Electronic Colloquium on Computational Complexity - Reports Series 1996 - available via:

E(:(:(: FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW:

http://www.eccc.uni-trier.de/eccc/
T R96- 064 Email: ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

Constraint Satisfaction:
The Approximability of Minimization Problems

Sanjeev Khanna* Madhu Sudant Luca Trevisan®

December 11, 1996

Abstract

This paper continues the work initiated by Creignou [Cre95] and Khanna, Sudan and
Williamson [KSW96] who classify maximization problems derived from boolean constraint sat-
isfaction. Here we study the approximability of minimization problems derived thence. A
problem in this framework is characterized by a collection F of “constraints” (i.e., functions
f:{0,1}* — {0,1}) and an instance of a problem is constraints drawn from F applied to spec-
ified subsets of n boolean variables. We study the two minimization analogs of classes studied
in [KSW96]: in one variant, namely MIN CSP (F), the objective is to find an assignment to
minimize the number of unsatisfied constraints, while in the other, namely MiN ONESs (F), the
goal is to find a satisfying assignment with minimum number of ones. These two classes together
capture an entire spectrum of important minimization problems including s-¢ Min Cut, vertex
cover, hitting set with bounded size sets, integer programs with two variables per inequality,
deleting minimum number of edges to make a graph bipartite, deleting minimum number of
clauses to make a 2CNF formula satisfiable, and nearest codeword. Our main result is that
there exists a finite partition of the space of all constraint sets such that for any given F, the
approximability of MIN CSP (F) and MIN ONES (F) is completely determined by the partition
containing it. Furthermore we present a compact set of rules which, given F, determine which
partition contains it. On the one hand, our classification underscores central elements governing
the approximability of problems in these classes, while on the other hand, it unifies a large
number of algorithmic and hardness of approximation results. When contrasted with the work
of [KSW96], our results serve to formally highlight inherent differences between maximization
and minization problems.

*sanjeev@research.bell-labs.com. Fundamental Mathematics Research Department, Bell Labs, 700 Mountain
Avenue, NJ 07974.

'madhu@watson.ibm.com. IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598.

i'l'.revisantllczui.unige.c:h. Centre Universitaire d’Informatique, Université de Genéve, Rue Général-Dufour 24,
CH-1211, Genéve, Switzerland. Work done at the University of Rome “La Sapienza”.

1 Introduction

In this paper we present a complete classification of the approximability of minimization problems
derived from “boolean constraint satisfaction”. Our work follows the work of Creignou [Cre95]
and Khanna, Sudan and Williamson [KSW96] who obtained such a classification for maximization
problems.

This line of research is motivated by an attempt to unify the many known positive and negative
results on the approximability of combinatorial optimization problems. In the case of positive
results, many paradigms have been obtained and these serve to unify the results nicely. In contrast,
there is a lack of similar unification among negative results. Part of the reason for this is that
hardness results tpically tend to exploit every feature of the problem whose hardness is being
shown, rather than isolating the “minimal” features that would suffice to obtain the hardnes result.
As a result many interesting questions about hard problems tend to remain unresolved. Khanna et
al. [KSW96] describe a number of such interesting questions: (1) Are there any NP-hard problems in
MAX SNP which are not MAX SNP-hard? (2) Are there any “natural” maximization problems
which are approximable to within polylogarithmic factors, but no better? (3) Is there some inherent
difference between maximization and minimization problems among combinatorial optimization
problems?

In order to study such questions, or even to place them under a formal setting, one needs to first
specify the optimization problems one wishes to study in some uniform framework. Furthermore,
one has to be careful to ensure that it is possible to “decide” whether the optimization problem
studied is easy or hard (to, say, compute exactly). Unfortunately, barriers such as Rice’s theorem
(which says this question may not in general be decidable) or Ladner’s theorem (which says problems
may not be just easy or hard [Lad75]) force us to severely restrict the class of problems which can
be studied.

A work of Schaefer [Sch78] from 1978 isolates one class of decision problems which can actually
be classified completely. He obtains this classification by restricting his attention to “boolean
constraint problems”. A typical problem in this class is defined by a finite set F of finite boolean
constraints (specified by, say, a truth table). An instance of such a problem specifies m “constraint
applications” on m boolean variables where each constraint application is the application of one
of the constraints from F to some subset (actually, ordered tuple would be more exact) of the n
variables. The language SAT(F) consists of all instances which have an assignment satisfying all m
constraints. Schaefer describes six classes of function families, such that if F is a subset of one of
these classes, then the decision problem is in P, else he shows that the decision problem is NP-hard.

Creignou [Cre95] and Khanna et al. [KSW96] extend the study above, in a natural way, to
optimization problems. They define two classes of optimization problems: Max CSP (F) and
Max ONEs (F) (Actually the work of Creignou’s studies only the class Max CSP (F).). The
instances in both cases are m constraints applied on n boolean variables, where the constraints come
from F. In the former case, the objective is to find an assignment which maximizes the number
of constraints that are satisfied. In the latter case, the objective is to find an assignment to the
boolean variables which satisfies all the constraints while maximizing the weight of the assignment
(i.e., the number of variables set to 1). In a result similar to that of Schaefer’s they show that
there exists a finite partition of the space of all function families such that the approximability of
a given problem is completely determined based on which partition the family F belongs to. The
interesting aspect of this classification result is that it manages to capture diverse problems such
as Max Frow, Max CuT and Max CrIQUE (which are all approximable to very different factors)
and yet unifies the (non)-approximability results for all such problems. Within the framework of
constraint satisfaction problems, Khanna et al. settle the questions (1) and (2) raised above. Our

work is directed towards question (3).

We consider the two corresponding classes of minimization problems which we call
Min CSP (F) and MIN ONEs (F). Again, instances of both problems consist of m constraints
from F applied to n boolean variables. The objective in MIN CSP (F) is to find the assignment
which minimizes the number of unsatisfied constraints. The objective for MIN ONEs (F) is to find
the assignment which satisfies all constraints while minimizing the number of the variables set to
1. For each class of optimization problems our main theorem is informally stated as follows: There
exists a finite partition of the space of all function families, such that the approximability of the
problem MIN CSP (F) (resp. MIN ONEs (F)) is determined completely by which partition it lies
in. We stress however that there is one important respect in which our classification is different from
previous ones. Qur partitions include several classes whose approximability is still not completely
understood. Thus while our result shows that the number of “distinct” levels of approximability
(among minimization problems derived from constraint satisfaction) is finite — it only places an
upper bound on the number of levels — it is unable to pin it down exactly. By pinning down a
complete problem for each partition, we, however turn this seeming weakness into a strength by
highlighting some important problems whose approximability deserves further attention.

Even though the transition from maximization problems to minimization problems is an obvious
next step, success in this transition is not immediate. For starters — the transition from SAT to
Max CSP is completely analogous to the transition from SNP to MAX SNP. Yet, there is no
minimization analog of MAX SNP. The obvious difficulty seems to be that we are immediately
confronted by a host of problems for which distinguishing the case where the optimum is zero,
from the case for which the optimum is non-zero is NP-hard. The traditional approach to deal
with zero/one problem has been to restrict the syntax using which the predicate within the SNP
construct is used - thereby ruling out the hardness of the zero/one problem (see e.g. [KT94, KT95]).
Our approach, via constraint satisfaction, however does not place any such restrictions. We simply
characterize all the problems for which the 0/1 problem is hard, and then having done so, move to
the rest of the problems. All the different levels of approximability that are seen emerge naturally.

Despite this completely oblivious approach to defining the classes MiN CSP and Min ONES
the classes end up capturing numerous natural optimization problems — with very distinct lev-
els of approximability. For starters, the s-t MIN CUT problem is one of the problems captured
by Min CSP which is well known to be computable exactly in P. (This was already shown and
used by Khanna et al. [KSW96].) At the constant level of approximability we see problems such
as VERTEX CoVER [Gav74, NT75], Hitting Set with bounded size sets [Joh74], Integer programs
with two variables per inequality [HMNT93]. (The references cited after the problems show that
the problem is approximable to within constant factors.) Then we come to two open problems:
Min UNCuT [GVY96] and MiN 2CNF DeLETION [KPRT96] both of which are known to be ap-
proximable to within polylogarithmic factors and known to be hard to approximate to within some
constant factor. The exact approximability of both problems remains open. At a higher level
of approximability is the NEAREST CODEWORD problem [ABSS93] which is known to be approx-
imable to within polynomial factors but is hard to approximate to within 2!°8°” factors. For each
of these problems we show that there is a constraint family F such that either MiN CSP (F) or
MiN ONEs (F) is isomorphic to the problem. The ability to study all these different problems
in a uniform framework and extract the features that make the problems easier/harder than the
others shows the advantage of studying optimization problems under the constraint satisfaction
framework.

Lastly, we point out that it is not only the negative results that are unified by our frame-
work but also the positive results. Our positive results highlight once more the utility of the
linear programming (LP) relaxation followed by rounding approach to devising approximation al-

gorithms. This approach, which plays a significant role in all the above mentioned results of
[NT75, Joh74, HMNT93, GVY96, KPRT96], also plays a crucial role in obtaining constant factor
approximation algorithms for one of the partitions of the Min CSP (F) problems and one partition
of the MIN ONEs (F) problems.

One limitation of our results is that they focus on problems in which the input instances have
no restrictions in the manner in which constraints may be imposed on the input variables. This
is the reason why many of the problems turn out to be as hard as shown. Sometimes significant
insight may be gleaned from restricting the problem instances. A widely prescribed condition is
that the incidence graph on the variables and the constraints should form a planar graph. This
restriction has been recently studied by Khanna and Motwani [KM96] and they show that it leads
to polynomial time approximation schemes for a general class of constraint satisfaction problems.
Another input restriction of interest could be that variables are allowed to participate only in a
bounded number of constraints. We are unaware of any work on this front. An important extension
of our work would be to consider constraint families which contain constraints of unbounded arity
(such as those considered in MINF*II;). Such an extension would allow us to capture problems
such as SET CoVER. In summary, our work reflects yet another small step towards the big goal of
understanding the structure of optimization problems.

2 Preliminaries

The notion of constraints and constraint applications and our classes of problems of interest have
already been defined informally above. We formalize them in the next two subsections. We next re-
view some basic concepts and definitions in approximability, reductions and completeness. Finally,
we present our classification theorems and give an overview of how the remainder of this paper is
organized.

2.1 Constraints, Constraint Applications and Constraint Families

A constraint is a function f : {0,1}* — {0,1}. A constraint application is a pair (f, (¢1,...,%)),
where the i; € [n] indicate to which k of the n boolean variables the constraint is applied. We
require that ¢; # 7,/ for j # j'. A contraint family F is a finite collection of constraints {fi,..., fi}.
Constraints and constraint families are the ingredients that specify an optimization problem. Thus
it is necessary that their description be finite. Constraint applications are used to specify instances
of optimization problems and the fact that their description lengths grow with the instance size is
crucially exploited here. While this distinction between constraints and constraint applications is
important, we will often blur this distinction in the rest of this paper. In particular we may often
let the constraint application C' = (f, (%1, ...,%)) refer just to the constraint f. In particular, we
will often use the expression “C' € F” when we mean “f € F, where f is the first part of C”. We
now describe the optimization problems considered in this paper.

Definition 1 (Min CSP (F))
INPUT : A collection of m constraint applications of the form {(f;,(41(3),...,%;(4)))}7e1, on
boolean variables x4, z,, ..., T, where f; € F and k; s the arity of f;.

OBIECTIVE : Find a boolean assignment to x;’s so as to minimize the number of unsatisfied
constraints.

In the weighted problem MIN WEIGHT CSP (F) the input includes m non-negative weights
Wi. ..., W,y and the objective is to find an assignment which minimizes the sum of the weights of
the unsatisfied constraints.

Definition 2 (MIN ONEs (F))
INPUT : A collection of m constraint applications of the form {(f;,(41(3),.--,%,(7)))}7e1, on
boolean variables ©1, s, ..., z, where f; € F and k; is the arity of f;.

OBIJECTIVE : Find a boolean assignment to x;’s which satisfies all the constraints and minimizes
the total number of variables assigned true.

In the weighted problem MIN WEIGHT ONEs (F) the input includes n non-negative weights
wy....,w, and the objective is to find an assignment which satisfies all constraints and minimizes
the sum of the weights of variables assigned to 1.

Properties of function families We now describe the main properties that are used to classify
the approximability of the optimization problems. The approximability of a function family is
determined by which of the properties the family satisfies. We start with the six properties defined
by Schaefer:

— A constraint f is 0-valid (resp. I-valid) if f(0,...,0) =1 (resp. f(1,...,1)=1).

— A constraint is weakly positive (resp. weakly negative) if it can be expressed as a CNF-formula
having at most one negated variable (resp. at most one unnegated variable!) in each clause.

— A constraint is affine if it can be expressed as a conjunction of linear equalities over Z,.

— A constraint is 2enfif it is expressible as a 2CNF-formula.

The above definitions extend to constraint families naturally. For instance, a constraint family F is

0-valid if every constraint f € F is 0-valid. Using the above definitions Schaefer’s theorem may be

stated as follows: For any constraint family F, SAT(F) is in P if F is 0-valid or 1-valid or weakly
positive or weakly negative or affine or 2cnf; else deciding SAT(F) is NP-hard.

Some more properties were defined by Khanna et al. [KSW96] to describe the approximability
of the problems they considered. We will need them for our results as well.

- fif 2-monotone if f(z4,...,z;) is expressible as (z;, A---Az;,) V(-z;, A---A-z;,) (e, fis
expressible as a DNF-formula with at most two terms - one containing only positive literals
and the other containing only negative literals).

— A constraint is width-2 affine if it is expressible as a conjunction of linear equations over 2,
such that each equation has at most 2 variables.

— A constraint f is C-closed if for all assignments s, f(s) = f(3).

The above properties, along with Schaefer’s original set of properties suffice for [Cre95] and [KSW96]
to classify the approximability of the maximization problems Max CSP (F)and Max ONEs (F).
A statement of their results is included in Appendix B.

Lastly we need one definition of our own, before we can state our results.

— A constraint f is IHS-B+ (for Implicative Hitting Set-Bounded+) if it is expressible as a CNF
formula where the clauses are of one of the following types: z;\/ - - -V z; for some positive inte-
ger k, or mz1 \/ &2, or —z;. IHS-B— constraints and constraint families are defined analogously
(with every literal being replaced by its complement). A family is a IHS-B family if the family
is a [HS-B+ family or a IHS-B— family.

Problems captured by Min CSP and MiN ONEs We enumerate here some interesting mini-
mization problems which are “captured” by (i.e., are equivalent to some problem in) MiN CSP and
Min OnEs. The following list is interesting for several reasons. First, it highlights the importance
of the classes MIN CSP and MiN ONES as classes that contain interesting minimization problems.

'Such clauses are usually called Horn clauses.

Furthermore, these problems turn out to be “complete” problems for the partitions they belong to
- thus they are necessary for a full statement of our results. Last, for several of the problems listed
below, their approximability is far from being well-understood. We feel that these problems are
somehow representative of the lack of our understanding of the approximability of minimization
problems.

— The well-known Hitting Set problem, when restricted to sets of bounded sizes B can be cap-
tured as MIN ONES(F) for F = {z,V---Vzrlk < B}. Also, of interest to our paper is
a slight generalization of this problem which we call the Implicative Hitting Set-B Problem
(Min IHS-B) which is MIN CSP(F) for F = {z,;\V---Vzir : k < B} U {~2z, Ve } U {-z,}.
The MiIN ONEs version of this problem will be of interest to us as well. The Hitting Set-B
problem is well-known to be approximable to within a factor of B. We show that, in fact
MiN IHS-B is approximable to within a factor of B + 1.

— Mix UnCut = MIN CSP({z & y = 1}). This problem has been studied previously by Klein
et al. [KARR90] and Garg et al. [GVY96]. The problem is known to be MAX SNP-hard and
hence not approximable to within a constant factor. On the other hand, the problem is known
to be approximable to within a factor of O(logn) [GVY96].

— Min 2CNF DerLeTiON = MIN CSP({z Vy,—~2\V —y}). This problem has been studied by
Klein et al. [KPRT96]. They show that the problem is MAX SNP-hard and that it is approx-
imable to within a factor of O(lognloglogn).

— NEAREST CoDEWORD = MIN CSP({zPyPz=0,2Py@d 2z = 1}). This is a classical problem
for which hardness of approximation results have been shown by Arora et al. [ABSS93]. The
Min ONEs version of this problem is essentially identical to this problem. For both problems,
the hardness result of Arora et al. [ABSS93] says that approximating this problem to within a
factor of 21°¢°” is hard, unless NP C QP. No non-trivial approximation guarantees are known
for this problem (the trivial bound being a factor of m, which is easily achieved since deciding
if all equations are satisfiable amounts to solving a linear system).

— Lastly we also mention one more problem which is required to present our main theorem.
Min HorN DELETION = MIN CSP({z,-z,(-z VvV z)}). This problem is essentially as hard
as the NEAREST CODEWORD.

2.2 Approximability, Reductions and Completeness

Finally, before presenting our results, we mention some basic notions on approximability. A com-
binatorial optimization problem is defined over a set of instances (admissible input data); a finite
set sol(z) of feasible solutions is associated to any instance. An objective function attributes an
integer value to any solution. The goal of an optimization problem is, given an instance z, find
a solution y € sol(z) of optimum value. The optimum value is the largest one for mazimization
problems and the smallest one for minimization problems. A combinatorial optimization problem
is said to be an NP O problem if instances and solutions are easy to recognize, solutions are short,
and the objective function is easy to compute. See e.g. [BC93] for formal definitions.

Definition 3 (Performance Ratio) An approzimation algorithm for an NPO problem A has
performance ratio R(n) if, given any instance T of A with |I| = n, it computes a solution of value

V' which satisfies
14 opt(I)}
< .
max { ootV < R(n)

A solution satisfying the above inequality is referred to as being R(n)-approzimate. We say that a
NPO problem is approximable to within a factor R(n) if it has a polynomial-time approximation
algorithm with performance ratio R(n).

Definition 4 (Approximation Classes) An NPO problem A is in the class PO if it is solvable
to optimality in polynomial time. A is in the class APX (resp. log-APX/ poly-APX) if there
exists a polynomial-time algorithm for A whose performance ratio is bounded by a constant (resp.
logarithmic/polynomial factor in the size of the input).

Completeness in approximation classes can be defined using appropriate approximation preserv-
ing reducibilities. These reducibilities tend to be a bit subtle and we will be careful to specify the
reducibilities used in this paper. In this paper, we heavily use two notions of reducibilites defined
below. (1) A-reducibility which ensures that if II is A-reducible to II’ and II' is (n) approximable
for some function r : Z+ — Z*, then II is ar(n®)-approximable, for some constants o and c.
In particular if I’ is approximable to within some constant factor (resp. O(logn), n°® factor),
then II is also approximable to within some constant factor (resp. O(logn), n®W) factor). (2)
AP-reducibility which is a more stringent notion of reducibility, in that every AP-reduction is also
an A-reduction This reducibility has the feature that if II AP-reduces to II’ and II’ has a PTAS,
then II has a PTAS. Unfortunately neither one of these reducibilities alone suffices for our purposes
— we need to use the more stringent reducibility to show APX-hardness of problems and we need
the flexibility of the weaker reducibility to provide the other hardness results. Fortunately, results
showing APX-hardness follow directly from [KSW96] and so the new reductions of this paper are
all A-reductions.

Definition 5 (AP-reducibility [CKST95]) For a constant a > 0 and two NPO problems A
and B, we say that A is AP-reducible to B if two polynomial-time computable functions f and g
exist such that the following holds:

(1) For any instance T of A, f(T) is an instance of B.

(2) For any instance T of A, and any feasible solution S8’ for f(T), g(Z,8’) is a feasible solution
for z.

(8) For any instance T of A and any r > 1, if 8’ is an r-approzimate solution for f(I), then
9(Z,8") is an (1 + (r — 1)a + o(1))-approzimate solution for I, where the o notation is with
respect to |I|.

We say that A is AP-reducible to B if a constant a > 0 exists such that A is a-AP-reducible to B.

Definition 6 (A-reducibility [CP91]) An NPO problem A is said to be A-reducible to an NPO

problem B if two polynomial time computable functions f and ¢ and a constant a exist such that:

(1) For any instance T of A, f(T) is an instance of B.

(2) For any instance T of A and any feasible solution S’ for f(T), g(Z,8’) is a feasible solution
for I.

(8) For any instanceI of A and anyr > 1, if S’ is a r-approzimate solution for f(I) then g(Z,S’)
is an (ar)-approzimate solution for I.

Remark 7 The original definitions of A P-reducibility and A-reducibility were more general. Under
the original definitions, the A-reducibility does not preserve membership in log-APX, and it is not
clear whether every AP-reduction is also an A-reduction. The restricted versions defined here are
more suitable for our purposes. In particular, it is true that the Vertex Cover problem is APX-
complete under our definition of AP-reducibility.

Definition 8 (APX and poly-APX-completeness) An APX problem A is APX-complete if
any APX problem is AP-reducible to A. A poly-APX problem A is poly-APX-complete if any
poly-APX problem is A-reducible to A.

It is easy to prove that if A is APX-complete (resp. poly-APX-complete) then a constant € exists
such that it is NP-hard to approximate A within (1 + €) (resp. n°).

2.3 Main Results

We now present the main results of this paper. A more pictorial representation is available in
Appendices A.1 and A.2. The theorem uses the shorthand II’ is II-complete to indicate that the
problem II' is equivalent (under A-reductions) to the problem II.

Theorem 9 (Min CSP Classification) For every constraint set F, MIN CSP(F) is either
in PO or APX-complete or MIN UNCUT-complete or MIN 2CNF DELETION-complete or
NEAREST CODEWORD-complete or MIN HORN DELETION-complete or the decision problem is NP-
hard. Furthermore,

(1) If F is 0-valid or 1-valid or 2-monotone, then MIN CSP(F) is in PO.

(2) Elseif F is IHS-B then MIN CSP(F) is APX-complete.

(8) Elseif F is width-2 affine then MIN CSP(F) is MIN UNCuT-complete.

(4) Else if F is 2CNF then Min CSP(F) is MiNn 2CNF DELETION-complete.

(6) Elseif F is affine then MIN CSP(F) ¢s NEAREST CODEWORD-complete.

(6) Else if F is weakly positive or weakly negative then MiN CSP(F) is MIN HORN DELETION-
complete.

(7) Else deciding if the optimum value of an instance of MIN CSP(F) is zero is NP-complete.

Theorem 10 (MiN ONEs Classification) For every constraint set F, MIN ONEs (F) is either
in PO or APX-complete or NEAREST CODEWORD-complete or MIN HORN DELETION-complete or
poly-APX-complete or the decision problem is NP-hard. Furthermore,

(1) If F is 0-valid or weakly negative or affine with width 2, then MIN ONEs (F) is in PO.

(2) Elseif F is 2CNF or IHS-B then MIN ONEs (F) is APX-complete.

(8) Else if F is affine then MIN ONEs (F) is NEAREST CODEWORD-complete.

(4) Else if F is weakly positive then MIN ONEs (F) ¢s MIN HORN DELETION-complete.
(5) FElseif F is 1-valid then MIN ONEs (F) is poly-APX complete

(6) Else finding any feasible solution to MIN ONEs (F) is NP-hard.

Techniques As in the work of Khanna et al. [KSW96] two simple ideas play an important role
in this paper. (1) The notion of implementations from [KSW96]| (also known as gadgets [BGS95,
TSSW96]) which shows how to use the constraints of a family F to enforce constraints of a different
family F’, thereby laying the groundwork of a reduction from Min CSP(F’) to Min CSP(F). (2)
The idea of working with weighted versions of minimization problems. Even though our theorems
only make statements about unweighted versions of problems, all our results use as intermediate
steps the weighted versions of these problems. The weights allow us to manipulate problems more
locally. However, simple and well-known ideas eventually allow us to get rid of the weights and
thereby yielding hardness of the unweighted problem as well. As a side-effect we also show (in
Section 3.2) that the unweighted and weighted problems are equally hard to approximate in all the

relevant cases of MIN CSP and MiN ONEs problems. This extends to minimization problems the
results of Crescenzi et al. [CST96].

A more detailed look at implementations and weighted problems follows in Section 3. In Sec-
tion 4 we show the containment results for the MiN CSP result. The new element here is the
constant factor approximation algorithm for IHS- B families. In Section 5 we show the hardness re-
sults. The new element here is the characterization of functions which are not expressible as THS-B
and the MIN HORN DELETION-completeness results for weakly positive and negative families. We
show a close correspondence between MiN CSP and MiN ONES problems in Section 6. Finally, in
Sections 7 and 8, we give our positive and negative results for MiN ONES problems.

3 Warm-up

3.1 Implementations

Suppose we want to show that for some constraint set F, the problem MIN ONEs(F)is APX-hard.
We will start with a problem that is known to be APX-hard, such as VERTEX COVER, which is
the same as MIN ONEs({z\/y}). We will then have to reduce this problem to MiN ONES(F). The
main technique we use to do this is to “implement” the constraint z \/y using constraints from
the constraint set F. The following definition shows how to formalize this notion. (The definition
is part of a more general definition of Khanna et al [KSW96]. In fact, their definition is needed
for AP-reductions, but since we don’t provide any new AP-reductions, we don’t need their full
definition here.)

Definition 11 (Perfect Implementation [KSW96]) A collection of constraint applications
Ci,...,Cy over a set of variables T = {zq,2,,...,2,} and § = {y1,¥2,...,Y,} 15 called a perfect
a-implementation of a constraint f(Z) iff the following conditions are satisfied:
(1) For any assignment of values to T such that f(Z) is true, there exists an assignment of values
to ¥ such that all the constraints are satisfied,
(2) For any assignment of values to T such that f(Z) is false, no assignment of values to § can
satisfy all the constraints.
A constraint set F perfectly implements a constraint f if there exists a perfect a-implementation
of f using constraints of F for some a < co. We refer to the set & as the constraint variables and
the set ¥ as the auxiliary variables.

A constraint f 1-implements itself perfectly. It is easily seen that perfect implementations
compose together, i.e., if F; perfectly implements f, and F, perfectly implements g € F;, then
(F; \ {9}) U F, perfectly implements f. In order to see the utility of implementations, it is better
to work with weighted problems.

3.2 Weighted Problems

For a function family F, the problem MiN WEIGHET CSP(F) has as instances m weighted con-
straints Cy, ..., C,, with non-negative weights wy,...,w,, on n boolean variables zi,...,z,. The
objective is to find an assignment to Z which minimizes the weight of unsatisfied constraints. An
instance of the problem MIN WEIGHT ONES(F) has as instances m constraints Cy,...,Cp,, on n
weighted boolean variables z,,...,z, with non-negative weights w,...,w,. The objective is to
find the assignment which minimizes the sum of weights of variables set to 1 among all assignments
that satisfy all constraints. The following proposition shows how implementations are useful for
reductions among weighted problems.

Proposition 12 If a constraint family F' perfectly implements every function f € F,
then MiNn CSP(F) (resp. Min WEIGHT CSP, MiINn WEIGHT ONES(F)) is A-reducible to
Min CSP(F’) (resp. Min WEIGHT CSP, MIN WEIGHT ONES(F")).

Proof: Let k be large enough so that any constraint from F has a perfect k-implementation
using constraints from F'. Let 7 be an instance of MIN WEIGHT CSP(F) and let Z' be the
instance of MIN WEIGHT CSP(F’) obtained by replacing each constraint of 7 with the respective
k-implementation. It is easy to check that any assigment for Z' of cost V yields an assigment
for 7 whose cost is between V/k and V. It is immediate to check that if the former solution is
r-approximate, then the latter is (kr)-approximate. m

While weighted problems allow for the convenient use of implementations, there is really
not much of a difference between weighted and unweighted problems. It is easy to show that
MiN WEIGHT ONEsS(F) A-reduces to MIN ONEsS(F). It is also easy to see that if we are allowed to
repeat the same constraint many times, then MIN WEIGHT CSP(F) A-reduces to Min CSP(F).
Finally, it turns out that the equivalence holds even when we are not allowed to repeat constraints.
This is summarized in the following Theorem.

Theorem 13 (Weight-removing Theorem) For any constraint fam-
ily F, MIN WEIGHT ONES(F) A-reduces to MIN ONEs(F). If F perfectly implements (z = y),
then MIN WEIGHT CSP(F) A-reduces to Min CSP(F).

As a first step towards establishing this result, we recall that from the results of [CST96], it
follows that whenever MIN WEIGHT CSP(F) (resp. MIN WEIGHT ONEs(F)) is in poly-APX,
then it is AP-reducible (and hence A-reducible) to the restriction where weights are polynomially
bounded (in particular, they can be assumed to be bounded by max{n?, m?}, where m is the number
of constraints and » the number of variables). For this reason, from now on, weighted problems will
always be assumed to have polynomially bounded weights. Moreover, in a MiN WEIGHT CSP(F)
instance, we will sometimes see a weighted constraint of weight w as a collection of w identical
constraints.

In a MIN WEIGHT CSP instance we can assume that no constraint has weight zero (other-
wise we can remove the constraint without changing the problem). We also assume that in a
Min WEIGHT ONES instance no variable has weight zero. Otherwise, we multiply all the weights
by n? (n = number of variables) and then we change the zero-weights to 1. This negligibly perturbs
the problem and gives an AP-reduction. This is formalized below.

Proof of Theorem 13: We begin by showing that for any family F, Min WEIGHT CSP(F)
AP-reduces to MIN CSP(F U {(z = y)}). For this, we use an argument similar to the reduction
from Max 3SAT to Max 3SATB (see [PY91]), however we don’t need to use expanders. Let 7 be
an instance of MIN WEIGHT CSP(F) over variable set X = {z4,...,2,}. For any ¢ € [n], let occ;
be the number of the constraints where z; appears. We make occ; “copies” of z;, and call them
yl, ...,y We substitute the j-th occurrence of z; by y!. We repeat this substitution for any
variable. Additionally, for ¢ € [n], we add all the possible oce;(occ; — 1)/2 “consistency” constraints
of the form yf =yl for j,h € [occ;], 1 # j. Call I’ the new instance; observe that 7’ contains no
repetition of constraints. Moreover, any assigment @ for Z' can be converted into an assigment a’
that satisfies all the consistency constraints without increasing the cost. Indeed, if, for some ¢, not
all the y? have the same value under @, then we give value 0 to all of them. This can, at most,
contradict all the constraints containing an occurrence of a switched variable, but this satisfies
many more consistency constraints than those that got contradicted.

We next show that for any family F, MIN WEIGET ONES(F) AP-reduces to MIN ONEsS(F).
To begin with, note that if MiN WEIGHT ONES(F) is in PO, then it is trivially AP-reducible to
any NPO problem (including, in particular, MIN ONES(F)). The interesting case thus arises when
F is not 0-valid nor width-2 affine nor weakly negative. As can be seen from the proof of Lemma 46
below, in such case either F perfectly implements (z = y) or all the basic constraints of F are of
the form z;\/---\ z; for some k& > 1.

If F perfectly implements z = y, then for any variable z; of weight w; we introduce w; — 1 new
variables 4,...,7* " and the implementations of the constraints z; = ¥}, v} = 42, ...,y " = z;.
Each variable has now cost 1. Any solution satisfying the original set of constraints can be converted
into a solution for the new set of constraints by letting 4/ = z; for all i € [n], j € [w; — 1]. The
cost remains the same. Any solution for the new set of constraints clearly satisfies the original one
(and with the same cost).

If all the basic constraints of F are of the form z; \/---\/ @, (i.e. if all constraints are monotone
functions) then we proceed as follows. For any variable z; of weight w; we introduce w; new
variables y},...,v;"". Any constraint f(zy,...,z) is substituted by the w;w, - - -w; constraints

{f(s d) s € [wa], o G € [wa]}

It is not difficult to verify that if we have a feasible assignment for the new problem such that, for
some 4,7, y] = 0, then we can set y? = 0 for all h € [w;] without contradicting any constraint. Since
no 0 is changed to a 1, a solution for the non-weighted instance can be converted into a solution
for the weighted instance without increasing the cost. O

3.3 Bases and First Reductions

In this subsection we set up some preliminary results that will play a role in the presentation of our
results. First, we develop some shorthand notation for the constraint families: (1) Fy (respectively,
Fi1) is the family of 0-valid (respectively, 1-valid) functions; (2) Faum is the family of 2-monotone
functions; (3) Fys is the family of IHS-B functions; (4) F»a is the family of width-2 affine functions;
(5) Faconr is the family of 2CNF functions; (6) Fa is the family of affine functions; (7) Fwp is the
family of weakly positive functions; (8) Fwy is the family of weakly negative functions.

Definition 14 (Basis) A constraint family F' is a basis for a constraint family F if any constraint
of F can be ezxpressed as a conjunction of constraints drawn from F'.

Thus, for example, the basis for an affine constraint is the set F U F’ where F = {z; @
3.8z, =0 | p>1}tand F = {z; @ 2.8z, =1 | p> 1}, a width-2 affine constraint
istheset F = {zdy =0,zHy = 1,z = 0,z = 1}, and a 2CNF constraint is the set F =
{$ Vy,7z\y,-zV-y,z, —|$}.

The above definition is motivated by the fact that if F’ is a basis for F, then an approxima-
tion algorithms for MIN CSP(F’) (resp. MIN ONES(F')) yields an approximation algorithm for
Min CSP(F) (resp. Min ONEs (F)). This is asserted below.

Theorem 15 If 7' is a basis for F, then MIN WEIGHT CSP(F) (resp. MIN WEIGHT ONEs(F))
is A-reducible to MIN WEIGHT CSP(F’) (resp. MIN WEIGHT ONES(F')).

The above theorem follows from Proposition 12 and the next two propositions.

fr}:)position 16 If f(Z) = fi(Z)A\--- A fu(Z), then the family {f,..., fu} perfectly k-implements
f}.

10

Proof: The collection {fi(Z),..., fr(Z)} is a perfect k-implementation of f(&). O

Proposition 17 If a constraint family F' perfectly implements every function f € F, then MIN
WEIGHT ONES(F) is AP-reducible to MiN WEIGHT ONEs(F').

Proof: Consider an instance Z of MIN WEIGHT ONEs (F) and substitute each constraint by a
perfect implementation, thus obtaining an instance Z' of MiN WEIGHT ONEsS(F'). Give weight 0
to the auxiliary variables. Each feasible solution for Z can be extended to a feasible solution for Z’
with the same cost. Conversely, any feasible solution for Z’, when restricted to the variables of 7
is feasible for 7 and has the same cost. This is an AP-reduction. |

To simplify the presentation of algorithms, it will be useful to observe that, for a family F,
finding an approximation algorithm for MiN CSP(F) is equivalent to finding an approximation
algorithm for a related family that we call F~.

Definition 18 For a k-ary constraint function f : {0,1}* — {0,1}, we define f~(z1,...,2;) =
f(l—2q,...,1 —). Fora family F = {f1,..., fm} we define F~ et {fi, - [}

Proposition 19 For every F, MIN WEIGHT CSP(F ™) is A-reducible to MiN WEIGHT CSP(F).

Proof: The reduction substitutes every constraint f(Z) from F with the constraint f~(Z) from F~.
A solution for the latter problem is converted into a solution for the former one by complementing
the value of each variable. The transformation preserves the cost of the solution. m
A technical result by Khanna et al. [KSW96] will be used extensively.

Lemma 20 ([KSW96]) Let F be a family that contains a not 0-valid and a not 1-valid function.

Then

(1) If F contains a function that is not C-closed, then F perfectly implements the unary con-
straints © and (—z).

(2) Otherwise, F perfectly implements the binary constraints (z &y = 1) and (z = y).
One relevant consequence (that also uses an idea from [BGS95]) is the following.

Lemma 21 Let F be a family that contains a not 0-valid and a not 1-valid function. Then

MiNn WEIGHT CSP(F U {z,(—z)}) is A-reducible to MIN WEIGHT CSP(F).

Proof: If F contains a function that is not C-closed, then z and (—z) can be perfectly im-
plemented using constraints from F, and so we are done. Otherwise, given an instance Z of
Min WEeiGHT CSP(F U {z,(—-z)}) on variables ,...,z, and constraints Ci,...,C,,, we define
an instance Z' of MIN WEIGHT CSP(F) whose variables are z,...,z, and additionally one new
auxiliary variable zr. Each constraint of the form —z; (resp. ;) in 7 is replaced by a constraint
z; = zp (resp. z; & zp = 1). All the other constraints are not changed. Thus 7’ also has m
constraints. Given a solution a4,...,a,,ar for Z' which satisfies m’ of these constraints, notice
that the assignment —a,, ..., 7a,, 7ar also satisfies the same collection of constraints (since every
function in F is C-closed). In one of these cases the assignment to zr is false and then we notice
that a constraint of 7 is satisfied if and only if the corresponding constraint in Z’ is satisfied. Thus
every solution to Z' can be mapped to a solution of Z with the same objective function. O

11

4 Containment Results (Algorithms) for MiN CSP

In this section we show the containment results described in Theorem 9. Most results described
here are simple containment results which follow easily from the notion of a “basis”. The more
interesting result here is a constant factor approximation algorithm for IHS-B which is presented
in Lemma 23.

Lemma 22 If F C F', for some F' € {Fo,F1,Fam}, then Min WEIGHT CSP(F) is solvable

ezactly in P.

Proof: Creignou [Cre95] and Khanna et al. [KSW96] show that the corresponding maximization
problem is solvable exactly in P. Our lemma follows immediately (since the exact problems are
interreducible).]

Lemma 23 If 7 C Fyus, then MIN WEIGHT CSP(F) € APX.

Proof: By Theorem 15 and Proposition 19 it suffices to prove the lemma for the problems Min
WEIGHT CSP(IHS-B). We will show that for every B, Min WEiIGHT CSP(IHS-B) is B + 1-

approximable.

Given an instance Z of MiN WEIGHT CSP(IHS-B) on variables zi,...,z, with constraints
Ci,...,C,, with weights wy, . .., w,,, we create a linear program on variables yi, ..., y, (correspond-
ing to the boolean variables zi,...,z,) and variables z,,..., z,, (corresponding to the constraints
Ci,...,Cy). For every constraint C; in the instance 7 we create a LP constraint as follows:

C¢; + z,\V---Vuay,, for k<B — Zi+ vy, + oty > 1
C; -z, Ve, - zi+(1—9,)+v, > 1
C; : -z, — zi+(1-—y,) > 1

In addition we add the constraints 0 < z;,y; < 1 for every ¢, 7. It may be verified that any integer
solution to the above LP corresponds to an assignment to the Min CSP problem with the variable
z; set to 1 if the constraint C; is not satisfied. Thus the objective function for the LP is to minimize
Do W%

Given any feasible solution vector ¥4, ..., Yn, 21,- - ., 2y to the LP above, we show how to obtain
a 0/1 vector yy,...,95,2{,...,2, that is also feasible such that 3. w;2z! < (B +1) 3, w;z;.

First we set y; = min{l,(B + 1)y;} and z; = min{1,(B + 1)z;}. Observe that the vector
Yy« +rUny 215+ - -y %, 15 also feasible and gives a solution of value at most (B +1) 3>, w;2;. We now
how to get an integral solution whose value is at most (B + 1) 3_; w;2;. For this part we first set
y; = 1ify; = 1 and z/ = 1if z{ = 1. Now we remove every constraint in the LP that is made
redundant. Notice in particular that every constraint of type (1) is now redundant (either z{ or one
of the y”’s has already been set to 1 and hence the constraint will be satisfied by any assignment
to the remaining variables). We now observe that, on the remaining variables, the LP constructed
above reduces to an s-t MIN CUT LP relaxation, and therefore has an optimal integral solution.
We set z/’s and y;’ to such an integral and optimal solution. Notice that the so obtained solution
is integral and satisfies >-; w;z) < 375 w;z; < (B + 1) w;z;. m]

Lemma 24 For any family F C Faa, {z &y = 1,2 = 1} perfectly implements the family F.

Proof: By Proposition 16 it suffices to implement the basic width-2 affine functions: namely, the
functions @y =1,2%y =0,z =1 and z = 0. The first and the third functions are in the target
family. The function z & y = 0 is perfectly 2-implemented by the constraints z & zpyx = 1 and

12

Y@ zpyx = 1. The function z = 0 is implemented by the constraints z @ zpyx = 1 and zpyx = 1.
|
As a consequence of the above lemma and Lemma 21, we get:

Lemma 25 For any family F C Foa, MiN WEIGHT CSP(F) A-reduces to
Min WEiGHT CSP({z & y}).

The following lemmas show reducibility to Min 2CNF DELETION, NEAREST CODEWORD and
Min HorN DELETION.

Lemma 26 For any family F C Faonr, the family 2CNF perfectly implements every function in
F.

Proof: Again it suffices to consider the basic constraints of F and this is some subset of

{:E Vya -z Vya -z V Y, z, _'$}'
The family 2CNF contains all the above functions except the function -z \/ y which is implemented

by the constraints ~z \/ 7zpyx and ¥\ zpyx- |

Lemma 27 For any family F C Fa, the family {z1 & 2o @ 3 = 0,2, B 2o & z3 = 1} perfectly
implements every function in F.

Proof: functions. It suffices to show implementation of the basic affine constraints, namely, con-
straints of the form z; @ z,... ® z, = 0 and z; @ z,... z, = 1 for some p,q > 1. We focus on the
former type as the implementation of the latter is analogous.

First, we observe that the constraint z; § z, = 0 is implemented by

21 Dz B 2

0
2Pz D2z = 0
TPz B2zz = 0
2102523 = 0

Now the constraint #; = 0 can be implemented by

1Pz = 0
1Pz = 0
z1 P 23 0
21D 2Pz = 0.
The width-2 constraints in the above can be expanded as before.

Finally, the constraint z; ® z,... @z, for any p > 3 can be implemented as follows. We introduce
the following set of constraints using the auxiliary variables 21, 2, ..., 2,_2.

1P TaP 2z =
21D T3Pz =

B rsDzz =

Zp_ o@D Tpo1 Dz, = 0

13

Lemma 28 For any family F C Fwp, the family {z, -z, -z \/y\ z}) perfectly implements every
function in F.

Proof: A k-ary weakly positive constraint (for k& > 2) is either of the form z; V2,V ...V 2 or
of the form —z; V23V ...V 2. For k = 2, the implementation of (z\ y) is {(-e\V 2V y), e}, and
the implementation of (-2 \/y) is {(-z\VyV a),a}. For k = 3, the implementation of (z\/yV z)
is {(eVz),(maVyVz)} (the constraint (e\/z) has in turn to be implemented with the already
shown method). For k& > 4, we use the textbook reduction from SAT to 3SAT (see e.g. [GJ79,
Page 49]) and we observe that when applied to k-ary weakly positive constraints it yields a perfect
implementation using only 3-ary weakly positive constraints. O

5 Hardness Results (Reductions) for MiN CSP

Lemma 29 (The APX-hard Case) If F ¢ F', for F' € {Fo,F1,Fam}, and F C Fus then MIN
WEIGHT CSP(F) is APX-hard.

Proof: Follows immediately from the results of [KSW96]. O

Lemma 30 (The Min UnCuTt-hard Case) If F ¢ F', for F' € {Fo, F1,Fom, Fus}, and F C
Foa then MiN WEIGHT CSP(F) is MiN UNCuT-hard.

Proof: It suffices to show that we can perfectly implement the constraint z & y = 1. Consider

a constraint f € Fya such that f ¢ Fuys. We know that f can be expressed as a conjunction of

constraints drawn from the family {z @y = 0,z Gy = 1,z = 0,z = 1}. Notice further that all

of these constraints except for the constraint z @ y = 1 are also in Fys. Thus f must contain, as

one of its basic primitives, the constraint z & y = 1. Now an existential quantification over all the

remaining variables in f gives us a perfect implementation of 2 Gy = 1. |
For the Min 2CNF DELETION-hardness proof, we need the following two simple lemmas.

Lemma 31 Let f be a 2CNF function which is not width-2 affine. Then f can perfectly implement
some funtion in the family F = {(z V' vy),(zV ~y), (-2 —y)}.

Proof: Let f be a 2CNF function on the variables z;,...,2;. f is a conjunction of constraints
of the form z,=z;, z;=-z; and -z,=z;. Consider a directed graph G; on 2k vertices (one
corresponding to every literal z; or —z;) which has a directed edge from a literal I, to a literal I,
if this is a constraint imposed by f. We claim that the graph G; must have vertices /; and /, such
that there is a directed path from /; to I, but not the other way around. (If not, then f can be
expressed as a conjunction of equality and inequality constraints.) Existentially quantifying over
all other variables (except those involved in /; and ;) we get find that f implements the constraint
ly=1,, which is one of the constraints from F. a

Lemma 32 Given any function f € F = {(z \y),(zV y), (-2 —y)} and the function (zDy) =
1, we can perfectly implement all the functions in F.

Lemma 33 (The Min 2CNF DEeLETION-hard Case)
If F ¢ F', for F' € {Fo,F1,Fam, Fus, Faa}, and F C Facnr then MiN WEIGHT CSP(F) is
Min 2CNF DELETION-hard.

14

Proof: We need to show that we can perfectly implement the constraints z \/ y and -z \/ —y. Since
F ¢ Fus, it must contain a constraint f which is not a THS-B+ constraint and a constraint g
which is not a IHS-B— constraint. Since both f and g are 2CNF constraints, it means that f
must have (-2 \/ —y) as a basic constraint and g must have (z\/y) as a basic constraint in their
respective maxterm representations. Observe that the maxterm representations of neither f nor
g can have the basic constraints (z\/—y) and (-2 y). Using this observation we may conclude
that an existential quantification over all variables besides ¢,y in f will either perfectly implement
the constraint -z \/ -y or the constraint z & y = 1. Similarly, g can perfectly implement either
the constraint z\/y or 2 & y = 1. If we get both z\/y and -z \/ -y, we are done. Otherwise, we
have a perfect implementation of the function (z & y = 1). Since F ¢ Fsa, there must exist a
constraint A € F which is not width-2 affine. Using Lemmas 31 and 32, we can now conclude a
perfect implementation of the desired constraints. |

Lemma 34 If F C Fy but F ¢ F' for any F' € {Fo,F1,Fom, Fus, Faa}, then
MiN WEIGHT CSP(F) is NEAREST CODEWORD-hard.

Proof: Khanna et al. [KSW96] show that in this case F perfectly implements the constraint
@ - @z, = b for some p > 3 and some b € {0,1}. Thus the family F U {T', F'} implements the
functions z $y® 2z = 0,2 By PH 2z = 1. Thus NEAREST CoDEWORD = MIN CSP({z Gy P 2z =
0,2dydz=1}is A-reducible to MiN WEIGHT CSP(FU{F,T}). Since F is neither 0-valid nor 1-
valid, we can use Lemma 21 to conlude that MIN WEIGHT CSP(F)is NEAREST CODEWORD-hard.
|

Lemma 35 ([ABSS93]) NEAREST CODEWORD s hard to approzimate to within a factor of

210g n

Proof: The required hardness of the nearest codeword problem is shown by Arora et al. [ABSS93].
The nearest codeword problem, as defined in Arora et al., works with the following problem: Given
a n X m matrix A and a m-dimensional vector b, find an n-dimensional vector z which minimizes
the Hamming distance between Az and b. Thus this problem can be expressed as a Min CSP
problem with m affine constraints over n-variables. The only technical point to be noted is that
these constraints have unbounded arity. In order to get rid of such long constraints, we replace a
constraint of the form z; & ---@ z; = 0 into [— 2 constraints z; Gz, P2z =0, z1 Pz P 22 = 0,
etc. on auxiliary variables zj,...,2_3. (The same implementation was used in Lemma 27.) This
increases the number of constraints by a factor of at most n, but doe s not change the objective
function. O

It remains to see the MiIN HORN DELETION-hard case. We will have to draw some non-trivial
consequences from the fact that a family is not IHS-B.

Lemma 36 Assume F ¢ Fus and either F C Fwp or F C Fwn. Then F contains a non C-closed
function.

Proof: Follows from the fact that a C-closed weakly positive function is also weakly negative. O

Lemma 37 If f is a weakly positive function not expressible as IHS-B+, then {f,z,(—-z)} can
perfectly implement the function (~z \/yV z).

Proof: Since f is not IHS-B+, any maxterm representation of f must have either a maxterm
m=(-zVyVzV..)or amaxterm m' = (-z\/-yV...). But since f is weakly positive, we must

15

have the former scenario. We first show that f can perfectly implement the functions z = y and
z\/y. To get the former, we set all literals in m, besides -z and y, to false and existentially
quantify over the rest. Since m is a maxterm, the new function f’ thus obtained must either be
(mzVy)(z V—y) or just (-2 y). In the former case, we are done, otherwise, {f'(z,v), f'(y,z)}
perfectly implements the 2 = y constraint. To obtain a perfect implementation of z \/ ¥, a similar
argument can be used by setting all literals in m besides y and z to false.

We next show how the same function f can also be used to obtain a perfect implementations of
(mzVyVz) and (-2 y). To do so, we now set all the literals in m besides -z, y and z to false.
Existentially quantifying over any other variables, we get a function f’ with the following truth
table:

00 01 11 10

Figure 1: Truth-table of the constraint f’

If C = 0 then restricting z = 1 gives the (y & z = 1) constraint. This contradicts the weakly
positive assumption and hence C = 1. If A =1 or D = 1, we get a function (z\/—y). Else A =0
and D = 0. Now if B = 0, we again get (z\/ —y) by existentially quantifying over z, and if B = 1,
we get the complement of 1-in-3 sat. The complement of 1-in-3 sat function along with 2 = y can
once again implement (z\/ —y)— simply set # = z. Thus we have a perfect implementation of
(z V).

Now using the fact that we have the function (z \/ —y), we can implement (-2 \/ vV z) by the
following collection of constraints:

{f'(z,a,b),(=a\/y), (=6 \/ 2)}

This completes the proof. |

Lemma 38 (The Min HorN DELETION-hard Case)
If F ¢ F', for F' € {Fo,F1, Fam, Fus, Faa, Facnr}, and either F C Fwp or F C Fwn, then
MiNn WEIGHT CSP(F) is MiNn HorN DELETION-hard.

Proof: From
the above lemmas and from Lemma 20 we have that Min WEiGHT CSP({z,-z,-zVyV z}) is
A-reducible to Min WEIGHT CSP(F). O

Lemma 39 MIN HorN DELETION is hard to approzimate to within 2°8" "n.

Proof: Reduction from the MiN LABEL-COVER problem [ABSS93]. MIN LABEL-COVER is defined
as follows: an instance contains integer parameters @, @2, A1, A,, and R; and functions

@ [Q2] = 21 | gy 1 [Q] — 2M°1 | V1 [R] x [A4] X [41] — {0,1}

A feasible solution is a pair of functions py,ps, where p; : [Q1] — 2 and p, : [Q,] — 242), such
that for every » € [R], there exists a; € p1(¢1(7)) and ay € p3(g2(r)) such that V(r,aq,az) = 1.

16

The objective function to be minimized is Y3, o, [P1(a1)] + X e, [P2(g2)]-

For any € > 0, the existence of a 216 ".approximate algorithm for MIN LABEL-COVER implies
that NP has sub-exponential time algorithms [LY94, ABSS93].

Let (g1,4g2,V) be an instance of MiN LABEL-COVER, where ¢; : [R] — [@1], g2 : [R] — [Q2] and
V :[R] x [A1] — {0,1}. For any 7 € [R], we define Ace(r) = {(a1,a2) : V(r,a1,a2) = 1}.

We now describe the reduction. For any r € R, a; € [A4], and a; € [A;] we have a variable
Up,a1,a, Whose intended meaning is the value of V(r,a;, a;). Moreover, for any ¢ € @, (respectively,
g € Q2) and any a € A; (resp. a € A;) we have a variable w,, (resp. ,,), with the intended
meaning that its value is 1 if and only if a € p;(q) (respectively, @ € p;(gq)). For any w,, (resp.
¢, ,) variable we have the weight-one constraint —w,, (resp. —z,,.) The following constraints
(each with weight (A;Q; + A2Q.)) enforce the variables to have their intended meaning. Due to
their weight, it is never convenient to contradict them.

Vr € [T] : v(al,az)GAcc(r) Vr,a1,a2
VT € [T]aal € [Al]aa'2 € [A2] : ’v"‘,dhaz = w<11("‘),a1
Vr € [r],a; € [A1] a2 € [A2] 1 vpay0, = Tga(r),az

The constraints of the first kind can be perfectly implemented with z\/y\/z and zVyV\ -2
(see Lemma 28). It can be checked that this is an A-reduction from MiIN LABEL-COVER to
MiNn HorRN DELETION. O

6 MiN ONES vs. MIN CSP
We begin this section with the following easy relation between MIN CSP and MiIN ONES problems.

Proposition 40 For any constraint family F, MIN WEIGHT ONES(F) is A-reducible to MIN
WEIGHT CSP(F U {-z}).

Proof: Let 7 be an instance of MIN WEIGHT ONES(F) over variables zi,...,z, with weights
Wi, ..., Wp. Let Wmay be the largest weight. We construct an instance Z’ of MIN WEIGET CSP(FU
{-z}) by leaving the constraints of 7 (each with weight nwmnay), and adding a constraint —z; of
weight w; for any ¢ = 1,...,n. Whenever the constraints of 7 are satisfiable, it will be always
convenient to satisfy them in Z7. |
Reducing a MIN CSP problem to a MIN ONES problem is slightly less obvious.

Proposition 41

(1) If, for any f € F, F' perfectly implements (f(Z) \/ v), then MiN WEIGHT CSP(F) A-reduces
to Min WEIGHT ONES(F').

(2) If for any f € F, F' perfectly implements (f(Z) ® y = 1), then Mix WEIGHT CSP(F)
A-reduces to MIN WEIGHT ONES(F').

Proof: In both cases, we use an auxiliary variable y; for any constraint C;. The variable takes the
same weight of the constraint. The original variables have weight zero. In the first case, a constraint
. is replaced by (the implementation of) C; \/y;; in the second case by (the implementation of)
y; = —C;. Given an assignment for the first case, we may assume as well that the ys satisfy
y; = —C;, since if C} is satisfied by the assignment there is no point in having y; = 1. Thus, we
note that the total weight of non-zero variables in the MIN ONES instance equals the total weight
of non-satisifed constraints in the MiN CSP instance. O

Q

17

7 Containment Results for MIN ONES

Lemma 42 (Poly-time Solvable Cases) If ¥ C F for F € {Fo, Fwn,Foa}, then
MiN WEIGHT ONEs (F) is solvable ezactly in polynomial time

Proof: Follows from the results of Khanna et al. [KSW96] and from the observation that
for a family F, solving to optimality MIN WEIGHET ONEs (F) reduces to solving to optimality
Max WEIGHT ONEsS(F™). O

Lemma 43 If F C F' for F' € {Facnr, Fus}, then MIN WEIGHT ONEs (F) is in APX.

Proof: For the case F C Fyonr, a 2-approximate algorithm is given by Hochbaum et al. [HMNT93].

Consider now the case F C Fus. From Theorem 15 it is sufficiento to consider only basic
THS- B constraints. Since THS- B— constraints are weakly negative, we will restrict to basic IHS-B+
constraints. We use linear-programming relaxations and deterministic rounding. Let k& be the
maximum arity of a function in F, we will give a k-approximate algorithm. Let ¢ = {C},...,C,,} be
an instance of MIN WEIGHT ONEs (F) over variable set X = {z,...,z,} with weights w,, ..., w,.
The following is an integer linear programming formulation of finding the minimum weight satisfying
assigment for ¢.

min > Wiy
Subject to
Yt ot v, 21 Y(z,V...Vz;,) €6
Yiy — Y, 2 0 V(z:, V-azi,) € (SCB)
v =0 Voz; € ¢
y=1 Vz; € ¢
y; € {0,1} Vie{1,...,n}

Consider now the linear programming relaxation obtained by relaxing the y; € {0,1} constrains
into 0 < y; < 1. We first find an optimum solution y* for the relaxation, and then we define a 0/1
solution by setting y; = 0 if yf < 1/k, and y; = 1 if y¥ > 1/k. It is easy to see that this rounding
increases the cost of the solution at most k times and that the obtained solution is feasible for

(SCB).]
Lemma 44 For any F C F,, MIN WEIGHT ONEs (F) is A-reducible to NEAREST CODEWORD.

Proof: From Lemma 27 and Proposition 17, we have that MiN WEIGHT ONEs (F) AP-reduces
to MiN WEIGHT ONEsS({z Gy D z = 0,z G y ® z = 1}). From Proposition 40, we have that
MiN WEIGHT ONEs (F) A-reduces to NEAREST CODEWORD.]

Lemma 45 For any F C Fwp, MIN WEIGHT ONEs (F) s A-reducible to MIN HOrRN DELETION.

Proof: Follows from Lemma 28, Proposition 17, and Proposition 40. m

8 Hardness Results for MIN ONES

Lemma 46 (APX-hard Cases) If F does not satisfy the hypothesis of Lemma /2, then
MiN WEIGHT ONEs (F) is APX-hard.

18

Proof: This part essentially follows from the proof of [KSW96]. The major steps are as follows: We
first argue that either F implements some function of the form z; \/ 2,/ ---V 2, or the functions
1 B zo P z3 = 0/1 or the function z; \/ —z;. In the first case, we get a problem that is as hard as
Vertex Cover. In the second case we get a much harder problem (NCP). In the final case we need
to work some more. In this case again we show that with {f, z, -z} we can implement the function
z \/y. Furthermore, we show that for any function f, MiNn WEIGHET ONEs(f,z,z) AP-reduces to
MiN WEIGHT ONES(f,z1\ —z2). Thus once again we are down to a function which is at least as
hard as VERTEX COVER. O
From now on we will assume that F is not 0-valid, nor weakly negative, nor width-2 affine.

Lemma 47 If F is affine but not width-2 affine nor 0-valid then MIN WEIGHT ONES({z@ydz =
0,2 B yd z=1}) is AP-reducible to MiIN WEIGHT ONEs (F).

Proof: From [KSW96] we have that F implements the function z; & --- & z, = b for some p > 3
and some b € {0,1}. Also the existence of non 0-valid function implies we can either (essentially)
implement the function 7' or the function z @& y = 1. In the former case we can set the variables
Z4,...,%, to 1 and thus implement either the constraints z; ® z, @ z3 = 0 and z; ® z; = 1 or the
constraints z; @ 22 @ 23 = 1 and z; G z; = 0. In the latter case, we can get rid of the variables
inz; @ --- Pz, = pin pairs and thus F either implements the functions z; @ z, & 3 = 0/1 or it
implements the functions z; & 2, ® 23 P z4 = 0/1.

In the first and third cases listed above we immediately implement the family {z®yPz = 0,2
y@z = 1} and so we are done. In the second and fourth cases this will not be possible (in the second
case we always have 1-valid constraint and in the last case we always have constraints of even width).
So we will show how to reduce the problem MiN WEIGHT ONES({z @y ®z=0,2dy Dz = 1})
to these problems. The basic idea behind the reductions is that if we have available a variable W
which we know is zero, then we can implement the constraint z ® y & z = 0/1. In the second case
above, we only need to implement the constraint 2 ¢y @ 2z = 0 and this is done using the constraints
zBYPupyx =1 and upyx W @ 2z = 1. In the fourth case above, the constraint z Gy @Gz =bis
implemented using the constraint ¢ y 2z S W = b. To create such a variable we simply introduce
in every instance of the reduced problem an auxiliary variable W and place a very large weight on
it, so that any small weight assignment to the variables is forced to make W a zero. |

Lemma 48 MIN WEIGHT ONEs({z G y® 2z =1,2® y @ z = 0}) ts NEAREST CODEWORD-hard
and hard to approzrimate to within a factor of 298",

Proof: The NEAREST CODEWORD-hardness follows from Lemma 27 and Proposition 41. The
hardness of approximation is due to Lemma 35. a

Lemma 49 Min WEIGHT ONEs({zVyV z,2VyV -z,2\ —~y}) is hard to approzimate within
218" for any € > 0.

Proof: Follows from Lemma 39 and Proposition 41. a

Lemma 50 If F is weakly positive and not IHS-B (nor 0-valid) then MIN WEIGHT ONEs (F) is
Min HorN DELETION-hard.

Proof: Similar to the proof of Lemma 37. a

Lemma 51 If F is not 2CNF, nor IHS-B, nor affine, nor weakly positive (nor 0-valid nor weakly
negative), then MIN ONEs (F) is poly-APX-hard and MiN WEIGHT ONEs (F) is hard to approz-
imate to within any factor.

19

Proof: We first show how to handle the weighted case. The hardness for the unweighted case will
follow easily. Consider a function f € F which is not weakly positive. For such an f, there exists
assignments @ and b such that f(@) =1 and f(l_;) — 0 and @ is zero in every coordinate where b is
zero. (Such a input pair exists for every non-monotone function f and every monotone function is
also weakly positive.) Now let f’ be the constraint obtained from f by restricting it to inputs where
bis one, and setting all other inputs to zero. Then f’ is a satisfiable function which is not 1-valid.
We can now apply Schaefer’s theorem [Sch78] to conclude that SAT(F U {f'}) is hard to decide.
We now reduce an instance of deciding SAT(F U {f'}) to approximating MiN WEIGHT CSP(F).
Given an instance Z of SAT(F U {f’'}) we create an instance which has some auxiliary variables
Wi, ..., W}, which are all supposed to be zero. This in enforced by giving them very large weights.
We now replace every occurence of the constraint f’ in Z by the constraint f on the corresponding
variables with the W;’s in place which were set to zero in f to obtain f’. It is clear that if a “small”
weight solution exists to the resulting MiIN WEIGHT CSP problem, then 7 is satisfiable, else it is
not. Thus we conclude it is NP-hard to approximate MiN WEIGHT CSP to within any bounded
factors.

For the unweighted case, it suffices to observe that by using polynomially bounded weights
above, we get a poly-APX hardness. Further one can get rid of weights entirely by replicating
variables. O

Lemma 52 ([Sch78]) Let F be a constraint family that is not 0-valid, nor 1-valid, nor weakly
positive, nor weakly negative, nor affine, nor 2CNF. Then, given a set of constraints from F it is
NP-hard to decide if they are satsifiable.

References

[ABSS93] S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The hardness of approximate optima
in lattices, codes, and systems of linear equations. In Proceedings of the 34th IEEE
Symposium on Foundations of Computer Science, pages 724-733, 1993.

[BC93] D.P. Bovet and P. Crescenzi. Introduction to the Theory of Complezity. Prentice Hall,
1993.

[BGS95] M. Bellare, O. Goldreich, and M. Sudan. Free bits, PCP’s and non-approximability —
towards tight results (3rd version). Technical Report TR95-24, Electronic Colloquium
on Computational Complexity, 1995. Preliminary version in Proc. of FOCS’95.

[CKST95] P. Crescenzi, V. Kann, R. Silvestri, and L. Trevisan. Structure in approximation classes.
In Proceedings of the 1st Combinatorics and Computing Conference, pages 539-548.
LNCS 959, Springer Verlag, 1995.

[CP91] P. Crescenzi and A. Panconesi. Completeness in approximation classes. Information
and Computation, 93:241-262, 1991. Preliminary version in Proc. of FCT’89.

[Cre95] N. Creignou. A dichotomy theorem for maximum generalized satisfiability problems.
Journal of Computer and System Sciences, 51(3):511-522, 1995.

[CST96] P. Crescenzi, R. Silvestri, and L. Trevisan. To weight or not to weight: Where is the
question? In Proceedings of the 4th IEEE Israel Symposium on Theory of Computing
and Systems, pages 68-77, 1996.

20

[GavT74]
[GIT79]

[GVY96]

[HMNT93]

[Joh74]

[KARR90]

[KMO96]

[KPRT96]

[KS96]

[KSW96]

[KT94]

[K'T95]

[Lad75]

[LY94]

[NT75]

[PY91]

F. Gavril. Manuscript cited in [GJ79], 1974.

M.R. Garey and D.S. Johnson. Computers and Intractability: a Guide to the Theory
of NP-Completeness. Freeman, 1979.

N. Garg, V.V. Vazirani, and M. Yannakakis. Approximate max-flow min-(multi)cut
theorems and their applications. SIAM Journal on Computing, 25(2):235-251, 1996.
Preliminary version in Proc. of STOC’93.

D.S. Hochbaum, N. Megiddo, J. Naor, and A. Tamir. Tight bounds and 2-
approximation algorithms for integer programs with two variables per inequality. Math-
ematical Programming, 62:69-83, 1993.

D.S. Johnson. Approximation algorithms for combinatorial problems. Journal of Com-
puter and System Sciences, 9:256-278, 1974.

P. Klein, A. Agarwal, R. Ravi and S. Rao. Approximation through multicommodity
flow. In Proceedings of the 31st Annual IEEE Symposium on Foundations of Computer
Science, pp. 726-737, 1990.

S. Khanna and R. Motwani. Towards a syntactic characterization of PTAS. In Pro-
ceedings of the 28th ACM Symposium on Theory of Computing, pages 329-337, 1996.

P.N. Klein, S.A. Plotkin, S. Rao, and E. Tardos. Approximation Algorithms for Steiner
and Directed Multicuts. To appear Journal of Algorithms, 1996. Available from URL
http://www.cs.cornell.edu/Info/People/eva/eva.html.

S. Khanna and M. Sudan. The optimization complexity of constraint satisfaction prob-
lems. Technical Report TR96-028, Electronic Colloquium on Computational Complex-
ity, 1996.

S. Khanna, M. Sudan, and D.P. Williamson. The optimization complexity of structure
maximization problems. Manuscript, 1996.

P.G. Kolaitis and M.N. Thakur. Logical definability of NP optimization problems.
Information and Computation, 115(2):321-353, 1994.

P.G. Kolaitis and M.N. Thakur. Approximation properties of NP minimization classes.
Journal of Computer and System Sciences, 50:391-411, 1995. Preliminary version in
Proc. of Structures91.

R. Ladner. On the structure of polynomial time reducibility. Journal of the ACM,
22(1):155-171, 1975.

C. Lund and M. Yannakakis. On the hardness of approximating minimization problems.
Journal of the ACM, 41:960-981, 1994. Preliminary version in Proc. of STOC’93.

G.L. Nemhauser and L.E. Trotter. Vertex packing: structural properties and algo-
rithms. Mathematical Programming, 8:232-248, 1975.

C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity
classes. Journal of Computer and System Sciences, 43:425-440, 1991. Preliminary
version in Proc. of STOC"’88.

21

[Sch78] T.J. Schaefer. The complexity of satisfiability problems. In Proceedings of the 10th
ACM Symposium on Theory of Computing, pages 216-226, 1978.

[TSSW96] L. Trevisan, G.B. Sorkin, M. Sudan, and D.P. Williamson. Gadgets, approximation,
and linear programming. In Proceedings of the 37th IEEE Symposium on Foundations
of Computer Science, 1996.

22

A Schematic Representations of the Classification Theorems

A.1 The MiN CSP Classification

0-valid or 1-valid or 2-monotone?

Yes
No

in PO [KSW96] THS-B?

Yes
/ No

APX-complete (Lemmas 23 and 29)
width-2 affine?

Yes
/ No

MiNn UnCuT-complete (Lemmas 25 and 30)
2CNF?

Yes
/ No

Min 2CNF DELETION-complete (Lemmas 26 and 33)
Affine?

Yes
/ No

NEAREST CoDEWORD-complete (Lemmas 27 and 34)
Horn?

Yes
/ No

MiN HorN DELETION-complete (Lemmas 28 and 38)Not approximable [Sch78]

23

A.2 The MIN ONES Classification

0-valid or weakly negative or width-2 affine?

Yes
No

in PO [KSW96] 2CNF or IHS-B?

Yes
/ No

APX-complete (Lemmas 43 and 46)
affine?

Yes
/ No

NEAREST CoDEWORD-complete (Lemmas 44 and 47)
weakly positive?

Yes
/ No

MiNn HorN DELETION-complete (Lemmas 45 and 50)
1-valid?

Yes
/ No

poly-APX-complete (Lemma 51) Not approximable [Sch78]

B Classification Theorems of Creignou [Cre95] and Khanna et.
al. [KSW96]

Theorem 53 (MAXCSP Classification Theorem) [Cre95, KSW96] For every constraint set
F, the problem MAXCSP(F) is always either in P or is APX-complete. Furthermore, it is in P
if and only if F' is 0-valid or 1-valid or 2-monotone.

Theorem 54 (Max OnEs Classification Theorem) [KSW96] For every constraint set F,
Max ONES(F) is either solvable ezactly in P or APX-complete or poly-APX-complete or de-

ctdable but not approzimable to within any factor or not decidable. Furthermore,
(1) If F is 1-valid or weakly positive or affine with width 2, then MAaX ONEs(F) is in P.

(2) Else if F is affine then Max ONEs(F) is APX-complete.

(8) Else if F is strongly 0-valid or weakly negative or 2CNF then Max ONEs(F) is poly-APX
complete.

24

(4) Else if F is O-valid then SAT(F) is in P but finding a solution of positive value is NP-hard.
(5) Else finding any feasible solution to Max ONES(F) is NP-hard.

25

