends a code
for the number ¢ and the message sequence s; to Bob, who checks whether
® on P, ..., P, with input (2/,y) for some 2’ € X also admits an accepting
computation that fits together with s;. If so, Bob sends back “1”, otherwise
“0”. Clearly, the total communication is at most [log(k + 1)] + %Nk(f) + 1.
The correctness of the protocol follows from the Cut-and-paste Lemma 4.5.
Thus, N(f) < [log(k+1)]++Ne(f)+1 = [log k| + + Ni(f)+2, which implies

the claim.]

In many situations, N(f) will be significantly larger than log k. so that part
(b) of the observation may be applied. For large k£ and small N(f), however,
Observation 4.6(b) is useless. Our aim in the remainder of this section is to

show that Ni(f) = Q(k-(N(f)—2)) regardless of the relation between N(f)
and log k.

Due to nondeterministic choices, a counterpart of Lemma 2.5 does not hold:
There may be accepting computations sy - - - s; for (z,y), s} --- s}, for (z,y’)
with s; = s} and s; = s, 1 <1 <1 <j <k, but still s; # s;. However, this
problem can be overcome by selecting a unique accepting computation for

each (z,y) € f~(1).

Definition 4.7 Assume protocol ® computes f. For (z,y) € f~1(1), let

®
S(JJ, y) =S5 (SE, y) = 31(377 y) e Sk(Jl, y)
be the unique accepting computation sy --- s, on inpul (x,y), so that for all
other computations s\ - -- s, either

|81...8k|<|8/1...323|

23

or
|31...3k|:|5’1...32|

and sy -+ -8 < 8y -+ -8} in the natural order of equal-length bitstrings.

Lemma 4.8 (Nondeterministic Bracket Lemma) Let ® be a nondeter-
ministic protocol, and let s(z,y), for (z,y) € f~'(1), be defined as above.
Then, for (x,y),(z',y") € f~1(1) and 1 < i <1< j <k, we have that

si(z,y) = si(2',y') and s;(z,y) = s;(2',y')
implies
si(z,y) = si(2',y).

Proof. Let s(x,y) = s1---sx and s(z’,y’) = s]---s;. As in the proof of the
deterministic version (using the Cut-and-paste Lemma twice) we see that

& v — . U / .
5-_51"'52—152'"'3]‘5]+1"'Sk

is an accepting computation for (z,y) and

él = 3/1"'S;_ISi"'5j3;+1"'3;c
is an accepting computation for (z',y’). Since s(z,y) and s(z',y’) are com-
putations of minimal length for their respective inputs, we immediately get
that
!

B

sl =Ll

hence that § is also a minimal length computation for (z,y) and §' is one for
(', y"). Thus,

s<&and s’ <3
in the natural order of bitstrings of the same length. Clearly, this implies
that s!--- 5;- = ;- --8;. From this we conclude that s; = sj forall [, <[<7,
because the possible message sequences on the same link form a prefix-free
set. |

Theorem 4.9 For any k > 2 and any f: X x Y — {0,1} we have
Ni(f) = [k/2] - (N(f) = 2).

24

Proof. (We focus on the changes to be made in comparison to the proof of
Theorem 3.4.) Fix k > 2 and consider an optimal nondeterministic protocol
® for f on an array of length k. I.e., we have L® = Ni(f). For [:=
|k/2| define ¢ := |{s)(z,y) | (z,y) € f~'(1)}|, for the unique accepting
computations s(x,y) = s1(x,y) - - sk(x,y) chosen as before. Choose ¢ inputs
(x1,Y1)y- -+ 5 (T, ye) € f71(1) such that s;(zy,y1),- .. ,s1(2e, y.) are different.
Assume that k is odd. As in the deterministic case, we have

1 1
L® > Z Z |51($r,‘y7~)| + Z - Z |5i(xray7)5k—1+1($rayr)|)

1<r<c 1<e<! 1<r<c

and may conclude, using Lemmas 4.4 and 4.5 as well as Fact 3.2, that

LS sy 2 k2 loge,

1<r<ec

whence we get
Ni(f) > [k/2] - loge. (4.2)

In Lemma 4.4 we noted that ® induces a two-party protocol ¥; on link
[. But this protocol is useless here, since it may use more than ¢ message
sequences. Instead, we define another, possibly cheaper protocol as follows:
On input (z,y), Alice (seeing x) nondeterministically guesses some y’ such
that f(z,y") = 1. (If no such y’ exists, Alice sends a default message.)
Protocol ® determines s(z,y") = sy(x,y') - si(x,y") - - sp(x,y’). Alice sends
si(z,y’) to Bob. Bob (seeing y) checks whether there is some 2’ such that
si(x',y) is identical to s;(x,y"). If so, he sends 1 (“accept”), else 0 (“reject”),
which will be the result of this computation. It is easily checked (using the
Cut-and-paste Lemma) that this protocol computes f, and that Alice uses at
most ¢ 4 1 different messages. Thus, N(f) < [log(c+ 1)] + 1, which entails

loge > N(f) — 2.
Plugging this into inequality (4.2), we get

Ni(f) = Tk/2] - (N(f) = 2),

as claimed.]

25

5 Randomized protocols: Public coins

An analogue of Theorems 3.4 and 4.9 can also be proved for randomized pro-
tocols on the array and for randomized two-party communication complexity.
There are several different ways of defining randomized communication com-
plexity, notably, the public-coin model and the private-coin model. For a
thorough discussion of these models and their relationship see [14]. We first
deal with public-coin protocols, which involve a global random experiment
the result of which all processors are told for free. It will turn out that the
proof method from previous sections works particularly nicely in combination
with public-coin protocols.

Definition 5.1 (a) A public-coin randomized protocol ® for X, Y is a
family (®,)aer of deterministic protocols for inputs from X xY together
with a probability distribution, i.e., a family (ps)aer with p, > 0 and
YacrPa = 1. We also write (®,, pa)acr for such a protocol.

(b) If f: X xY — {0,1} and ® is a randomized protocol, then we say that

(i) ® computes f with zero error (or: ® is a Las Vegas protocol) if
for all (z,y) € X we have that Prob(®, on input (z,y) yields
f(z,y)) = 1. The cost of ® on (z,y) is L®(z,y) := E(L%(z,y)),
the cost of ® is L® = max{L®(z,y) | (z,y) € X x Y}.

(ii) For 0 < ¢ < %, ® computes f with (two-sided) error bounded
by ¢ if for all (z,y) € X we have that Prob(®, on input (z,y)
yields f(x,y)) > 1 —e. The cost of ® on (z,y) is L¥(z,y) =
max{L®(z,y) | a € I}, the cost of ® is max{L®(z,y) | (z,y) €
X xY}.

(iii) For 0 <e <1, ® computes f with one-sided error bounded by ¢ if
Prob(®, on input (z,y) yields 0) =1 for all (z,y) € f~*(0) and
Prob(®, on input (z,y) yields 1) > 1 —¢ for all (z,y) € f71(1).
The cost measures are the same as in (ii).

(c) The complexities of f on the array of length k with respect to these
measures are defined as follows:

(1) Rgf}cb(f) = inf{L® | ® is a zero-error protocol that computes f}.

26

(ii) Rff,lcb(f) = min{L® | ® is a protocol for f with 2-sided error ¢},
for<e< %

(iii) Ri:gub(f) = min{L® | ® is a protocol for f with I-sided error ¢},
for0<e<1.

The corresponding notions for two-party communication are obtained by
choosing k = 1. The two-party complexities are denoted by Rgub, RpPub,

1,pub
R,

It is very easy to establish connections between randomized complexities of
f on the array and in the two-party model. One direction is trivial, as usual:

Observation 5.2 For all f we have the following.

(a) REP(F) < k- RE™(f);
(b) RPP(f) < k- BP™(f), for0<e <1,

(c) REP™(f) < k- RI™(f), for0<e <1, .

There are versions for the reverse directions that also have known (and
straightforward) proofs. In the case of Las Vegas protocols the result is
optimal; in the other two cases constant factors are involved that depend on

the error bound.

Proposition 5.3 For any [we have

(a) REY(f) > k- RE™(f);
(b) RPY > 6k RPNL(f), for0<e<e+6<i;
(c) Ri’ib(f) = Q(min{} —¢,1/loge™'} - k- RP"(f)), for 0 <e < 1;

(d) RIP"™(f) > nk - RF™ L (f), for0<e<1and0<n<l;

27

() RE™(f) = U(1/loge™) - k- R (), for0 <& < L.

Proof. (a) Let ® = (®,,pa),e; be an arbitrary zero-error protocol for f.
Consider the two-party protocol that works as follows. On input (z,y), Alice
and Bob choose a link 7, 1 < ¢ < k, uniformly at random by a public coin
experiment, and then choose some @, according to the distribution (ps)acr-
Then they run the two-party protocol ®,; that is induced on link 2 by @,
(see Lemma 2.3). It is easily verified that this randomized two-party protocol

always yields the correct result and that its complexity is bounded above by
£+ L®. This implies RE™(f) < = jozb(f), as desired.

(b) The approach is similar as in (a). We start with a protocol @ that has
error ¢ and complexity L® = Rff}cb(f). On input (z,y), a link 7 and a protocol
®,, is chosen. Alice and Bob run &, ; on (z,y). If ®,; makes more than L®/6k
steps on input (z,y), they break off their communication and settle for the
result 0. By the assumption, this is the case for at most a fraction of § of the
links. Thus, the complexity of the new two-party protocol is at most L®/ék,
and the error is bounded by ¢ 4+ 6. Thus,

RP2(f) < (1/6k) - R,
as claimed.

(¢) This claim is derived from (b) by standard methods. If 1 < e < 1, one ap-
plies (b) for § = 1 (% - 5) and uses the fact that RP™(f) = O(f’;flp)p(f)),
for i <e< % Ifo<e< i, one applies (b) for § = é and uses the fact that

Reb(f) = (REj5(f)/loge™), for 0 < & < 1.

2

(d) The proof is similar as that in (b). However, Alice and Bob break off the
computation if more than L®/nk steps have been made. By independence,
the total error probability of the new two-party protocol is bounded by ¢ +

(I—¢ep=c(l—n)+n.

Part (e) is proved in analogy to (c). [|

The result for Las Vegas protocols is optimal. However, for very large (i.e.,
close to %) and very small error bounds the inequalities are weak. We next

28

show that there are bounds for Ri’blcb and R;’Eub that do not involve extra

factors that depend on .

Theorem 5.4 For any [we have:

(a) RPS(f) > Llog(3/2) - k- RP™(f), for any e, 0 < e < 3.

(b) RIP™(f) > Llog(3/2) - k- RLP(f), for anye, 0 <e < 1.

Proof. We only prove (a), since (b) may be treated similarly. Fix a ran-
domized protocol ® = (P, py)acs for f with error bound ¢ and worst case
cost Rf},lcb(f). We construct a public-coin two-party protocol as follows. The
observation made at the end of the proof of the Main Lemma 3.1 can be used
to see that from each ®, we may obtain a deterministic two-party protocol
U, that computes the same function as ®, and satisfies

LY . [k/2] - = -log(3/2) < L% < L®.

¢

DO | —

The family
U= (q;a;poz)aej

clearly forms a two-party protocol for f with the same error bound as ®; the
cost LY of W satisfies RP"P(f) < LY, and LY - [k/2] - § - log(3/2) < L®, as
desired. |

Remark 5.5 There is a very important method for proving lower bounds on
two-party probabilistic communication complexity which yields lower bounds
on RPU(f), namely the approach via distributional communication complex-
ity. Given 0 < ¢ < % and a measure g on X x Y, we say a deterministic
protocol W computes f with distributional error ¢ if g ({(z,y) | ¥ on (z,y)
yields the wrong result}) < e. D, (f) denotes the minimal complexity of a
deterministic protocol that computes f with distributional error ¢ w.r.t. pu.

It is well known ([21]) that

R (f) > Dye(f),

29

for all measures ¢ and 0 < ¢ < % Powertul methods are known for proving
lower bounds on D, .(f) for important functions f, and for carefully chosen

. (See, e.g., [2], [18].) Our method shows that Rf},lcb(f) >0.146 - k- D,.(f)

for all measures y and all 0 < ¢ < L. (Similar remarks apply for Ri:gub.)

2
Note, however, that there are other methods for proving lower bounds on
probabilistic communication complexity (in the private-coin version) besides
the one just sketched, see e. g. [8], which are not so easily combined with our

method.

6 Randomized protocols: Private coins

The usual notion of randomized communication complexity is not that based
on the public-coin model as discussed in the previous section, but rather
the “private-coin” model, in which the parties carry out their own random
experiments, and communicating random bits is not free. (For a thorough
discussion of these models and their relationship see [14].) We can derive
results on the relationship between complexities on the linear array and in
the two-party case model in the private-coin model by a detour via public-
coin protocols. We start with defining private-coin randomized protocols for
the array. This notion is obtained by generalizing deterministic protocols in
the same way as for the two-party model (cf. Section 2.2). Communication
on each link is governed by one protocol tree, as in Section 2.2. Only the
range of the functions ® and ®; is changed:

®F : {0,1}* x {0,1}* — [0,1] U {L},

similarly for ®;. Assume the communication on link ¢ (link ¢ + 1) has
lead to a node that belongs to the partial message sequence s; (s;41). If
® (si,8,41) = L, processor P; will not send anything now across link i + 1.
If ®f(s;,5,41) =p € [0, 1], processor P; performs a random experiment that
has outcome 1 with probability p and outcome 0 with probability 1 — p, and
sends the resulting bit to Pi1y. All other rules formulated for deterministic
protocols remain unchanged. Of course, given an input (x,y) and a random-
ized protocol @, the probability that ® yields value 1 (resp. 0) is well-defined.
It is very useful, at times, to assume that all possible random experiments are
carried out beforehand, so that a deterministic protocol results that can be

30

applied to the input. In this way, it is also clear that private-coin protocols
are a special case of public-coin protocols. Thus, the following definition is
legitimate, ct. Definition 5.1.

Definition 6.1 Let f: X xY — {0,1}.

(a) The zero-error complexity of f w.r.t. private-coin protocols, denoted
by Ror(f), is defined as inf{L® | ® is a private-coin zero-error protocol
for the array of length k that computes f}.

(b) The two-sided error complexity R.(f) of f w.r.t. protocols, for 0 <
e < %, and the one-sided error complexity R;k(f), for0 <e <1, are
defined accordingly.

(¢) The corresponding compleaities for the two-party model are denoted by
Ro(f), Re(f), Ba(f), respectively.

Observation 6.2 For any [we have

(a) Rox(f) > RER(F) > k- RE™(f);
(b) Rei(f) > RPP(f) > Llog(3/2) - k- RP(f), for 0 < e < L;
(c) RL,(f) > REP™(f) > Llog(3/2) - k- RLP™(f), for 0 < e < 1.

Proof. In each case, the first inequality if trivial; the second inequalities are
given by Proposition 5.3(a) and Theorem 5.4(a)(b), respectively. n

However, in this section we ask for bounds on Ro(f), Rek(f), and RL(f)
that involve the corresponding private-coin two-party complexities. It is
clear that the upper bounds from Observation 5.2 also hold in the private-
coin model. If we prove bounds similarly as in Proposition 5.3, a slight change
is necessary, which weakens the bounds in a typical way.

Proposition 6.3 For any [we have

31

(a) Rox(f) = k- (Ro(f) — [logk);
(b) Rei(f) > 6k (Reys(f) — [logk]), for0 <e<e+46< %,’
(c) Reu(f) =k (Rly_pyin,(f) = [logkl), for0<e<land0<n<1.m

(The proof is exactly the same as that for public coin protocols, excepting
that at the beginning Alice randomly chooses the link 2 and sends the number
i to Bob.) Apart from the loss in constant factors in case of e close to %
respectively 1, we have a similar situation as in the nondeterministic case:
there is no information about functions of small complexity on long arrays.

Next, we derive lower bounds that do not involve the summand log k.

The proof methods of Sections 3 and 4 seem not to be applicable here. This is
due to the property of private coin protocols that inner processors are allowed
to carry out their own random experiments and thus the proof of the bracket
lemma is no longer valid. However, we obtain alternative bounds by invoking
Newman’s results on the relationship between public-coin complexity and
private-coin complexity. The formulation is from [10].

Fact 6.4 [14] If | X|,|Y| < 2", and f: X xY — {0,1}, then

(a) Ro(f) = O (RE™(f)) + O (logn);
(b) Reys(f) = RP"™™(f) + O (logn +1logé™"), for0 <e<e+6< i
(c) Rl s(f) =R (f)+O(logn+logé™™), for0<e<e+6<1. n

Theorem 6.5 There are constants B, By, By > 1 such that for any f: X x
Y — {0,1} with X, Y C {0,1}" we have the following:

(a) Rox(f)
(b) Rexl(f)
(c) Bey(f)

(k- (Ro(f) — Blogn));
Q(k-(R.(f)— Bilogn— Bylog((e(3—¢))™))), for0 < e < £;
Qk-(R.(f)— Bylogn— Bylog((e(1—¢))™1)), for0 < e < 1.

32

Proof. (a) This follows immediately by combining Observation 6.2(a) with
Fact 6.4(a). (b) By combining Observation 6.2(b) with Fact 6.4(b) we obtain
that for certain constants (1, Cy > 1 we have

Re(f) = Qk - RE(f)) = Q(k - (Reys(f) = Cilogn — Calog 67)),

for arbitrary 0 < e <e+ 6 < % For i <e< i we use 6 = (%—5)/2 and the
well-known fact R.(f) = O(R./241/4(f)) to conclude that

Rei(f) = Qk - (Re(f) = Bilogn — Bylog((; —¢)71))),

for suitable constants By, B;. For 0 < ¢ < % we use 6 = ¢/2. Clearly, we

have R.(f) = O(Rs./2(f)) for these ¢, and hence can conclude
Rep(f) = Qk - (R.(f) — Bilogn — Byloge™")).
(c) This is proved similarly as (b). n

7 One-tape Turing machines and communic-
ation complexity

It is a very natural idea that the time required to compute a function on a 1-
tape Turing machine (without input or output tape) should have something
to do with the communication complexity of that function. It is not a co-
incidence that for many of the functions for which time lower bounds on
the Turing machine are known also communication complexity bounds are
known.

We will find it convenient to consider an input format for the Turing machine
in which the input is split into a left and a right part, which are separated
by a “desert” or a “bridge” [17] of empty cells.

Notation. In the following, we only consider functions

£ ({0,137 x {0,1}") — {0, 1}.

n>1

The restriction f|{0,1}" x {0,1}™ is denoted by f,. With fn,k we denote
the function from {0,1}"{2}*=1{0,1}" defined by fmk(;vZk_ly) = falz,y) =
f(zy).

33

7.1 Deterministic Turing machines

It is obvious (and has been observed many times before) that a deterministic
Turing machine with an input format z2*~'y gives rise to a protocol for
computing f, on an array with & links, where the number of head movements
determines the total length of the messages exchanged in the array. Thus,
lower bounds for the array give rise to time lower bounds for the Turing
machine.

The protocol for the array is constructed (informally) as follows. The tape
is split into k 4+ 1 pieces, of which processor Fy represents the part to the
left of the bridge, Pi,..., Pr_1 represent the single cells of the bridge, and
Py, represents the cells to the right of the bridge. Communication rules for
a processor are induced by the transition function of the Turing machine.
We assume, without loss of generality, that at the end of the computation
the Turing machine writes the result bit into all cells of the desert. (This
guarantees condition (4) from Section 2.2.) It is easy to see that if the set
of states () of M is encoded in binary, then the array protocol can be made
to use [log, |Q]|] bits per Turing machine step. This implies the following
bound.

Observation 7.1 Assume a I-tape Turing machine M with state set () com-
putes [y pm), n > 1, for some sequence k(n), n > 1, of natural numbers. If
timenr (22" 1y) denotes the running time of M on input x2* 'y, then

timepr(n) := max{timeM(x‘Zk(”)_ly) | z,y € {0,1}"} > Dk(n)(fn)/ﬂog Q]

In combination with Tiwari’s methods for proving bounds on Dy(f) this
observation yields lower time bounds for many important functions — those
whose communication matrix has a large rank and those that admit large
fooling sets. E.g., consider the distinctness problem: for a sequence z of
numbers z1,...,x, and a sequence y of numbers y,...,y, of p bits each
decide whether z; # y; for all 1 < ¢ < v. Clearly, the assumption about
the desert is inessential for this function. Using the well-known fact that the

34

communication matrix of this function has rank 2" = 2"# (e. g., see [20]), we
obtain that the complexity of this function on a I-tape Turing machine is
Q(n?) = Q((vp)?). (For a related weaker lower bound, with a different proof,
see [11].)

On the other hand, a longstanding open problem was to derive lower time
bounds for functions in terms of D(f,); the obvious conjecture being

timepr(n) = Q(k(n) - D(f,)). The best general lower bound was

timepr(n) = Q(k(n) - (\/D(fn) = log k(n))),

which is obtained through the detour via randomized zero-error protocols for
the array, cf. Section 6. We show that the conjecture is true.

Theorem 7.2 For arbitrary functions f and a sequence k(n), n > 1, we
have: if a one-tape Turing machine M computes fn,k(n), forn > 1, then
the worst case number of steps made by M on x2F)~1y . y € {0,1}7, is
Qk(n) - D(fr))-

Proof. The Turing machine computation induces a protocol for the array of
length k(n), in which the total number of bits sent is bounded by [log |Q]]
times the number of head movements. This implies

Diy(fn) < [log|Q[] - maximal running time of M
on an input from {0,1}7{2}¥M-110, 1},

From Theorem 3.4 we know that Dy(,)(f,) > 0.146 - k(n) - D(fn). n

Of course, the necessity of having a “desert” built into the input for the lower
bounds to hold is annoying. For many functions, though, the communication
complexity of f, : {0,1}" x {0,1}" — {0,1} does not change by much if the
2 last bits of the first part of the input and the first 2 bits of the second
part of the input are set constant, thus generating a situation with 2 input
bits on each side and a desert of size n. For the general case, we observe the
following.

35

Theorem 7.3 For arbitrary (computable) functions f : U ({0,1}")* —
n>1

{0,1} and all Turing machines M that compute f we have
timenr(n) = Q(D(f,)?), forn > 1,

where timey(n) denotes the worst-case running time of M on an input of
length 2n bits.

Proof. Fix n, and let k = k(n) = [D(f,)/4]. For o, 8 € {0,1}* let f, o5 :
({0,1}"%)2 — {0, 1} be the restriction of f obtained by fixing the rightmost
k bits of & to the values given by « and the leftmost k& bits of y to the
values given by 3. It is easily seen that there must exist choices for «, 8 so
that D(fn,aﬁ) > 1D(f.). (Otherwise, we could obtain a cheap two-parity
protocol for f, as follows. On input (z,y), Alice sends the last k bits a(x) of
z to Bob, who, in turn, sends the first k& bits 5(y) of y to Alice. Then they
run a protocol for fma(z)ﬁ(y) of complexity strictly smaller than %D(fn) This
protocol has a complexity strictly smaller than D(f,), a contradiction.) We
fix such o, 8. Any Turing machine M that computes f computes f, . g with
an input format that contains a desert of length %D(fn) As in the previous

theorem we conclude that M makes Q(D(f,) - D(fn,a,g)) = Q(D(f,)*) many

steps on some input from ({0, 1}")2.]

7.2 Nondeterministic and randomized Turing machines

By the method mentioned in Observation 4.6 we immediately have that any
nondeterministic one-tape Turing machine that recognizes f, x(n) for all n >
1 has time complexity Q(k - (N(f,) — logk)). As in Section 7.1, we may
show the lower bounds Q(k(n) - N(f,)) for computing fmk(n) and Q(N(f.)?)
for computing f. These bounds (with unspecified constants) were already
obtained by Paturi and Simon [17], by totally different methods that can be
applied only to Turing machines, not to processor arrays in general.

Turning to randomized Turing machines, we note that a very clever way of
utilizing randomized communication complexity was used by Kalyanasunda-
ram and Schnitger [7] to prove lower bounds for a special kind of problems

36

(in particular, the element distinctness problem) on probabilistic one-tape
Turing machines with an extra input tape. In [17], connections between ran-
domized communication complexity and randomized Turing machines in the
unbounded error model were established. (This is quite different from the
bounded error or zero error model considered here.) Regarding the ques-
tion whether in general lower bounds on communication complexity can be
used to prove lower bounds on Turing machine complexity, the method from
Proposition 6.2 could be used to obtain lower bounds like

RO‘timel(fn,k(n)) = Q(Ro(fn) - log(k(n)))a

or
Ro-timey(fupiy) = Q6 - Reys(f) — log(k(n))), for 0 < e <e+6 < 1,

where Ro—timel(fn,k(n)) denotes the expected running time of an arbitrary

probabilistic 1-tape Turing machine that recognizes f, () with zero error,
similarly for the bounded error cases.

These bounds are useless for large k(n) and weak for e that is very close to
%. Our techniques, as described in section 6, make it possible to at least
eliminate the dependence on . Moreover, the reader may recall that bounds

like
Ro-timer (fupm) = Qk(n) - B3 (£));
Ra‘timel(]in,k(n)) = Q(k(n) - R (fn));
Rl-timer(fopm) = Qk(n) - BRIP(f.))

can always be used.]

Acknowledgement. I would like to thank Pavol Duris for helpful discus-
sions during early stages of the work on the topic of this paper. Thanks are
due to Juraj Hromkovi¢ for motivating discussions during the long period
this work lay half finished. A course taught by Ingo Wegener on the basis of
the book manuscript by E. Kushilevitz and N. Nisan brought Fact 3.3, the
“missing link” in the proof, to my attention.

37

References

[1] A.V. AHo, J.D. ULLMAN, and M. YANNAKAKIS, On notions of in-

2]

3]

[4]

[5]

[6]

(7]

8]

[9]

[10]

formation transfer in VLSI circuits, in Proc. of the 15th Annual ACM
Symposium on Theory of Computing (1983), pp. 133-139.

B. CHOR and O. GOLDREICH, Unbiased bits from sources of weak ran-
domness and probabilistic communication complexity, STAM J. Comput.

17 (1988) 230-261.

N. DERSHOWITZ and J.-P. JOUANNAUD, Rewrite systems, in J. VAN
LEEUWEN, ed., Handbook of Theoretical Computer Science, Vol. B:
Formal Models and Semantics, Elsevier, Amsterdam, 1990, pp. 243-320.

B. HALSTENBERG and R. REISCHUK, Relations between communica-
tion complexity classes, J. Comput. Syst. Sci. 41 (1990) 402-429.

J. HROMKOVIC, Communication Complexity and Parallel Computing,
EATCS Monographs on Computer Science, Springer-Verlag, Berlin, to
appear.

J. HROMKOVIC and G. SCHNITGER, Nondeterministic communication
with a limited number of advice bits, in Proc. of the 28th Annual ACM
Symposium on Theory of Computing (1996), pp. 551-560.

B. KALYANASUNDARAM and G. SCHNITGER, Communication com-
plexity and lower bounds for sequential computation, in J. BUCHMANN
ET AL., eds., Informatik - Festschrift zum 60. Geburtstag von Gunter
Hotz, B. G. Teubner, Stuttgart, 1992, pp. 253-268.

M. KRAUSE and S. WAACK, Variation ranks of communication
matrices and lower bounds for depth two circuits having symmetric
gates with unbounded fan-in, in Proc. of the 32nd IEEE Symposium
on Foundations of Computer Science (1991), pp. T77-782.

E. KusHILEVITZ, N. LINIAL, and R. OSTROVSKY, The linear-array
conjecture in communication complexity is false, in Proc. of the 28th
Annual ACM Symposium on Theory of Computing (1996), pp. 1-10.

E. KusHILEVITZ and N. NISAN, Communication Complexity, Cam-
bridge University Press, Cambridge, to appear.

38

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

A. L6PEZ-ORTIZ, New lower bounds for element distinctness on a one-
tape Turing machine, Inform. Proc. Lett. 51 (1994) 311-314.

K. MEHLHORN, Data Structure and Algorithms I: Sorting and Search-

ing, EATCS Monographs on Computer Science, Springer-Verlag, Berlin,
1984.

K. MEHLHORN and E. M. SCHMIDT, Las Vegas is better than determ-
inism in VLSI and distributed computing, in Proc. of the 14th Annual
ACM Symposium on Theory of Computing (1982), pp. 330-337.

I. NEWMAN, Private vs. common random bits in communication com-
plexity, Information Processing Letters, 39 (1991) 67-T1.

M. H. A. NEWMAN, On theories with a combinatorial definition of ‘equi-
valence’, Ann. Math. 43 (1942) 223-243.

N. NisAN and A. WIGDERSON, On rank versus communication com-
plexity, Combinatorica 15 (1995) 557-565.

R. PATURI and J. SIMON, Probabilistic communication complexity, .J.
Comput. Syst. Sci. 33 (1986) 106-123.

A.A. RAazZBOROV, Applications of matrix methods to the theory of
lower bounds in computational complexity, Combinatorica 10 (1990)

81-93.

P. M. SPIRA, On time-hardware complexity tradeoffs for Boolean func-
tions, in Proc. of the 4th Hawaii Symposium on System Sciences, 1971,
pp- 525-5217.

P. TtwARI, Lower bounds on communication complexity in distributed
computer networks, J. Assoc. Comput. Mach. 34 (1987) 921-938.

A. C.-C. YA0, Some complexity questions related to distributed com-
puting, in Proc. of the 11th Annual ACM Symposium on Theory of
Computing (1979), pp. 209-213.

39

A Uniqueness of computations

This appendix gives the framework for a rigorous proof of the following fun-
damental lemma from Section 2. The proof will turn out to be relatively
easy once the proper type of formalism is identified, which is related to the
theory of term rewriting.

Lemma 2.1 Let @ be a deterministic protocol for inputs from X XY on an
array of length k. Then for each fized input (z,y) € X x Y, any execution
of ® will generate exactly the same k message sequences s1,... 3, on links

1 k.

ge ey

Proof. The proof is based on properties (1), (2), and (3) from Section 2. We
start by normalizing computations a little. We first eliminate link delays. By
property (3) it cannot change the behaviour of processor P; on link ¢, say, if
more bits arrive on link 7+ 1 or are sent across link :+1 by P;. Thus, we may
assume that all messages reach their destination instantaneously after being
sent. This makes it possible to model intermediate states of the computation
as sequences
(805815« -+ s SkySkt1),s

where sg = z, Sg11 = y, and for 1 < ¢ < k the bit string s; is a partial
message sequence corresponding to a node of the protocol tree for link .
The computation proceeds in discrete time steps whose duration is of no
importance. Before the first step, the state is (so,¢,...,¢,k41), and the
computation ends in a state (sg, $1, ... , Sk, Sg41) in which no more messages
can be sent. One step consists in one or several messages being sent, which
means that one or several of the s; are extended by one bit, namely s; may
be extended by either ®; (s;_1,s;) or ®7 (s;, s;41) according as P; or Py is
allowed to speak next on link 2. Next, we note that we can sequentialize
steps in which several messages are sent in parallel, in an arbitrary order.
Again, this is a consequence of rule (3): exchanging more information on
one link will not change the bit sent next on the other link. Thus, we will
assume that in one step exactly one of the s;, 1 < < k, is extended by one
bit, which has to be ® (s;_y, s;) or ®; (s;,8;41). It remains to show that no
matter in which order the possible moves allowed by the protocol trees and
the ®F-functions are executed, always the same final state is reached.

40

We first note that in a state (so, $1,. .., Sk, Sk4+1) reached at termination all
si, 1 <@ < k, must correspond to leaves in their protocol tree. Indeed,
suppose that is not the case. Form a directed graph with nodes Fs,... , P
by drawing an arc from P,_; to P; if on the basis of s; P;_; is next to speak
on link ¢, an arc from P; to P,_; if P; is next. By assumption, this digraph
has at least one arc, and obviously it has no cycles. Thus, there must be a
source, 1. e., a node only with outgoing arcs. This corresponds to a processor
that either is next to speak on both its links or next to speak on one link,
with the other link being finished. By rule (2) (no deliberate blocking) it
must be possible for P; to send at least one message, thus the computation
cannot stop in state (S, $1,... , Sk, Sk41)-

We will now employ an argument that is basic in the context of term rewriting
and string rewriting for proving “confluence” of a set of rewrite rules (see
[3]). Namely, we observe that our system of states and rules is finite (since
all protocol trees are finite), acyclic (since a step increases the total length of
the message sequences sg, Sy, ... , Sk, Sp+1) and “locally confluent”, meaning
the following:

o if &' = (s0,8),...,8% Sks1) and 8" = (so,8],... .87, Sk41) can
be reached from s = (sq, 81, .. , Sk, Sk4+1) by performing one step,
then there is a state § = (s, $1,... , Sk, Sk+1) that can be reached
from both s’ and s” by performing an appropriate sequence of
steps.

Indeed, assume that s’ is obtained from s by extending s; by a bit & =
®(s,_1,s;), say, and s” is obtained from s by extending s; by a bit b =
®F(sj_1,s;) or b = ® (s,8;41). Clearly, if i = j, then 0’ and b” must be the
same, since it must be P;_; that speaks. If j = ¢ — 1, then after extending
si—1 to s’ | = s,_1b" we may still send ¥’ across link 7, since OF(s;_1,8;) =
®F (s,_1b",5;) by rule (3). Similarly, ¥ may be sent across link 7 in state s".
Thus, we can reach the state § = (sg,81,...,8-10",80,..., 8k, Sk41) from
both s" and s"”. If j =i+ 1 and 0" = ®; (s;,5;41) then processor P; sends
bits &' (across link ¢) and o (across link 4 1). Again, by rule (3), this can be
done in either order. Finally, if j ¢ {i — 1,2,2 + 1}, then there is no conflict
at all between the processors involved in sending ' and &”, which means
that the order does not matter. Applying a principle known as Noetherian

41

induction ([3, p.267], [15]) we may conclude from local confluence that our
system is “globally confluent”, which means the following;:

e if " and s” can both be reached from s by performing a sequence
of steps, then there is a state § that can be reached from both s’
and s” by applying a sequence of steps.

This property implies that no matter how our computation proceeds, starting
from (sg,€,...,¢,8k4+1), the terminal state that is finally reached must be
the same. (If two different terminal states could be reached, which cannot
be extended, we would have an immediate contradiction to the confluence
property.) This, of course, means that the sequence of bits exchanged on
each link does not depend on the order in which the computational steps are
executed, which is the assertion of the lemma.]

B Depth versus number of message sequences

This appendix provides the proof of a folklore fact that relates the logarithm
of the minimal number of leaves in a protocol tree for f to the deterministic
communication complexity D(f). The proof is almost the same as in [10],
and is provided here only for the convenience of the reader.

Fact 3.3 If f has a two-party protocol with at most ¢ > 1 different message
sequences (i.e., the protocol tree has ¢ leaves), then f has a two-party protocol
of complexity at most 21ogs; c.

Proof. For ¢ > 1, let
d(¢) = max{D(f) | f admits a protocol tree with ¢ or fewer leaves}.
We show, by induction, that d(c) < 2log,,, c. — Clearly, d(1) = 0 = logs, 1.

Now let ¢ > 2, and consider any function f that admits a protocol tree T
with ¢ or fewer leaves. It is easy to see that this tree has a node v such that

42

the subtree T, rooted at v has at least ¢/3 leaves and at most 2¢/3 leaves.
If v happens to be the root, then T' = T, has no more than |2¢/3] leaves,
hence, by induction, D(f) < 2logs,,|2¢/3] < 2logs/, c. Thus we may assume
that v i1s not the root. Recall that the set of inputs that reach v when the
protocol is performed is a rectangle R, = X, x Y, with X, C X and Y, C Y.
We describe a new protocol. By exchanging two bits, Alice and Bob decide
whether (x,y) is in R, or not. If so, they run a protocol of optimal depth
at most d(|2¢/3]) for the function computed by the protocol described by
T,. (This gives correct results on inputs from R,.) If (z,y) € R,, they run
a protocol of optimal depth at most d([2¢/3]) for the function computed by
the tree resulting from 7' by discarding T, and placing the sibling of v at the
position of the parent of v. (It is easily seen that this gives correct results on
inputs from X xY —R,,.) The complexity of the whole protocol is bounded by
2+4d([2¢/3]), which, by induction, is at most 2 +2-logs,(2¢/3) = 2logs, c.

|

43

