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Abstract

We present a probabilistic public key cryptosystem which is secure unless the worst
case of the following lattice problem can be solved in polynomial time: “Find the
shortest nonzero vector in an n dimensional lattice L where the shortest vector v is
unique in the sense that any other vector whose length is at most n¢||v|| is parallel
to v.”

1 Introduction

The unique shortest vector problem (u-SVP) is to find the shortest nonzero vector in an n
dimensional lattice L where the shortest vector v is unique in the sense that any other vector
whose length is at most n°||v|| is parallel to v. We present a public key cryptosystem generator
with the property that if a random instance of the cryptosystem can be broken, that is, if
for a random instance the probability that an encryption of a zero can be distinguished from
an encryption of a one (without the private key) in polynomial time is at least % + n
for some absoloute constant ¢; > 0, then the worst-case unique shortest vector problem
1. To our knowledge this is the first public key

cryptosystem with the property that to break a random instance is as hard as to solve the

has probabilistic polynomial time solution

worst-case instance of the problem on which the system is based.
Our approach also yields a conceptually simple and extremely natural pseudo-random
generator.

Outline of the Construction Very roughly speaking, an instance of the cryptosystem is
a collection of hidden hyperplanes, which form the private key, together with a method of
generating a point guaranteed to be near one of the hyperplanes in the collection, which forms

!The unique shortest vector problem is one of the three problems listed in [2]. There, a random method
1s given to generate hard instances of a particular lattice problem so that if it has a polynomial time solution
then all of the three worst-case problems (including the unique-shortest vector problem) has a solution.



the public key. The public key is chosen so as not to reveal the collection of hyperplanes —
indeed, any ability, given the public key, to discover the collection implies the ability to solve
the worst-case unique shortest vector problem. Encryption is bit-by-bit: zero is encrypted
by using the public key to find a random vector v € IR™ near one of the hyperplanes — the
ciphertext is v; one is encrypted by choosing a random vector u uniformly from IR™ — the
ciphertext is simply u. Decryption of a ciphertext z is performed using the private key to
determine the distance of z to the nearest hidden hyperplane. If this distance is sufficiently
small, then z is decrypted as zero; otherwise z is decrypted as one. There is a small (but
polynomial) probability of an error in decryption: an encryption of one may be decrypted
as zero.

We present three separate cryptosystems, the last of which is the system just described.
The first has the most compact public key; its correctness depends on the hardness of random
instances of a certain subset of instances of the unique shortest vector problem. The second
has a less compact public key, but its correctness depends only on the hardness of random
instances of the unique shortest vector problem (that is, we are no longer restricted to a
subset). The third has the least compact public key. However, its correctness relies only on
the hardness of the worst-case unique shortest vector problem.

In all three constructions the hyperplanes are obtained by regarding the unique shortest
vector u in lattice A as a linear functional inducing the collection of hyperplanes H; =
{v | u-v =1} for each 1 € Z. The private key is a basis for Hy. Every point in L = A*
(the dual of A) is on one of the H;. In the first two constructions the public key is a
random basis for L, together with an additional parameter R. In these schemes, a point
near a hyperplane (an encryption of zero) is obtained by choosing a random point in L and
perturbing it slightly (using R). In the third construction the public key is a collection of
random points, themselves near the H;, together with the parameter K. A point near a
hyperplane is obtained by perturbing the sum of a random subset of the published points.

In this Extended Abstract all proofs have been omitted for lack of space. Full proofs
appear in the Appendix.

2 Definitions

The fundamental concepts concerning lattices and public-key crytposystems can be found in
6, 11,12, 13, 9, 17].
A lattice in IR™ is a set of the form

L= L(bl,...,bn) = {ZAzbz | A € Z,’I, = 1,...,7’2,},
=1
where by,...,b, is a basis of IR". We say that (b1,...,b,) is a basis of L. The length of
a vector z = (z1,...,z,) € IR”, denoted ||z|| is (z? + ... + z2). The length of the basis
(b1,...,b,) is the length of the longest basis vector, max}  ||b;||. The determinant of L,

denoted det(L), is the absolute value of the determinant of the parallelepiped with sides
bi,...,bn, where by,...,b, is any basis for the lattice: det(L) = |det(bi,...,by)|.
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The dual lattice of L, denoted L*, is defined as
LI*={zcR"|zTy e Zforallyc L}.

If (b1,...,b,) is a basis of L then (ci,...,c,) is a basis for L*, where

v 1 ifi=
Cibﬂ_{o if i

If a1,...,a, € IR" are linearly independent vectors, then P~ (ay,...,a,) denotes the
half-closed parallelepiped

{Z’)’iai |0<y <1,0=1,...,n}.
=1
Let P; and P, denote two probability distributions and let 2 be a o-field. The distance
between P; and P; is

sup{|P(A) — Py(A)| + |P(B) — Py(B)| s.t. A,B€ Q, An B = 0}.

The n dimensional ball of radius R is the set of vectors z € IR” such that ||z| < R.

3 (d, M)-Lattices

Assume n is a positive integer, M > 0, d > 0 are real numbers, and L C Z" is a lattice
which has an n — 1 dimensional sublattice L' with the following properties:

1. L' has a basis of length at most M;

2. if H is the n — 1 dimensional subspace of IR" containing L' and H' # H is a coset of
H intersecting L, then the distance of H and H' is at least d.

Then we say that L is a (d, M)-lattice. If d > M, then L' is unique. In this case L' will be
denoted by L(*M). The minimum distance between H and a coset of H intersecting L will
be denoted dj,.

Let ¢ > 5 be a real number, and let £ be a distribution on the set of (d, M) lattices
for which d > n°M and d < dp, < 2d. The hidden hyperplane assumption for £ says that,
given a basis for a random (d, M) lattice L €g L, it is computationally infeasible to compute
L@M),

The hidden hyperplane assumption is related to the unique shortest vector problem as
follows. If A is a lattice with an n°-unique shortest vector u, then L = A* is a (d, M) lattice
for some d > n°M and dr, = ||u||~'. Let H = Hy be the n — 1 dimensional subspace of R"

containing L(#M)  and in general let H; = {v | u-v =1}. Then u is orthogonal to H (because
the inner product of v with any vector in H is 0), and the distance between adjacent H;

is ||ul|7'. Thus, knowing H reveals the direction of u, and, by computing the gcd of the
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distances to H of random points in L, d;, can be computed in probabilistic polynomial time,
yielding ||u|| (and hence, u).

In all three cryptosystems the value one is encrypted by choosing a random point in a
particular region in IR™ (the exact depends on the scheme).

In the first cryptosystem, the public key is a random basis of a (d, M) lattice where the
length of the random basis is greater than dz, by only a polynomial (in n) factor. Using this
constraint on the length of the basis in the public key, we prove that the ability to distinguish
encryptions of zero from encryptions of one yields the ability to find H (and hence, u).

In the second cryptosystem we remove the constraint on the length of the published basis
for L. We show that the ability to distinguish encryptions of zero from encryptions of one
yields the ability to construct n» — 1 mutually orthogonal long vectors very close to H, from
which it is possible to find H exactly (and hence, u).

In the third cryptosystem no lattice is presented; rather, the public key is a set of random
points near the hyperplanes induced by a random vector v in the n-dimensional unit ball.
The sum of a random subset of these points is itself close to a hyperplane; an encryption
of zero is a perturbation on such a random subset sum, reduced modulo a certain paral-
lelepiped determined by the public key. We introduce additional machinery to prove that
every instance of the n°-unique shortest vector problem can with overwhelming probability
be efficiently transformed into a random instance of the third cryptosystem, for which the
ability to distinguish encryptions of zero from encryptions of one yields the unique shortest
vector. This proof is built on the results that we proved about the first and second systems.

4 First and Second Cryptosystems

The Key Pair Generation Procedure

1. Generate a random n — 1 dimensional lattice L’ which has a basis (b1,...,b,-1) such
that ||b;|| < M; for example, we can use the random class given in [2]. Let H be the
n — 1 dimensional subspace containing L.

2. Choose d > n°M.

3. Choose from a large cube a random vector b, of distance d < d, < 2d from H.

(d,M) (

4. The private key i1s any basis for L equivalently, for H).

5. Construct a random basis B’ for L = L(B). The public key is (B, M).

The Encryption and Decryption Procedures

To encrypt zero, choose a random lattice point v in the cube KU™, where U™ is the n
dimensional unit cube and K > 2*d. For R € IR and m € Z, let the perturbation pert(R,m)
be the random variable whose value is the sum of m vectors taken independently and with



uniform distribution from the n dimensional ball with radius R around 0. For m = ¢yn,
co > 4, and R = n®M, choose a value w of pert(R,m). The ciphertext is v + w. To encrypt
one, choose a random (probably non-lattice) point in KU™; this point is the ciphertext.
Let ugy be a unit vector orthogonal to the subspace H, and let d, be the distance between
consecutive hyperplanes. To decrypt the ciphertext z, the receiver computes the fractional

part of (ug - z)/dg. If it is within Z—f of 0 or 1 then z is decrypted as 0, and as 1 otherwise.

5 Reduction for the First System

In this section we outline the proof that that if we constrain the distribution £ so that each
(d, M) lattice L € L can be presented by a basis whose length exceeds d;, by at most a
polynomial (in n) factor, then the ability to distinguish encryptions of zero from encryptions
of one yields the ability to solve the hidden hyperplane problem. This implies that the only
way to break the cryptosystem is to find the private key.

Following [2], we assume there is a procedure, which, given a basis Y for L, samples lattice
points within a cube whose side has length at least n¢||Y’|| with distribution exponentially
close to uniform. We also frequently need to choose a vector ¢ uniformly from S™(R). This
is done inductively, one coordinate at a time, beginning with the nth coordinate.

5.1 Indistinguishability of Distributions

Let L be a lattice and let K > 0, R > 0 be real numbers. The random variable ¢, x g is
defined in the following way: we choose a point z uniformly at random from KU N L,
where U(™ is the unit cube in IR™ and we choose a value w of pert(R, m), where m = con
for some ¢y > 4. The value of {1, x g 1s = + w.

nx will be a random variable whose values are taken with uniform distribution on KU ™,
Choose 6 €g {0,1}. vz xR is defined in the following way. We randomize 6, {z x g and nx
independently. If § = 0, then vz x g = nx, if 6 = 1 then vy x g = &1k ,R-

Suppose that the real number ¢ > 5 and the positive integers n,d, M, K, R, d > n°M are
given, and L is a distribution on (d, M)-lattices in Z". We say that a probabilistic algorithm
A finds L(@M) on £ with a probability p, if given as input a description of £ (including d
and M) and L € £, A outputs L(#M) with probability p, where the probability is taken both
for the randomization of L and for the randomization in A. Sometimes we will allow A to
use an oracle. In this case each use of the oracle will be counted as one time unit in the
definition of the time used by A.

We assume a model in which for some constants eq and e;, a 27" approximation to a
real can be obtained in time ©(n® ). Suppose that the real number ¢ > 5 and the positive
integers n,d, M, K, R, d > n°M are given, and £ is a distribution on (d, M)-lattices in Z".
We say that the probabilistic algorithm A distinguishes {1, x g and nx on L with a probability
p if given a description of £, L €g £, and a random value of vf g g as an input (together
with n, M,d, K, R), A outputs a 0,1 value w so that P(w = §) = p. Note that in polynomial
time A sees only polynomial (in n) bits of its input.



Theorem 5.1 There ezist ¢, cq,c5,¢c6 > 0 so that for all ¢; > 0, c; > 0 there exists cg > 0
and a probabilistic algorithm B (using an oracle) so that if n,d, M, K, R are positive integers
satisfying the inequalities,

(1) logd + log M + log K + log R < n*,

(2)d>n*M,

(8) R >n°M,

(4) 27d > K > 2%"d,

and L is a distribution on the set of (d, M) lattices in Z™ presented by vectors of length at
most n°tdy, and for which d;, > n®M and d < d, < 2d, and A is a probabilistic algorithm
which distinguishes {1, x,r and ng on L with probability at least % + n~%, then B, using A
as an oracle, finds L@M) on L with a probability at least 1 — 27", in time n°s.

Let L €r L be presented by (by,...,b,) such that maxicicn ||bi]| < n®dp. Strictly
speaking, as described above, we must charge time §(n® ) for B to access a 2°°™ approximation
to a real input. For simplicity, we describe B as if it and A could access any real in a single
step (this issue is addressed in the Appendix).

Algorithm B works as follows. Let K’ = n°d;,. Choose a polynomial (in ) random lattice
points pi,...,pm € K'U”. (This is where we use the assumption that L is presented by a
basis of length at most polynomial in n larger than d.) For 1 <1 < 7 < m’, let a;; = p; — p;.

Note that K'U" is intersected by at most n° cosets H' of H intersecting L, where H is

(dM) Tet H' be a coset of H whose intersection

the n — 1 dimensional subspace containing L
with K'U™ N L is maximal. The number of differences a,; such that p; and p; are both in
H' is at least (#)Z(W), so a polynomial fraction of the a;; are in H. The key idea,
described below, is to use A to determine which of the differences a;; are in H. By doing
so, if m/ is sufficiently large, then, by arguments appearing in [2], B will find a basis for H

among the a,;.

Testing for Containment in H

Let L(&M) — L(by,...,bu_1), where maxi<icn—1 ||bi|| < M, and let P’ = P~(by,... ,bo_1).
Let w be a value of pert(R,m). We prove that if ¢ > 0 is arbitrary (it may depend on n)
and o is a strip of width €, not too far from the hyperplane H, then the distribution of the
projection of w reduced modulo (b1, ...,b,-1) into the lattice parallelepiped P’ is almost
uniform on the hyperlane, even with the condition that w is in o.

Each v € {a;; | 1 <1 < j < m'} induces a probability distribution as follows. Let u be
a random variable with uniform distribution on KU™ N L, and let a be a random variable
distributed uniformly in [0, 1]. Define the random variable §, = v + av + w. It follows from
the uniformity of the projection of w onto H (modulo P’) that the distributions obtained by
projecting 4, and £, kg onto H are almost uniformly distributed on the projection of KU™
on H, independent of whether or not v € H. Moreover, this is true even if we restrict the
distributions to the case in which w lies in a strip ¢ not too far from H.

If v € H, then u + av € H', where H' is the coset of H containing © € L. In this case,
if v is not too long, then u + av 4+ w has essentially the same distribution as £z, x,z: each
depends only on the distance from H of its respective copy of pert(R,m). If v ¢ H, then



since with all but exponentially small probability v and v are not in the same coset of H,

the signed distance of u 4+ av to the nearest coset of H is uniformly distributed in (—dTL, dTL];
so if v is not too long then ¢, has essentially the same distribution as nx. Thus, the assumed

ability of A to distinguish £, x g from nx reveals whether or not v € H.

Remark. The indistiguishability of {; x g from nx yields a pseudo-random number gener-
ator. Each of the three cryptosystems yields a generator in this way.

6 Extension to General Lattices

As before, we wish to show that if there is a probabilistic polynomial time machine that
distinguishes ¢z, x g from 7k, then, using the distinguisher, H can be found in probabilistic
polynomial time. However, if the lattice L is presented by a basis of length greater than
n°d for some ¢ > 0 then the previous reduction fails: we can no longer sample lattice points
inside a small cube. We get around this problem by using the distinguisher to help us find
random short vectors very close to H, and then then “growing” these into long vectors, still
quite close to H. The growing takes place in stages; we use the distinguisher at every stage
to recognize when a vector close to H has been found.

The long vectors are then used to find an approximation to H. If the approximation is
sufficiently good then the unit vector orthogonal to the approximation will be very close to
the unit vector uy orthogonal to H. If the two unit vectors are sufficiently close then ug
can be found by rounding the unit vector orthogonal to the approximation.

Growing Long Vectors

Let o denote the set of all points in IR"™ of distance at most d from H. Each iteration has a
starting point s which for the first iteration is the origin, and in general will always be within
distance 2d of H. Let S(2+/nd, s) be a ball of radius 2,/nd around the starting point s. The
goal is to find a point v in o N S(2/nd, s) that is farther from the origin than s and still
inside o. Then 2v becomes the new starting point, and the process continues. Occasionally
the procedure may err; this is eventually detected and the computation is backed up to an
earlier starting point and repeated with different random choices.

In Section 5.1 we used the distinguisher to test points v € L to see if they are outside of
H. Specifically, v was tested by sampling the distribution ¢, and testing A on the samples.
We will use the same test here, this time to distinguish points near H from points outside
of 0. Specifically, we have a way of choosing random points v within distance 2d of H
and testing them such that: (1) if v ¢ o then with high probability this is detected; (2)
if v is “very close” to H then with high probability v is recognized as being in o; and (3)
the probability that we find a v € o that is not falsely detected as being outside of o is
polynomial in n71.

Our goal is to construct an approximation Hto H by finding » — 1 mutually orthogonal
long lattice vectors vy, ..., v,_1, say, of length at least £ for a suitably chosen Z, all at distance
less than d of H. Once we have found vy, ...v;_;, we search for v; in the n —2+ 1 dimensional
subspace V"™"t! of IR™ orthogonal to v1,...,v;_1, such that v; is close to H N V"1,



We now describe the general step of searching for the next starting point in the construc-
tion of a vector of length £ within distance dz, of H.

Finding the Next Starting Point
Choose a random v’ € §™(2y/nd) such that ||s + v'|| > ||s||. Test if s + v’ is outside of
o, by testing each of s + v/, s + ":Cl_lfu', s+ ":CI_ZU', ...8+ nll

H, # H in L. (For any vector u this test is accomplished by sampling from é,.) If any

v’ to see if any is near a coset

multiple of v’ tests positive, then v’ is discarded and the procedure is repeated for a new
random v’. If no test is positive and ||s+ v|| > £, then we set v = s+ v'. If no test is positive
but ||s + v'|| < £, then we set the next starting point to 2(s + v').

Theorem 6.1 There ezist c,cq,c5,c6 > 0 so that for all ¢; > 0, co > 0 there exists cg > 0
and a probabilistic algorithm B (using an oracle) so that if n,d, M, K, R are positive integers
satisfying the inequalities,

(1) logd + log M + log K + log R < n®

(2) n*M >d>n*M,

(8) R >n°M,

(4) K > QCsnd)

and L is a distribution on (d, M)-lattices in Z" presented by vectors in a cube of size 2" d,
and A is a probabilistic polynomial time algorithm which distinguishes {1 x g and nx on L
with a probability of at least % +n~%, then, B, using A as an oracle, finds L@M) on £ with
a probability of at least 1 — 27", in time n.

Remark. Since M is just an upper bound on the length of L(#M) the requirement that
n®® M > d does not restrict L.

7 The Main Theorem: Worst-Case/Average-Case Equiv-
alence

In this section we will use three constants, D1, Dy, D3. We assume that D; = 3, D, = 8, D3 =
3. In a similar way K(n) will denote function 2"'°¢”. We have made no attempt to choose
these constants and the function in an optimal way in any sense.

As mentioned earlier, in the third cryptosystem the public key involves no lattice. Sup-
pose that v € R, 0 < |lu|| < 1, R > 0 and m is a positive integer. Let Q be the
n-dimensional cube KXU("). We define the random variable H'(u, R,m) in the following way:
First let X be the set of all z € Q so that z - v is an integer. X consists of subsets of a
finite number of n — 1-dimensional hyperplanes, so the n — 1 dimensional volume defined on
these hyperplanes induces a probability measure on X. We take a random point y on X.
Independently we also take a value z of pert(R,m). The value of H'(u, R,m) is y + z. Let
‘H = roundy-»(H'), where for y € IR and o > 0, round,(y) = ¢, where 7 is the largest integer
with 1a <y and if z = (z1,...,z,) € R" then round,(z) = (rounda(z1), ...,roundas(z,)).



In the third system the private key is a random vector u chosen with uniform distribution
on the set {z € R" | ||z|| < 1}. The public key is a set of m independent values vy, ..., v,, of

the random variable H where m = nP%, so by definition, the values v; in the public

u,n"P1 nH
key are small perturbations of points in the hyperplanes induced by w.

For the encryption of a message, the sender will need the smallest integer 1¢ so that
width(vig41,- - -, Vigtn) is at least n=2K, where if a4, ..., a, € R”, then width(ay, ..., a,) is the
width of the parallelepiped defined by the vectors ay, ..., a, (that is, the maximum of the

distances between the point a; and the subspace generated by {a;|j # ¢}, for i = 1,...,n).

We prove that, with a probability exponentially close to 1, 7y < n?. Since the value of

19 does not depend on the message, we may consider iy to be part of the public key. Let

P = P(Vig+1, -3 Vigtn)-

An encryption of zero is obtained by computing the vector z = 37,

8 €r {0,1}, and reducing z modulo v; 41, ..., Vi;4n into P~, that is, finding the unique

é,;v;, where each

vector ' in P~ (vjy41, .-+, Vig+n) so that z — 2’ is an integer linear combination of the vectors
Vg 41, -y Vig4n- & 1s the ciphertext. Let the random variable S, .. ,,, be a random encryption
of zero, as just described. An encryption of one is obtained by choosing a random point in
P~N2™"Z", where 27" Z" is the set of all vectors of the form 27"b, b € Z". Let the random
variable &, ., be a random encryption of one, as just described. In light of the results
for the first two cryptosystems, the intuition for indistinguishability of the two distributions
is that encryptions of zero are themselves relatively small perturbations of points on the
hyperplanes induced by wu, while encryptions of one are just random points in space. For
this system, however, we obtain the following worst-case/average-case hardness result.

Theorem 7.1 For all ci,cy,c3,ca > 0 there exists a c5 and a probabilistic algorithm B (using
an oracle) so that for all sufficiently large n, condition (1) implies condition (2), where

(1) A is a probabilistic circuit of size n® so that if u,vy, ..., vm are picked at random as
described in the protocol for generating the public and private keys, then with a probability
of at least n=° the following holds:

A distinguishes the random vartables S, . .
bility at least % + n7cs,

(2) B, using A as an oracle, can solve any instance of size at most n°* of the nP2 -unique
shortest vector problem in time n®® and with a probability at least 1 — 27™.

and &y, ... ,., JIVEN V1, ..., Vm, wilth proba-

m

The proof of the theorem is in two parts. In the first part, assume that there exists a
probabilistic polynomial time machine A that, given the public key, followed by a block of
t random encryptions of the bit b, followed by a block of ¢ random encryptions of 1 — b,
produces b with probability polynomially better than 1/2 for a polynomial fraction of the
instances of the cryptosystem (an instance is a (public key, private key) pair generated by the
cryptosystem generator). Let I/’ be a random variable which takes its values with uniform
distribution on the n-dimensional cube KU and let I/ = roundy—= (U"). We show that the
existence of A implies the existence of a probabilistic polynomial time machine C that, on
input mt values of a random variable £, using A as an oracle, determines whether ¢ is I/ or

Hu,n_'Dl nt



Very roughly speaking, this is done as follows: C partitions its inputs into ¢ blocks of size
m. For each block B; = (b1, .. .bim), C “acts as if” the inputs in this block form a public key:
C generates a block of random encryptions of zero and a block of random encryptions of one
under this hypothetical public key and feeds B; followed by these two blocks of encryptions
to A (the blocks are ordered at random). 4 responds with a guess of which block is first. If 4
is correct sufficiently frequently, then C concludes that { = H,, .-, ,,; otherwise C concludes
that { = /. The intuition is that if { = H,, ,-», ,, then each block B; is a valid public key, so
by assumption A has a non-negligible probability of distinguishing encryptions of zero from
encryptions of one. On the other hand, if ¢ = U/ then all the “encryptions” of zero that C
generates are just sums of uniformly distributed random vectors; hence, A would have to
distinguish between two almost identical distributions, which is impossible.

For the rest of the proof of Theorem 7.1, suppose we are given a basis of a lattice L whose
shortest vector is unique up to a factor of nP2. Let v be a shortest non-zero vector in L. Let
X be the set of all © € IR™ so that % < ||lu|]| £ 1 and C distinguishes the random variables
U and H, ,-», , with probability at least % + n~%. We describe a probabilistic polynomial
time machine B that finds v.

B generates a number ¢ of linear transformations Uy, . .., U, where each U; can be written
U, = v where 6 € IR and v is an orthogonal linear transformation. Intuitively, v rotates the
lattice L leaving the lengths of the basis vectors unchanged, while 8 scales the rotated basis.
We argue (in the full paper) that with probability at least 1 —27%", at least one of the vectors
Uv is in X. Fix such an 7; we will find U;v, the shortest vector of U;L. Since U; = 0v, we

D2 D2-unique shortest vector

have that w is an n”?-unique shortest vector of L iff U;w is an n
of U;L. Moreover, since U;u € X we have % < ||Uiv|| £ 1 and any vector in U;L not parallel
to U;v has length at least %nDQ > 1. Tt follows that J, the dual lattice of U;L, is a random
(nP2,1) lattice. It is random because U; is random.

B chooses a new system of coordinates so that U,e;, 7 = 1,...,n is the new basis. Let
K = K, that is, KU™ = Q. We prove that the distance of the distributions of H
and {; kg is exponentially small; moreover, clearly ng = U. Therefore the distinguishability
of U, and H
in the case of the second cryptosystem, there is a probabilistic polynomial time algorithm
to find J(#M) and so the shortest vector of U;L, using A as an oracle, with a probability

exponentially close to one.

u,n_Dl ,n

would imply the distinguishability of {;x r and nx; hence, as argued

u,n_Dl ,n
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Appendix 1
Lattice-Based Cryptography

Miklos Ajtai and Cynthia Dwork

We present a probabilistic public key cryptosystem based on a problem involving lat-
tices.

1 Introduction

Historically, public-key cryptosystems have almost without exception been built on the as-
sumed hardness of solving random instances of trapdoor knapsack systems, computing dis-
crete logarithms modulo a prime, and factoring [8]. Among knapsack systems, all but the
Chor-Rivest schemes have been broken (e.g., [1, 16, 18]). The narrowness of the remaining
options has been cited as a potential fragility of public-key cryptography [8].

We construct a probabilistic public key cryptosystem whose security is based on the
assumption that it is computationally infeasible to find the shortest vector in a random
instance of a certain class of lattices in which the shortest vector is unique in a sense described
below. In building the cryptosystem we actually work with the duals of lattices in this class.
Finding the shortest vector in the lattice is equivalent to finding a certain hyperplane in the
dual. For this reason we say the cryptosystem is based on the hidden hyperplane assumption.

Our cryptosystem differs from previous constructions in that it does not depend on a
trapdoor function, but rather on some probabilistic properties. Our approach also yields a
conceptually simple and extremely natural pseudo-random generator.

1.1 Related Work

Lattices, and in particular lattice basis reduction techniques, have most often been used in
cryptography to obtain negative results: breaking knapsack cryptosystems [1, 16, 18], break-
ing linear congruantial pseudo-random generators [15], breaking broadcast schemes relying
on low-exponent RSA [14], breaking random padding of low-exponent RSA messages [7].

In a recent paper, a positive result on the hardness of computing the most significant bits
of a Diffie-Hellman secret key was obtained by rounding in lattices using basis reduction [5].
Also recently, Ajtai [2] obtained a technique for generating solved random instances of a
class of problems involving lattices, with the property that solving a random instance in the
class is as hard as solving the hardest instance. In particular, he showed that if there is a
probabilistic polynomial time algorithm which finds a short vector in a random lattice with
probability at least %, then there is an algorithm which solves the following problem (among
other famous problems):
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(P2) Find the shortest nonzero vector in an n-dimensional lattice L where the
shortest vector v is unique, in the sense that any other vector whose length is at
most n¢||v|| is parallel to v, where c is a sufficiently large absolute constant.

Lattices in which the shortest vector is unique in a sense similar to that of (P2) play an
important role in attacking knapsack cryptosystems (see [16]). (The polynomial factor of
(P2) is substituted by an exponential one.) The difficulty of breaking our cryptosystem is
related to the difficulty of solving random instances of (P2). We describe this in more detail
below.

1.2 Hidden Hyperplanes

If a4,...,a, are linearly independent vectors in IR™, then we say that the set L(a,...,a,) =
{2, Na; | a1,...a, € Z} is a lattice in IR". The set ay,...,a, is called a basis of the
lattice. The length of the basis is the length of the longest basis vector.

Assume n is a positive integer, M > 0, d > 0 are real numbers, and L C Z" is a lattice
which has an n — 1 dimensional sublattice L' with the following properties:

1. L' has a basis of length at most M;

2. if H is the n — 1 dimensional subspace of IR" containing L' and H' # H is a coset of
H intersecting L, then the distance of H and H' is at least d.

Then we say that L is a (d, M)-lattice. If d > M, then L' is unique. In this case L’ will be
denoted by L(®M) The minimum distance between H and a coset of H intersecting L will
be denoted dj,.

Let ¢ > 5 be a real number, and let £ be a distribution on the set of (d, M) lattices for
which d > n°M and d < d, < 2d. The hidden hyperplane assumption for £ says that, given
a random (d, M) lattice L €g L, it is computationally infeasible to compute L@&M),

The hidden hyperplane assumption is related to Problem (P2) as follows: if L is a (d, M)
lattice, then L*, the dual of L, has a shortest vector v of length 1/d;, < 1/d, and this vector is
unique up to a factor of n°. The vector v is orthogonal to H, the n — 1 dimensional subspace
of IR containing L(®M) and given L(#M) it is possible to find v. Thus, given a (d, M) lattice
A, a solution to the hidden hyperplane problem for A* yields the unique shortest vector in
A.

We first consider only the case in which the distribution £ on (d, M) lattices is constrained
so that the lattices are presented by a random basis whose length is greater than dz, by only
a polynomial (in n) factor. In Section 6 we remove this constraint.

1.3 Design of the Cryptosystem

We base the cryptosystem on the hidden hyperplane assumption, so that the ability, given
a random basis B for L €g L, to distinguish encryptions of zeros from encryptions of ones
with polynomial probability implies the ability to find L(¥M). Roughly speaking, the public
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key will be a random basis of a (d, M) lattice L €g L for a suitably chosen distribution L.
The corresponding private key will be a basis for L(#™), An encryption of 0 will be a slightly
perturbed lattice point in IR", and an encryption of 1 will be a random point in IR". We
prove (Theorem 4.1) that the ability to distinguish these two distributions with polynomial

advantage yields a probabilistic algorithm that with all but exponentially small probability
finds L(&M),

The Key Pair Generation Procedure

1. Generate a random n — 1 dimensional lattice L' which has a basis b1,...,b,_; such
that ||b;|| < M; for example, we can use the random class given in [2]. Let H be the
n — 1 dimensional subspace containing L'.

2. Choose d > n°M.
3. Choose a random vector b, of distance d < dy, < 2d from H.

4. The private key is any basis of H.
5. Construct a random basis B’ for L = L(B). The public key is (B, M).

The Encryption and Decryption Procedures

Roughly speaking, the encryption protocol is as follows. To encrypt 0, choose a random
lattice point in the cube KU™, where U™ is the n dimensional unit cube and K > 2"d. In
addition, choose m > cyn random vectors in the n dimensional ball of radius n3M centered
at the origin. We refer to the sum of the m vectors as the perturbation. The ciphertext is
the sum of the lattice point and the perturbation. To encrypt 1, choose a random (probably
non-lattice) point in K'U™; this point is the ciphertext.

Given a ciphertext z, the receiver first computes the distance of the ciphertext from the
nearest coset of H intersecting L. If the distance is sufficiently small, then z is interpreted
as an encryption of 0; otherwise, z is interpreted as an encryption of 1.

We actually describe two versions of the cryptosystem. The scheme described in Section 5
requires that the lattice L be presented by a basis that is of length at most n°dy for some
constant c. We call this the constrained version. This restriction is relaxed in Section 6 (the
unconstrained version).

The remainder of the paper is organized as follows. Section 2 contains definitions and a
small amount of background material. Section 5 proves the indistinguishability reduction for
the constrained version. Section 5 gives precise descriptions of the key generation, encryption,
and decryption procedures to fit into the framework of Section 5. Section 6 extends the results
of Sections 5 and 5 to the unconstrained version of the scheme.
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2 Definitions

The fundamental concepts concerning lattices and public-key crytposystems can be found in
6, 11,12, 13, 9, 17].
A lattice in IR"™ is a set of the form

L= L(bl,...,bn) = {ZAJ), | A € Z,’I, = 1,...,72,},
i=1
where by,...,b, is a basis of IR". We say that (b,...,b,) is a basis of L. The length of
a vector z = (z1,...,z,) € IR", denoted ||z|| is (z? + ... + z2). The length of the basis
(b1,...,b,) is the length of the longest basis vector, max} ||b;||. The determinant of L,
denoted det(L), is the absolute value of the determinant of the parallelepiped with sides
bi,...,bn, where by, ...,b, is any basis for the lattice: det(L) = |det(b1,...,bxn)|.
The dual lattice of L, denoted L*, is defined as

I*={zcR"|z"ye Zforallyc L}
If (by,...,b,) is a basis of L then (cy,...,c,) is a basis for L*, where
r, )1 ife=y
cibﬂ_{o if i #

If ai,...,a, € IR™ are linearly independent vectors, then P~ (ay,...,a,) denotes the
half-closed parallelepiped

{Z’)’iai |0<y <1,0=1,...,n}.
i=1
Let P! = P~(a1,...,a,). By “reduced modulo P”” we mean reduced modulo (ai,...,a,)
into the lattice parallelepiped P’.
Let P; and P, denote two probability distributions and let 2 be a o-field. The distance
between P; and P; is

sup{|P(A) — Py(A)| + |P(B) — Py(B)| s.t. A,B€ Q, An B = 0}.

The n dimensional ball of radius R is the set of vectors z € IR™ such that ||z| < R.

3 Reduction for the Constrained Version

In this section we prove that if we constrain the distribution £ so that each (d, M) lattice
L € L can be presented by a basis whose length exceeds d, by at most a polynomial (in n)
factor, then the ability to distinguish encryptions of 0’s from encryptions of 1’s yields the
ability to solve the hidden hyperplane problem. This implies that the only way to break the
crytosystem is to find the private key.
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We first describe a procedure from [2] for sampling lattice points within a small cube.
This procedure is used in the proof of the reduction for the constrained version (Section 4.2),
and in generating the public key (Section 5.1). A variation, used for sampling lattice points
within an exponential (in n) sized cube, is used in the reduction and in generating ciphertexts
for both schemes.

3.1 Sampling Lattice Points Within a Cube

Lemma 3.1 There exists a real c; > 0 such that for all real ¢ > c; there exists a real c; > 0
such that there is a polynomial time procedure that, given a lattice L C Z"™ represented by a
basis Y = (Y1,...,Y,), chooses random lattice points inside a cube in IR™ whose sides have

length n¢||Y||, with a distribution whose distance from the uniform distribution ts at most
2",

Remark 3.1 [t is also possible to give such a procedure which defines a uniform distribution
on n°Y, using the fact that the points of a lattice parallelepiped form a finite Abelian group,
whose order can be computed. Thus a uniform distribution can be defined on them by using
a system of generators.

Proof: At a high level, the lattice points are obtained as follows. We find a parallelepiped
P whose vertices are lattice points, such that the cube is contained within 7P and the number
of lattice points contained in P is at most a polynomial times the number of lattice points
contained in the cube. We then choose lattice points randomly and (almost) uniformly inside
of P, discarding those outside of the cube.
Finding P

We find the lattice parallelepiped P as done in Lemma 3 of [2]. Let y = max?, |||
Let M' = n°y, for a fixed c to be chosen later. Let fi,..., f, be pairwise orthogonal vectors
of length n®M’. For each 4, let b, be a lattice vector so that ||f; — & < %nM'. Let
Q@=P(fr,.. ., fn), P="P(bs,...,b,), and let Q' be the cube obtained by shrinking @ from
its center by a factor of 1 + i

Q' C P will be the cube in the statement of the lemma. To argue that the number of
lattice points in @' is polynomially related to the number of lattice points in P, we first
obtain an upper bound on the volume of P and then apply a lemma of [2] relating the
number of lattice points in a parallelepiped P to the volume of P and the determinant of
the lattice.

Let Q" be obtained by enlarging () from its center by a factor of 1 + % Then Q' TP C
R", so volume(Q') < volume(P) < volume(Q"), and, since % <(1+ i)_" and (1+ i)" <2

we have %(n?’M')" < volume(P) < 2(n®M')™.

Ratio of Numbers of Lattice Points in (' and P

The next lemma says that if a parallelepiped is not too skewed, then the number of lattice
points contained in it is proportional to its volume. Applying the lemma to the cubes Q'

and Q" yields a lower bound on the ratio |[LNQ'|/|LNQ"| < |LNQ'|/|LNP].
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Lemma 3.2 (Ajtai [2]]: Assume that L = L(ay,...,a,) ts a lattice in IR™, where ||a;|| <
y, 1 = 1,...,n and gi1,...g9, are linearly independent vectors in IR™ (not necessarily in
L) and b € R"™. Let kg, respectively ki, be the number of lattice points in the closed set
b+ P(g1,---,9s), respectively in its interior. Let H be the minimal height, let V be the
volume, and let S be the surface area of P(g1,...,9n). Then

(a) (detD)™(1 — 2"V < k; < (detL)™ (1 + 2"V, j=0,1
(b) If F is a hyperplane then the number of lattice points in F'N (b4 P(g1,...,9,)) is
at most 2Syn(1 + 22%")"_1(detL)_1.

|

Let Hg:, repectively, Hgn, denote the height of @', respectively, @”. Then Hpy =
n3M'(1—|—i)_1 and Hgn = n3M'(l+%), volume(Q') = (n?’M'(l—l—%)_l)", and volume(Q") =
(R3M'(1 + i))" Applying part (a) twice we obtain

o 1EnQ (detL)™*(1 — 3=)"volume(Q")
—[LNQ"| T (detL)='(1 + 2*~)"volume(Q")

2yn
HQ//

It has been argued above that the ratios of the volumes is at least 1/4. Assuming n > 2 and
L i

n°y = M’ in the expressions for Hy and Hpn, we get (1 — %)" =(1- %)" > et

. 2yn n __ 2 n 2 - . .

in the numerator and (1 + n76+3y(1+ﬁ)) =(1+ n7C+2(l+ﬁ)) < €* in the denominator. This

bounds the ratio from below by 1/4¢3.

Sampling Almost Uniformly in P

To choose lattice points almost uniformly from P, we choose lattice points z from a much
larger lattice cube and reduce z modulo P, using two additional lemmas from [2], described
next.

Lemma 3.3 ([2]): Assume that ai,...,a, € R" are linearly independent. Then for each
b € R, there is a unique b’ € P~ (ay,...,a,) so that b — b € L(ay,...,a,). Moreover, if
b,ai,...an € Z", then b’ can be computed in polynomial time in size(b) + Y7, size(a;).

Proof: Express b as a linear combination of the vectors a; and take the integral part of
the coefficients. Assume that we get the vector v = 3" ; r;a;. Then b’ = b — v satisfies the
requirement. The uniqueness of ' is trivial. ]

We denote the b' obtained in Lemma 4.3 by b(mod a,....an)-

Lemma 3.4 ([2]): For all dy > 0 there is a dy > 0 so that the following holds. Assume that
Y1, - - -, Yn are linearly independent vectors in Z™, 0 > n, and by, ...,b, € L = L(y1,...,y,) is
a set of linearly independent vectors as well, with max?_, ||b;|| < 2°“ and max?_ ||y < 2%
Suppose further that py, . . ., un are independent random variables which take their values with
uniform distribution on the integers in the interval [0, 2"’d2]. Let x = (3271 1iY:)( mod by ,..bn)-
Then the distribution of x on the points of LNP~ (b1, ...by,) is almost uniform in the following

SENSE.
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if for each v € P~ (by,...b,), py = Pr(x = v) and k ts the number of lattice points in
di
,P_(bl, e bn); then ZUEP_(bl,---bn) |p,u — %| S 20

Applying this lemma to a large parallelepiped enables us to sample lattice points (almost)
uniformly in the interior of P(b1,...,b,). Specifically, choose d; such that maxi<i<n 1|6 | <
2" and take ¢, in the statement of Lemma 4.1 to be d;. The large parallelepiped is
73(2"d2 y1,2°%y,, ..., 20" Yn)- [ |

Lemma 3.5 Given a lattice L C Z" represented by a basis Y = (Y1,...,Y,), and given
an integer K > 2°*||Y||, ¢ > 0, there is a polynomial time procedure that chooses random
lattice points inside KU™ with a distribution whose distance from the uniform distribution is

Cl
at most 2™ for some ' > 0.

Proof: (Sketch) Let Z be the cube obtained by stretching KU™ from its center by a factor
of (14 i) Following the construction in Lemma 4.1 we find a lattice parallelepiped P
whose vertices are close to those of Z. Then KU™ is contained in P and the number of
lattice points in P exceeds the number of lattice points in KU™ by at most a polynomial
factor. We then use Lemma 4.4 to sample KU™ with a distribution exponentially close to
uniform. |

3.2 Indistinguishability of Distributions

We will frequently need to choose a vector ¢ uniformly from S”(R). We do this inductively,
one coordinate at a time, beginning with the nth coordinate. The probability density func-
tion describing the choice of the kth coordinate in a k& dimensional ball of radius Ry is as
follows: the probability of choosing the kth coordinate to have a value of at least le is

a/mrk_ldr/ fo r*=ldr. We take R, = R. Once the kth coordinate is chosen, say it has
value zp, we recursively choose the remaining coordinates uniformly in the £k —1 dimensional
ball of radius Ry_; = Riy/1 — 23

Let L be a lattice and let K > 0, R > 0 be real numbers. The random variable {; x r
is defined in the following way: first we take a point z chosen uniformly at random from
KU™NL, where U™ is the unit cube in IR™. Then we choose m vectors ty, ..., t, uniformly
at random from S™(R), where m = con for some ¢y > 4. The value of ép g g is z + Y124 ti.

nx will be a random variable whose values are taken with uniform distribution on KU ™.
0 will be a random variable taking the values 0 and 1 with probabilities %, % VL K,R 18
defined in the following way. We randomize 6, {1, x,r and nx independently. If 6 = 0, then
VLK.R ="NK,if § =1 then v x r = L xR

Suppose that the real number ¢ > 5 and the positive integers n,d, M, K, R, d > n°M are
given, and L is a distribution on (d, M)-lattices in Z™. We say that a probabilistic algorithm
A finds L@M) on £ with a probability p, if given as input a description of £ (including d
and M) and L € £, A outputs L@M) with probability p, where the probability is taken both
for the randomization of L and for the randomization in A. Sometimes we will allow A to
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use an oracle. In this case each use of the oracle will be counted as one time unit in the
definition of the time used by A.

We assume a model in which for some constants ey and e;, a 27" approximation to
a real input can be obtained in time (n® ). Suppose that the real number ¢ > 5 and the
positive integers n,d, M, K, R, d > n°M are given, and L is a distribution on (d, M)-lattices
in Z". We say that the probabilistic algorithm A distinguishes {1, x,r and ng on X with
a probability p if given L €g L and a random value of vz g g as an input (together with
n,M,d, K, R), A outputs a 0,1 value w so that P(w = §) = p. Note that in polynomial time
A sees only polynomial (in n) bits of its input.

Theorem 3.1 There ezist c,cq,c5,c6 > 0 so that for all ¢; > 0, co > 0 there exists cg > 0
and a probabilistic algorithm B (using an oracle) so that if n,d, M, K, R are positive integers
satisfying the inequalities,

(1) logd + log M + log K + log R < n®

(2) d>n*M,

(3) R >n°M,

(4) 2%"d > K > 2%"d,

and L is a distribution on the set of (d, M) lattices in Z" presented by vectors of length at
most ndy, and for which d;, > n®M and d < dy, < 2d, and A is a probabilistic algorithm
which distinguishes {1, x,r and ng on L with probability at least % + n~%, then B, using A
as an oracle, finds L\*M) on L with a probability at least 1 — 2™, in time n.

Let L €g L be presented by (by,...,b,) such that maxi<ic, ||bi]| < n®dyg. Strictly speak-
ing, as described above, we must charge time §(n®) for B to access a 2™ approximation
to a real input. For simplicity, we first describe B as if it could access any real input in a
single step, returning to this issue later.

Algorithm B works as follows. Let K’ = n°d;,. Choose a polynomial (in n) random lattice
points pi,...,pm € K'U™ using Lemma 4.1. (This is where we use the assumption that L is
presented by a basis of length at most polynomial in n larger than d.) For 1 <1 < 5 <m/,
let a;; = p; — pj.

Note that K'U™N L is intersected by at most n° cosets H' of H intersecting L, where H is
the n — 1 dimensional subspace containing L(#M™). Let H' be a coset of H whose intersection
with K'U™ N L is maximal. The number of differences a;; such that p; and p; are both in

H' is at least (#)%ﬂ@), so a polynomial fraction of the a;; are in H. The key idea is
to use A to determine which of the differences a;; are in H. By doing so, if m’ is sufficiently

large, then, by arguments appearing in [2], B will find a basis for H among the a;;.
Testing for Containment in H

Let LM — L(b1,...,b,_1), where maxi<i<n—1 ||bs]|, and let P' = P(by,...,bp—1). Let w
be a random variable whose value is w = 3> ¢;, where for 1 <1 < m, t; €g S”(r*M). We
will prove that if € > 0 is arbitrary (it may depend on n) and o is a strip of width €, not too
far from the hyperplane H, then the distribution of the projection of w is almost uniform on
the hyperlane, modulo the lattice parallelepiped P’, even with the condition that w is in o.
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Each v € {a;; | 1 <1 < j < m'} induces a probability distribution as follows. Let u be
a random variable with uniform distribution on KU” N L, and let a be a random variable
distributed uniformly in [0, 1]. Define the random variable §, = u 4+ av + w. It follows from
the uniformity of the projection of w onto H (modulo P’) that distributions obtained by
projecting 4, and {1, x,r onto H are almost uniformly distributed on the projection of KU™
on H, independent of whether or not v € H. Moreover, this is true even if we restrict the
distributions to the case in which w lies in a strip ¢ not too far from H.

If v € H, then u + av € H', where H' is the coset of H containing u € L. In this case,
if v is not too long, then u + av 4+ w has essentially the same distribution as 7, x,z: each
depends only on the distance from H of its respective copy of w. If v ¢ H, then since with
all but exponentially small probability v and v are not in the same coset of H, the signed
distance of u + av to the nearest coset of H is uniformly distributed in (—dTL, dTL]; so if v is
not too long then ¢, has essentially the same distribution as nx. Thus, the assumed ability
of A to distinguish £, x g from 7nx reveals whether or not v € H.

Let ugy denote a fixed unit vector orthogonal to H. For w € R, a width w strip of R"
parallel to H is a set o of points p € IR™ such that for some interval I of length w p-ug, the
signed distance of p to H, is in [.

Suppose that R > 0,n > 0 are fixed. We define a random variable § = £(B) in the
following way. We take a random point ¢ of the n-dimensional ball of radius R with uniform
distribution. £ is the last component of .

Lemma 3.6 There ts a ¢ > 0 and an integer ng so that if n > ng and R are fized and
€1, ..., Em are independent copies of €™B) and € > 0, m > n, then the following holds. Let I
be an interval of length € so that I C [~ R, +5 R]. Let n =3, & and let G be the event:
“there are at least m/4 integers i in the interval [1,m] so that || < (1 — L)R”. Then the
conditional probability of G with the condition n € I is at least 1 — 27°™.

Proof: For each fixed positive integer k and for each real number z, let pi(z) be the
probability of = + 3% , & € I. We prove by induction on k that

(1) the function pg(z) is symmetric to the midpoint of / and monotone decreasing in both
directions as we get farther from this midpoint.

Since the distribution of ¢ is symmetric to 0, the symmetricity is trivial. Let x be the
density function of £. Then for all z we have pi(z) = ey x(y — z)pr—1(y)dy. x(y —z) is
symmetric to z (as a function of y) and pg_1(y) is symmetric to the midpoint of I. Both
functions are monotone decreasing as we go away from their point of symmetry.

We use the following general statement about symmetric functions. Suppose that fo, f1
are symmetric to 0 and for all z,y, |z| < |y| implies fi(z) > fi(y) for + = 0,1. Then for
any 0 < z < w we have [%_ fo(y)fi(y + w)dy < [%2 fo(y) fi(y + z)dy, provided that both
integrals are finite.

The statement is trivial if both fy and f; are the characteristic functions of finite intervals.
Any other functions with the given properties can be approximated with the sum of such
functions, so using the distributivity we get the inequality.
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Using (1) we may conclude the proof in the following way. Let n; = 3;.,¢;. In the
following probabilities always mean probabilities with the condition n € I. For each ¢ =
1,...,m we define a define an event A; depending only on the values of 7; and ¢; so that
(2) the conditional probability of A; with any condition on 7; is at most %

Let Y be the event that A; holds for more than m/10 values of ¢. (2) implies:

(3) the probability of Y is smaller than 27¢™ for some absolute constant ¢’ > 0 (see, e.g.,
Corollary 7.1 of [4]). Finally we will show that for any values of &, ..., &, with |&] < R,
1 =1,...,m, we have that =Y implies G. This together with (3) implies the assertion of the
lemma.

Definition of A;. Let o be the midpoint of I. A; holds if |§;]| > (1 — %)R and at least one

of the following conditions are satisfied:

(4) |l = niga| > | —mil
(5) |l —mi| < %R.

We will estimate P(A;) in cases (4) and (5) separately, using the monotonicity of p,,—; and
the explicit formula for x. To compute the probability that A; holds with [a—n;41| > |a—mn],
conditioned on 1 € I, we randomize ;, compute the probability that in the remaining m —:
steps we get to I, and multiply by p,, the probability that n € I. Since we don’t know p,
we instead bound the ratio of two conditional probabilities, both conditioned on € I (so
that the p, terms cancel).

Suppose 7; < o (the case 7; > o is analogous). Let J be the interval [n; — R, n; — R(1—1)].
Then the (conditional) probability of reaching I through J (that is, the first step is in J) is
Py [7€(Mi — y)pm—i(y)dy. Similarly, letting J' be the interval [n;, — R(%),m], the conditional
probability of reaching I through J' is p, [ x(7: — y)pm—-i(y)dy.

oLy xmi = Y)pm-i()dy Ly x(mi — y)pm-i(y)dy

2o S5 X (1 — Y) pm—i(y)dy Sy x(ni — y)pm—i(y)dy
< Jrx(m — y)[maxees pm-i(2)ldy
= Sy x(m — y)[mingey pm—i(z)]dy
_ maXse) Pm- 1( ) fJX(’% ) Y

minmeJ/pm_z( )fJ' ( )dy

< Jrx(mi—y)dy
= Sy x(m—y)dy
OV g,
S \/— rn=ldp
< Jo ;1_n_2r"_10lr
- Jo rmldr
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Thus,

.

Pn /Jx(m —Y)pm-i(y)dy < py /J x(mi = y)pm-i(y)dy(%

Since p, [7 X(7i — y)pm-i(y)dy is a conditional probability it is bounded above by 1, so in
this case A, is clearly bounded by 1/40 (for n sufficiently large), and therefore, allowing also
for the case 1, > «, the conditional probability of A, in case (4) above is at most 1/20.

The conditional probability of A, in case (5) above is measured similarly. Let us assume
that 7; € [@ — 2R, o] (the case n; € [a, + 2R] is handled analogously). If & < 0 then we
are again in case (4), so we need only consider the case in which ¢ > 0. Let J be the interval
[7: + R(1 — L), m; + R], and let J' be the interval [o, @ + R/n]. Performing a calculation

analogous to that in case (4) we have

Po Jyx(i = y)pm-i(y)dy [y x(m = y)pm-i(y)dy
Py [y x (i — Y)pm-i(y)dy Sy x (i — y)pm—i(y)dy
< Jix(mi—y)dy
= Jrx(ni —y)dy
Jo ey

IN

A
—
&

[V

Thus,
2

po [ X0 = 0)pmasWdy < pol [ X0 = v)pmos(w))(5)E.

Since p, [7 (7 — Y)pm—i(y)dy is a conditional probability it is bounded above by 1, so in
this case A, is clearly bounded by 1/40 (for n sufficiently large), and therefore, allowing also
for the case |a — n;| < %R and 7; > «, the conditional probability of A; is at most 1/20.

It remains to show that =Y A =G is impossible. Intuitively, =Y A =G would imply that
for most of the integers ¢ € [1,m], n;41 would be closer to o than n; by at least (1 — 2)R,
that is, n; would move toward a with large steps, but according to (5) it would only rarely
get close to a.

Let us say & is large if |§] > (1 — %)R; otherwise it is small. We say that & moves away
from o if |, — a| < |ni41 — a|; otherwise it moves toward o.. Finally, we say 7; is close to o

if ;i —af < %R; otherwise it is far. Then we can re-phrase the events as follows:
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o G is the event that at least 7 of the {; are small;

e Y is the event that A; holds for more than T values of 1.

e A, is the event that [(¢; is large and ¢ moves away) OR (¢; is large and #; is close)].

Negating, we get:

e —( is the event that more than 3Tm of the ¢, are large;

e Y is the event that A; holds for at most {5 values of 3;

e —A; is the event that [(¢; is small or ¢; moves toward o) AND (¢; is small or 7; is far
from a)]. Equivalently, = A; is the event that [(¢; is small) OR (¢ moves toward o and

n; is far)].
Let us assume -G A Y. Focussing first on the more than 3Tm values of ¢ for which ¢, is large

m

1¢ of these values for 4, either {; moves away from o or

(from =@), we have that for at most
n; 1s close to a (from —Y).

We break the sequence (m1,&1),(n2,&2),- -, (m,&n) into intervals so that in the odd
intervals 7; is far from a and in the even intervals 7; is close to a. The integers j, defined
below are the endpoints of these intervals.

Definitions:
® jo=0;
o for z > 0, jop41 = min;sj, 7; is close to o;
o for z > 0, jopqo = ming, ., 7; is far from c.

Let y = 11—0 and let z = 3. Let D = [{i s.t. (¢ is large and ¢; moves away from a) or (¢; is large

and 7; is close to @)}|. By assumption (-=Y), D < my = . Let S = [{¢ s.t. § is small}|.
By assumption (=G), § < (1 —z)m = 7.

For 0 < z, the zth far interval is the interval [ja;, jox4+1 — 1] (by definition 7; is far from o
for all ¢ in this range). Let k be the number of far intervals. For 0 < z < k—1, let 8, denote

the fraction % times the number of small steps during the zth far interval; more formally,

1 . . . .
By = 5 X |{z s.t. 7 € [Joz, J2ze1 — 1] A & is small}|.

For 0 <z <k —1, let let 7, denote the fraction % times the number of large steps away
from o during the zth far interval; formally,

1 . . . .
=5 X [{2 s.t. 2 € [Jom, Jowr1 — 1] A & is large}|.

Finally, let wy be a binary variable with value 1 if and only if 0 = 7; is close a, 7, is
far from o, and ¢ is large and moves toward «; in general, for 0 < z < k — 1, let w, be

23



the binary variable with value 1 if and only if ¢, _; is large and moves toward o (note that
by definition 7;,_ _1 is close to a, so the w, are counting large steps toward o that move the
walk from close to a to far from a).

Let ¢ = i-hg < 2% (provided n > 2). Then at most g large steps are needed to walk

directly (without interruption) from 0 = 7, to c. Since (1 — 1)=! < 2, at most two large
steps toward a are required to compensate for a single large step away from a. Moreover,
by definition, a large step is at least as large as a small step. Finally, for each large step
toward a moving the walk from close to a to far from «, at most one large step back toward
o is needed to compensate. Using these facts and the definitions of the 3,7z, and w,, and
letting B denote the number of 1 such that 7, is far, ¢ is large, and ¢; moves toward a, (z.e.,
the number of large steps taken toward a during the far intervals), we get

B < g+ Y (2uD+BS5)+ > w. (1)
0<z<k-1 0<z<k-1
Note that if 3 g<z<r—1 Wz > ym then for strictly more than ym = % values of : we have

case (5) of A; (7; is near a and ¢ is large), so it follows from the assumption (—=Y") that
Yo<e<k—1 W < ym. By definition, Yocpck-1(292D+6:S) = 2D+S, 50 B < %‘"—I—QD—I—S—I—ym.
However, from (=Y A =G) we have that B > (z — y)m. Combining this with the bound

on B in (1), we get %‘1 + 4ym + m > 2zm which is false for the values we have chosen
(a< Bny 1 o= ) .

Corrolary 3.1 Let w = Y[», t;, where each t; is chosen at random from S™(R). There is
ac >0 and ng so that if n > ng and R are fized, € > 0, and I is an interval of length
€ contained in [—’Z—?,'Z—?], then the following holds. For 1 < 1 < m, let & be the signed
distance from H to t;. Let us assume a coordinate system in which we can write t; = r; + 8;,
where r; = (0,0,...,0,&). Let G be the event “there are at least 7 integers 1 in [1,m] such
that s; is chosen from an n — 1 dimensional ball of radius at least n>?M.” Letn = Y7, &.

Then the conditional probability of G with the condition n € I is at least 1 — 27°™.

Lemma 3.7 Let L = L(by,...,b,) €g £, where L'M) = L(b;,... b, ;). Let m = con, for
some cg > 4, let R = n3M, and let P' = P~(by,...,bs_1). Forn' > n, assume each of
S1,..., Sy is chosen from an n — 1 dimensional ball of radius at least n? M. For each s;, let
G; be the hyperplane parallel to H containing s;. If we tile each G; with copies of P', then
with probability at least 1 —27""1°8"" 4t least one of sq,. .., s, is chosen from a tile completely
contained in its respective ball.

Proof: Recall that ||b;|| < M, 1 < n— 1. Let S; be the ball from which s; is chosen.
Consider a particular G;, tiled with copies of P’, and partition the copies into two sets, those
lying entirely within S; and those lying only partially inside S;. For any vector s, let ppd(s;)
denote the copy of P’ containing s,. Let C' (respectively, D) be the set of vectors s; such that
ppd(s;) lies entirely (respectively, partially) within S;. Then 2?;1 8 = Ys;eC Si T Ls,eD S5
For each 1, Pr[s; € C] < %, so with probability at least 1 — 271987 af least one of s, . .. s,
is in C. ]
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Using the notation in Corollary 4.1, let us say that w = Y% (r; + s;) is bad if either
fewer than 7t of the s; are chosen from balls of radius less than n*M, or at least T of the
s; are chosen from balls of large radius but none of these s; is chosen from a tile completely
contained in its respective ball. If it is not bad, then w is good.

Lemma 3.8 Let L = L(by,...,b,) €g L, where L'@M) = L(by,...,b,_1). Let m = con, for
some co > 4, and let R = n3M. Let P' = P~(by1,...,bo_1). For € > 0 and for any interval
I of length € contained in [—2& BB] et oy = 7 ¢; where each t; €g S™(R). Then the
distribution obtained by projecting w onto H modulo P’ differs from the uniform distribution
on P’ by at most 2™ for some ¢; > 0, even with the condition that the signed distance of

w to H' is in I.

Proof: By Corollary 4.1, for some ¢ > 0 with probability at least 1 — 27" for at least 7
of the values of 7 in [1,m], s; is chosen from an n — 1 dimensional ball of radius at least
n?’M. By Lemma 4.7, with probability at least 1 — 27318 % at least one of these is chosen
from a copy of P’ completely contained in its ball. This s; is uniformly distributed in P’,
and therefore so is the projection of >, ¢;

For integer ¢ > 0, let us tile P’ with small parallelepipeds, each of the form (X7} —q"b )+
%73', where 0 < n; < g, =1,...,n — 1 is a sequence of integers. Let Q be the set of sets
of tiles. For any given tile a, let P(a) denote the probability that the projection of w is in
a and let unif(a) denote the probability that a point chosen uniformly from P’ is in a. The
distance of the distribution of the projection of w from the uniform distribution on P’ is

sup{|P(A) — unif(A)| + |P(B) — unif(B)| s.t. A,B€Q, ANB =0}.

Let A denote the subset of tiles in which P is greater than or equal to unif and B denote the
subset of tiles in which unif exceeds P. Then for some c3 > 0 the first term in the expression

yields

ZP ) — unif(a)

:E;E%[P(dw is good) Pr(w is good) + P(a|w is bad) Pr(w is bad) — unif{a)]
= a;[unif(a)((l —27%™) _ 1) 4 P(a|w is bad) Pr(w is bad)]
= a;[umf 927%™ 1 P(alw is bad) Pr(w is bad)]
< Do [unifla)(—270™)] + 27 < 27
ach

The analysis for the second term is identical. The difference between the two distributions
is therefore at most 2 - 277%™ < 27%™ for some c¢; > 0. [ ]

Corrolary 3.2 Let L = L(by,...,b,) €r L, where L1&M) = L(by,... b, ;). Let m = ¢yn,
for some cy > 4, let R = n3M, and let P' = P~ (b,...,bp-1). Let € > 0 and let I be an
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interval of length € contained in [—’Z—f, ’Z—?]. Constider the distribution D obtained by choosing
p €r H and projecting p + w, where w = 7" t;, and each t;, €g S™(R), onto H. Then the
distance of D from the uniform distribution on H is at most 2™, for some c; > 0, even
conditioned on the signed distance of w from H being in I. Moreover, if H' is any coset of
H intersecting L, then the lemma holds for any distribution for p in which, if we tile H with

copies of P', each copy of P' is equally likely to contain p.

Proof: By Lemma 4.6, the distribution obtained by projecting w onto H modulo P’ is
within 274" of the uniform distribution on P’ for some ¢; > 0. By randomizing the starting
point p we eliminate the need to reduce modulo P’: tile H with copies of P’. The probability
that p is in any particular copy of P’ is the same. We get uniformity of the projection of
p + w modulo P’ whenever w is good, which is independent of whether or not w € L. By
Lemma 4.7 this occurs with probability at least 1 — 2% 6% independent of whether or not
w € L. The Corollary then follows immediately from Lemma 4.6. ]

In order to apply the lemma to the distribution ¢z, x g we need to bound the ratio of
lattice points in KU” near the surface of the cube.

Lemma 3.9 Let B = 2K for some ¢ > 1. Let C = (5,5,...,5). Let Q be the cube
centered at C' with sides of length K — 2B. Then

(1) the ratio of the volume of Q over the volume of KU is at least 1 — 27" for some ¢ > 0
and

(2) the ratio of the number of lattice points in the closed set Q to the number of lattice points
in the closed set KU™ is at least 27 for some constant ¢ > 0.

Proof: By definition the ratio of the volume of @ over the volume of KU™ is at least
(1-— %)". From the binomial expansion we have 1 — n% < (1- %)", so (1) follows from
the fact that K > 2%"d;.

By Lemma 4.2, the ratio of the numbers of lattice points is at least (1 — z2¥2=)"/(1 +

K-2B
21’7")" <1, where y = max*, ||b;||. Let a = K2E;B and let 8 = 21’7" Since }_Tg >1—(a+pf)
and 1 —n(a+ B) < (1 — (a+ B))", the ratio differs from 1 by at most n(a + 8) < Iézf;zB

Since y < dr, and K > 2%™dy, for some ¢4 > 0, this quantity is exponentially smallin n. =

Lemma 3.10 Let L = L(by,...,b,) €g L, where L&M) = L(by,... b, 1). Letv € L satisfy
lv| < KY/¢ for some ¢! > 1. Then:

1. if v € H then the distance between the distributions &, k. g and 8, ts at most 27" for
some ¢ > 0;

2. ifv ¢ H then the distance between the distributions ng and 6, is at most 27" for some
c>0.
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Proof: Let P’ = P~(b1,...,bs—1). Let t be the random variable obtained by choosing
uniformly a vector in $™(n3M). Let w be the random variable defined by w = S1c;cp ti,
where each ¢; is a copy of t. Let us write §, = up + av + wy and {Lx,r = w1 + w; where
ug,u; €Eg KU™ N R and wp, w; are copies of w.

Proof of (1): Suppose that, rather than being drawn from £ N KU™, we were to choose
u €g L. Fix any coset H' of H intersecting L, and tile H' with copies of P’. Then ug + av
is uniformly chosen from among the tiles, as is u;. For € > 0, let us partition the space IR"
into strips of width € parallel to H. For each strip o, the difference between the projection
of wg onto H and the uniform distribution on H is exponentially small in mlogm, even
conditioned on wq being in o. The same applies to w; so the difference between these two
distributions is exponentially small in m log m.

Let 6! = ug + av + wg and € = uy + w; where both ug and uy are chosen unformly from
L. Let T be the parallelepiped T = P“(%bl, cee %bn_l, uc), where u, is a vector of length €
perpendicular to H. We tile each strip o with copies of 7. Let {2 be the set of sets of tiles.
Let A be the set of tiles T for which Pr(é € T') > Pr(é, € T'). (The analysis for the set of
tiles in which the opposite holds is analogous.) We specify a strip ¢ = (H,, I,) by naming
H,, the coset of H intersecting L nearest to o, and I,, the interval containing the distances
of the points in ¢ from H,.

Y > (Pr[¢ € T|¢ € 0] Pr[¢ € o] — Pr[6) € T|6, € o] Pr[d, € o))
o TeANo
= > > (Pt eT|¢ € o] —Pr[s, € T|6, € o]) Prlu € H,| Prlw € I,]
o TeAno
= Y Prlue H,]>., > (Pr[€ € T|¢ € o] —Pr[b, € TS, € o) Pr[w € L]
H, I, Te(Ho,I,)NA
< 227N Prlwe I,] <27
15

The last line follows from Corollary 4.2 for the strips ¢ of distance at most 'Z—é% from a coset
of H intersecting L and from the fact that the probability that w is at distance greater than
mR :

7y is exponentially small in m.

Let B = 2K for some ¢/ > 1. Let C' = (%, %, cee %) Let @ be the cube centered at
C with sides of length K —2B. Let @’ be the cube centered at C with sides of length K — B.
Intuitively, for any strip o intersecting @, if we tile o N Q' with copies of T, then for each
tile T' intersecting @, Pr[ér xr € T| and Pr[é, € T| depend only on I,. By Lemma 4.9, the
probability that either 4, or {1, x g belongs to a tile not intersecting ) is exponentially small

in n. Restricting the argument above to those tiles whose intersection with @ is nonempty

yields Part (1).
Proof of (2): The distance between the distributions nx and §, is
sup{|Pr(ng € A) — Pr(é, € A)| + | Pr(nx € B) — Pr(é,)| s.t. A,B€Q, ANB=0}.

Let A be the set of tiles T' for which Pr(ng € T') > Pr(d, € T), let B be the set of tiles
for which Pr(d, € T') > Pr(ng € T') and let A’ be those tiles whose intersection with @ is
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nonempty, where () is as above. We analyze the first term.

volume(T)

) W(KU") — (Pr[é, € T|w; good] Pr[w; good] + Pr[é, € T'|w; bad] Pr[w; bad]))

volume(T)

<
T few volume(KU™)

— P[4, € T'|w;y good] Pr[w; good]) 4+ Pr[w; bad]

1 T m m
=< Z (%&E—U{l) — P1[§, € T|w; good] Pr[w; good]) + 27« 8%
TeA'

by Corollary 4.1. If w is good, then since u + av € Q with probability at least 1 — 27"
(Lemma 4.9), and with probability at least 1 — 27" w + v is not in the same coset as u,
it follows from Lemma 4.9 and Corollary 4.2 that the difference in Equation 2 is bounded
by 27%" for some c5 > 0. Since the analysis of the second term in the expression for the
distance between nx and 4, is analogous, we have the desired 27" bound for some ¢ > 0. m

To finish the proof of the reduction we need to address the fact that (1) A and B can
access only approximations to real numbers in a polynomial time; (2) B may not be able to
sample KU™ N L perfectly uniformly in polynomial time.

For (2), note that Lemma 4.10 holds even if wy (in the definition of §,) is not a copy of w
but instead is obtained by choosing a point in KU™ N L with a distribution whose distance
from the uniform distribution on KU™ N L is exponentially small. By Lemma 4.5, this can
be done in polynomial time.

To address (1) we note that if two probability distributions on IR™ are exponentially close
to each other and we approximate each of these distributions to within 2= (a random
vector chosen according to the given distribution is approximated by approximating each
coordinate to within the given bound), then the respective approximations will themselves
be exponentially close to each other. This completes the proof of Theorem 4.1.

Remark. The indistiguishability of 7, x r from nx yields a pseudo-random number gener-
ator.

4 Detailed Description of the Cryptosystem

4.1 The Public Key Cryptosystem (Generator

To generate an instance of the cryptosystem, on input 1" (the security parameter), we first
choose d, M, K, R satisfying the requirements of Theorem 4.1 and generate a (d, M) lattice
L represented by basis Y = (y1,...,yn). We then obtain a random basis By, for L of length
at most polynomial in n times dr, using Lemma 4.1. The public key is By, together with K
and R. The private key is Y. The hidden hyperplane H is the n — 1 dimensional subspace
defined by y1,...,yn_1. Let d' > d denote the distance of H to its nearest coset.
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4.2 Encryption and Decryption

Let By, = (by,...,b,) and let By, K, R denote the public key. To encrypt a zero, randomly
choose £1, k g as described in Section 4.2. To encrypt a one, randomly choose 7k as described
in Section 4.2.

Let ug be a unit vector orthogonal to the subspace H, and let d;, be the distance of the
consecutive hyperplanes. To decrypt the ciphertext z, the receiver computes the fractional
part of (ug - z)/dg. If it is within ﬁ of 0 or 1 then z is decrypted as 0, and as 1 otherwise.

By Theorem 4.1, if A is a probablhstlc algorithm which distinguishes ¢ x g and nx on
X with a probablhty of at least ; +n~°, then, there exists a probabilistic algorithm B, that
using A as an oracle, finds L(#M) on X with a probability of at least 1 — 27", in time n°
It follows that the cryptosystem is secure if a random instance of the hidden hyperplane
problem is hard.

5 Extension to General Lattices

We now describe how to remove the assumption that the (d, M) lattices are presented by
a basis of length at most n°d for some ¢ > 0. In Theorem 4.1 we showed that, given a
distribution £ on (d, M) lattices presented by bases of length at most a polynomial (in
n) factor greater than d, L €g L, a polynomial time algorithm distinguishing the two
distributions £, x g and n; could be used to effectively find the n — 1 dimensional subspace
H = L@M)_ In order to do this we sampled lattice points v from a small cube, used these v
to generate distributions, and tested using, the distinguisher, if the v’s were in H. Because
the cube was small, it was intersected by only a polynomial number of hyperplanes, so in
polynomial time we were able to find a basis for H.

The sampling used the fact that the length of the basis for L exceeded d by a factor of
at most n° for some ¢ > 0. By eliminating this requirement we can no longer sample inside
a small cube. We get around this problem by using the distinguisher to help us find random
short vectors very close to H, and then then “growing” these into long vectors, still quite
close to H. The growing takes place in stages; we use the distinguisher at every stage to
recognize when a vector close to H has been found.

The long vectors are then used to find an approximation to H. If the approximation is
sufficiently good then the unit vector orthogonal to the approximation will be very close to
the unit vector uy orthogonal to H. If the two vectors are sufficiently close then ug can be
found by rounding the unit vector orthogonal to the approximation.

Theorem 5.1 There ezist c,cq,c5,¢c6 > 0 so that for all ¢; > 0, co > 0 there exists cg > 0
and a probabilistic algorithm B (using an oracle) so that if n,d, M, K, R are positive integers
satisfying the inequalities,

(1) logd + log M + log K + log R < n®

(2) n*M >d>n*M,

(3) R >n°M,
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(4) K > 2C5nd}

and L is a distribution on (d, M)-lattices in Z" presented by vectors in a cube of size 2" d,
and A is a probabilistic polynomial time algorithm which distinguishes {1 x g and nx on L
with a probability of at least % +n~, then, B, using A as an oracle, finds L@M) on L with
a probability of at least 1 — 27", in time n.

Remark 5.1 Since M is just an upper bound on the length of L(@M) the requirement that
n® M > d does not restrict L.

Proof: Let w be a random variable whose value is w = Y 7", t;, where for 1 < 1 < m,
t; €r S™(n®M). Let u be the random variable defined by choosing uniformly a vector in
KU™NL. Let the random variable { x r be defined by ¢, x g = u+w. Let r be the random
variable defined by choosing uniformly a vector in KU N IR™ within distance z of a coset
of L1#M) intersecting L. Let €1 xR, be the random variable {7, g 5, = 7 + w.

Let a €g [0,1]. For v € IR™, let §, be the random variable defined by §, = u + av + w.
In general, for v € IR™, let the perturbation g(v) be the random variable v by g(v) = v 4 w.

The next lemma shows that a distinguisher A satisfying the conditions of the Theorem
can be used to separate vectors close to H from those close to any coset Hy # H of H
intersecting L.

Lemma 5.1 For all ¢ > 0 there ezist ¢y > 0 and r. > R/n® such that

1. if v is within distance r. of H, then

PrlA(S,) = 1] — PrlA(Erxr) = 1]] < —

nc

2. if v is within distance v, of a coset Hy # H in L, then

[Pr[A(8,) = 1] — Pr[A(nk) = 1]| < ni

Proof: Consider the distribution £, x g obtained by perturbing vertices v € KU®™ that
are not in the lattice but that lie in the hyperplane H or one of its cosets intersecting L. By
Lemma 4.10 this distribution is differs from &7 x g, the distribution induced by perturbing
randomly chosen vertices v € KU™ N L, by at most 27" for some ¢ > 0.

Proof of (1)

We calculate an upper bound on the difference between the distribution &7, x 5o and
1. xR, as a function of z. For any p € IR”, the height of p denotes the distance of p to the
nearest coset of H in L. By definition, the two distributions differ only in the distribution
on the heights of the sampled points.

Let t be chosen uniformly at random from S”(1), and let ¢’ be chosen uniformly at random
from an n-dimensional ball of the same radius but centered at a point at height (. We will
compare the difference in height between ¢ and ¢'.
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The probability density function determining the height of ¢ is proportional to (/1 — z?)"~1.

So there exists a constant ¢’ = ¢/(n) satisfying [!; /(1 — 32)712;10[33 = 1. We bound ¢ as fol-
. 1 1 1 \2=1 1y2=L . . . -1

lows. In this range, 1 — 5 > 1—~,s0 (1— )2z > (1— )"z , which is approximately e~=.

So [L(1—2?)* T de > y/"(1—2?)"F > L

We next bound the difference between the two intervals f';(1 — :B2)n2;ldm _lil__Ec(l -

mZ)nz;ld:n.

1 1
e”2, and ¢’ < nez.

ﬁ(RZ —z%)7 = 5 (R* — %)% (—22z)
= (1-n)(R-z)7 2
d2 n—1 n—3 n—>5
(B =) = (1-n)[(R’=2")7 +(n-3)(R" —2°)= (-2")]
The second derivative is zero when (R? — :1:2)n2;3 = z*(n — 3)(R? — z2)n2;5, which simplifies

to (R? —z?) = (n —3)z%, or z = \/i—%. Using this value for z we get that the slope of the
curve f(z) = (v/1 — z2)""! is bounded by \7;712(1 — ﬁ)nz;s, or approximately \/ﬁe_;—. So
for any z the magnitude of the difference between f(z) and f(z + () is bounded by (ﬁe"é.

Integrating this difference over [—1,14 (] yields an amount bounded by 3§\/ﬁe_%. To ensure

Cc1 —

a difference bounded by a given polynomial n~° | we need only choose ( = n~ z. To scale

to a ball of radius R we take z = (R.

Intuitively, if v is within z of H then so is av, and é, = u + av + w is essentially the
same distribution as {7 x p , and hence is close to {1,k r- By choosing r. = z = %n_(‘:"'l?)R
we ensure that

Pr[A(5,) = 1] - PrlA(rxcn) = 1]] < —.

n
Proof of (2)

By assumption, 3c* > 0 such that |[Pr[A(éL x,r) = 1] — Pr[A(nk) = 1]| > —&=. Without
loss of generality, assume Pr[A(¢é; x,r) = 1] < Pr[A(nx) = 1]. Let SMALL' = Pr[A(éL x,r) =
1], SMALL = Pr[A(¢L, x o) = 1], and LARGE = Pr[A(nx) = 1]. By Lemma 4.10, SMALL' is
exponentially (in n) close to SMALL.

Let the random variable g(nx ) be defined as follows. Choose p €g ng Then g(nx) = p+w,
where w is the random variable defined above. g(nx) is uniformly distributed in KU™, so
PrA(x) = 1] = PrA(g(nx) = 1.

Consider the random variable 6, = u+ av+w. If v is within distance z of a coset H' # H
of H intersecting L, then, conditioned on av not being within z of such a coset, the distance
of u + av to the nearest coset is uniformly distributed in [z, g] If av is within z of a coset,
then u 4 av 4 w has essentially the same distribution as {7 x g, it is a perturbation on the
point u + av.

Let us use the notation CLOSE(p) to indicate that p is within z of the nearest coset of H
intersecting L.

PrlA(nk) =1 = Pr[A(g(nx)) = 1]
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= Pr[A(g(nx)) = 1|CLOSE(p)] Pr[CLOSE(p)]
+Pr[A(g(nx)) = 1|~cLOSE(p)] (1 — Pr[CLOSE(p)])

In other words, LARGE = SMALL-%Z—I—p-(l—%), where p is the probability that A(g(nx)) = 1,
given that p is not within z of a coset of H intersecting L. By appropriate choice of z we
can ensure that [LARGE — p < n™¢|, completing the proof of the lemma.

By assumption, LARGE — SMALL > n~, so LARGE — n®? > SMALL. We also have
LARGE = SMALL - %z +p-(1- %z) Simple algebraic manipulation yields

LARGE — p(1 2z) = SMALLQZ
AT T d
2z
< (LARGE — n°2)j
ILARGE — p| < n™® 22/d
PLo= " 1 927d

To ensure that [LARGE — p| < n™° it suffices to choose z < n™**22. Part (2) follows from
the fact that R < d. ]

Let o denote the set of all points in IR™ of distance at most d from H. The following
iterative process finds long vectors close to H.

Growing Long Vectors

Each iteration has a starting point s which for the first iteration is the origin, and in
general will always be within distance 2d of H. Let S(24/nd,s) be a ball of radius 2/nd
around the starting point s. The goal is to find a point v in o N S(2/nd, s) that is farther
from the origin than s and still inside 0. Then 2v becomes the new starting point, and the
process continues. Occasionally the procedure may err; this is eventually detected and the
computation is backed up to an earlier starting point and repeated with different random
choices.

In Section 4.2 we used the distinguisher to test points v € L to see if they are outside of
H. Specifically, v was tested by sampling the distribution ¢, and testing A on the samples.
We will use the same test here, this time to distinguish points near H from points outside
of 0. Specifically, we have a way of choosing random points v within distance 2d of H
and testing them such that: (1) if v ¢ o then with high probability this is detected; (2)
if v is “very close” to H then with high probability v is recognized as being in ¢; and (3)
the probability that we find a v € o that is not falsely detected as being outside of o is
polynomial in n71.

Our goal is to construct an approximation Hto H by finding » — 1 mutually orthogonal
long lattice vectors vy,...,v,_1, say, of length at least £, all at distance less than d of H.
Once we have found vy, . ..v;_1, we search for v; in the n — i+ 1 dimensional subspace V?7**!
of IR™ orthogonal to vy, ..., v;_1, such that v; is close to H N Vit

We now describe the general step of searching for the next starting point in the construc-
tion of v;.
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Finding the Next Starting Point
Let SZ:;"H )(2\/7_7,(1) denote the n — 72 + 1 dimensional ball in the n — ¢ + 1 dimensional

geenyVi—1
subspace orthogonal to vy,...,v,_1 of radius 2y/nd centered at the origin. Choose a random
v € S&:invi_l)SQ\/ﬁd) suclz that |[s+v'|| > ||s||. Test if s+ v’ is outside of o, by testing each
of s+v',s+ "nlcl_lv',s + "nlcl_Zv', .84+ nll v’ to see if any is near a coset H; # H in L. (For
any vector u this test is accomplished by sampling from 4, (cf. Lemma 6.1).) If any multiple

of v’ tests positive, then v’ is discarded and the procedure is repeated for a new random v’.

If no test is positive and ||s + v'|| > £, then we set v; = s + v’. If no test is positive but
||s + v'|| < /£, then we set the next starting point to 2(3 + 'U’).

Lemma 5.2 There exist c3,cq,c5 > 0 such that with probability 1 — n=, if the procedure
described above is run from a starting point s within distance 2d of H, then within n®
iterations the procedure produces an output that, with probability 1 — n, is in o.

Proof: Recall that n®M > d for some cg > 0, and that R = n®*M. So for some ¢; > 0,
d<n"R. Let a = %n_c + % + c1. Let n7° be the assumed distinguishing advantage of A.

Let ey be the probability that the test errs on inputs within distance ad of H N V7?1,
Let e; be the probability that the test errs on inputs within distance n_°+°2% of a coset of
(H' NVt L (HN V) of HNV™ 1 in L.

If s + v is within distance ad of H N V*~**! then none of the multiples tested yields
the uniform distribution, so, with probability 1 — nfep, v will not be discarded. If s + v’ is
outside o then at least one of the multiples is within distance n_°+°2% of HNV™=**+! (this
uses the fact that |[v|| < 24/nd), so, with probability at least 1 — e;, v’ will be discarded.

It remains only to show that with sufficiently high probability for a random v’ € S&:f___mi_l)(Q\/ﬁd),
the vector s+ v’ will be within ad of H. (We need to be sure there is sufficient probability of
finding a vector this close to H because it is only on these vectors that we are “guaranteed”
that the distinguisher will recognize an encryption of 0. The actual vector produced may be
anywhere in o.)

Let Y = 2y/nd and let m > 2 € Z. Let G be an m — 1 dimensional hyperplane passing
through the origin. Consider the m-dimensional ball centered at a point p of distance at
most 2d from H. We bound the ratio of the volume of the ball to the volume of the strip
of points in IR™ parallel to G and at distance 2d < y < 3d from an m — 1 dimensional
hyperplane parallel to G passing through p. The probability of choosing a point within ad
of G is at least ad/d times this ratio.

The ratio is given by
(-7

r™=ldr

cm f(Yz(l—czi))

n

Cm foyrm‘l dr

W=

where c,, depends only on m. This simplifies to (1 — %)% —(1- %)% which, since m < n

and c is constant independent of n, is §(1). Multiplying by o yields a probability polynomial
|
in . ]
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Corrolary 5.1 There exists c5 such that and for all cg > 0 there is procedure that, using A
as an oracle, with probability at least 1 — n™ generates a vector v within distance d of H
and having length at least 2° in time polynomial in n.

Using Corollary 6.1, we can find n — 1 mutually orthogonal long vectors uy, ..., u,—1 close
to H. We let H denote the approximation to H defined by {u1, .., Un_1}

We measure the quality of the approximation by finding the distance between the unit
vectors orthogonal, respectively, to H and H. Given n — 1 vectors Uy, ... Up_1 € IR, define
a generalization of the cross product @(u,...,un—1) to be the vector in IR™ whose ith
coordinate is the determinant of the minor My; of the n xn matrix A with rows e, uy, ... un_1.
The key point is that for any v € IR",

V1 Vo e Un
U11 U192 e Uin
(A ®('LL1, . ,un_l) =
Un-1,1 Un—-12 ... Un—1n

In particular, for 1 <1 < n —1, u;- @(u1,...,un—1) = 0. Let z be a unit vector in the
direction of @(u1,...,un—1). Then

$-®(u1,...,un_1) = |zl ||®(u1,...,un_1)||cos(0)
= ||®(u1,...,un_1)||.

But z - @(u1,...,Un—1) = det(z,uq,...u,_1) which is the volume of the parallelepiped
P(z,u1,...Un1), which, since ||z|| = 1, is the volume of the parallelepiped P(u1,...,Un_1).
So, since ||z|| = 1, || ®(u1, - - - un—1)|| equals the volume of the parallelepiped P(uy,. .., un_1).
Finally, @(u1, - . . un—1) has positive orientiation: det(@(u1,...un-1),u1,-.-tUn-1) = Q(u1,..
(w1, ..., un-1) > 0, so the cross product has positive orientation unless it is zero.

Let us assume that we have a basis for IR™ in which the nth basis vector is ug, a unit
vector orthogonal to H. For 1 < 2 < n, our tth basis vector can be written as u;, =
(Wity - -, Uin—1,€), where by construction, each |¢;| < d. By appropriate choice of £ we
can arrange that |¢;| is small relative to ||u;||. Let z be the unit vector in the direction of

Q(u1,-..,un-1). Then the distance of z to ug is given by /1 — z2. Our goal is to show

that |z,| is very close to 1.
Let V' be the volume of the parallelepiped with sides (z,u1, ..., un—1). By definition,

Il 1132 “ e mn
U11 U12 Ul n-1 €1
z-@Q(u1,. .. un1) = .
Un—-11 Un-12 ... Upn—1n-1 €n-1
= zidet(My) — ...+ (—l)""'l:cndet(Mn)
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where M, is the (1,:) minor of the matrix (expanding along the first row). Thus, |V| =
llw] - - [|wn-t1]| - [|z]] = ||w1]|-- - ||un-1]|- Let M} denote the (z,n) minor of the matrix (ex-
panding along the nth column). Then

zidet(Mq) — ... + (—1)"+1$ndet(Mn)
= (—1)"+1mndet(Mn) + (—1)"+261det(Mf) + ...+ enrdet(M;_,).

For 1 <1< n—1,let uf = (wi,...,Uin-1). Since ||z|| = 1, det(M}) is bounded by
the U;, the volume of the parallelepiped with sides wi,...,%;i—1,%i11,...,Upn_1. Let V* =

volume(P(ul,...,u_;)), let e = max?7' ¢; and a = min?7} ||u}|. Then

n—1
VI < 2V + ) Jath]
=1

V*
< JonV*] 4+~
a
V| ne
Ll o< —. 3
PLo< el 12 ®)
But 1 < %, so |zn| > 1 —|2|. Since ¢ < d and a > £, we can make z, as close to 1

as desired by appropriate choice of £. In particular, since ug = (0,0,...,0,1), the distance
from z to the unit vector orthogonal to H can be made as small as desired.

Lemma 5.3 Assume that by, ..., b, ts a basts of the lattice L C IR™, b, ...,b., is its dual basis,
|6i|| < N fori=1,..,n,v e L, u=3Yr,06bcR" |[u—v|]< ﬁ and a; 1s the closest
integer to B; fori1=1,...,n. Then Y, a;b; = v.

Proof: [, = b} u (inner product) for s = 1,...,n. If v = ¥ ; v;b; then v, = b - v. It is
enough to show that |8; — ;| < 3. [B; — 7| =[b}- v — b} - u| =|bi(v — u)| <N = 1. ]

We want to apply Lemma 6.3 to L*, where L €g L. Note that L = (L*)* has a basis
of length at most N = 2nd. uyg € L* and z is close to ug. The lemma says that if
|z — uw| < ﬁ then if we write z as a linear combination of the basis vectors for L* and
round the coeflicients of these basis vectors to the nearest integers, we will obtain ugy. In
order to ensure that ||z —ug|| < ﬁ it is necessary and sufficient that /1 — 22 < ﬁ Since
[zn] > 1 — ]2 >1 - |%|, choosing £ > 16dN%n suffices.

This completes the proof of Theorem 6.1. [ ]
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Appendix 2

A Public-key Cryptosystem with
Worst-case/Average-case Equivalence

Miklos Ajtai and Cynthia Dwork

We present a probabilistic public key cryptosystem which is secure unless the following
worst-case lattice problem can be solved in polynomial time: “Find the shortest nonzero
vector in an n dimensional lattice L where the shortest vector v is unique in the sense
that any other vector whose length is at most n¢||v|| is parallel to v.”

1 Introduction

In [3] we presented a public key cryptosystem generator whose security was based on the
unique shortest vector problem:

Find the shortest nonzero vector in an n dimensional lattice L where the shortest
vector v is unique in the sense that any other vector whose length is at most n¢||v||
is parallel to v

in the sense that from each instance of the problem it was possible to create a public key
cryptosystem so that (without the corresponding private key), distinguishing encryptions of
zeros from encryptions from ones, when the encryptions are performed using this particular
public key is just as difficult as to solve the given instance of the lattice problem. In this paper
we give another cryptosystem generator so that the following holds: if a random instance
of the system can be broken, that is, the probability that an encryption of a zero can be
distinguished from an encryption of a one (without the private key) in polynomial time with
a probability of at least n~° for some absoloute constant ¢; > 0, then the worst-case unique
shortest vector problem has probabilistic polynomial time solution. The unique shortest
vector problem is one of the three problems listed in [2]. There, a random method is given
to generate hard instances of a lattice problem so that if it has a polynomial time solution
then all of the three worst-case problem (including the unique-shortest vector problem) has
a solution. For further information about lattice problems and public cryptosystems we refer
the reader to the introduction of [3].

2 The Main Theorem

The definitions and theorems of this paper will use three constants, Dy, Dy, D;. We assume
that D; = 3,D; = 8,D3 = 3. (We do not write this actual values in the definitions and
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statements since this way the results are more easily adaptable for other possible values of
these constants. In a similar way K (n) will denote function 2"°6™. We made no attempt to
choose these constants and the function in an optimal way in any sense.

Definitions. Let n be a fixed positive integer. Most of the definitions depend on n but
the notation will not always show this dependence explicitly.

1. Let Q be the n-dimensional cube KU ™ where U™ is the n-dimensional unit cube.
U' will be a random variable which takes its values with uniform distribution on Q.

2. pert(R,m) is a random variable whose each value is the sum of m vectors taken
independently and with uniform distribution from the n dimensional ball with radius R
around 0.

3. Suppose that v € IR", 0 < ||u| <1, R > 0 and m is a positive integer. We define the
random variable H'(u, R, m) in the following way:

First let X be the set of all z € Q so that = - u is an integer. X consists of subsets of
a finite number of n — 1-dimensional hyperplanes, so the n — 1 dimensional volume defined
on these hyperplanes induces a probability measure on X. We take a random point y on
X. Independently we also take a value z of the random variable pert(R,m). The value of
H'(u, R,m) is y + 2.

4. If y € IR and o > 0 then let round,(y) be ic, where ¢ is the largest integer with
a < y.

If £ = (z1,...,2,) € IR" then round,(z) = (round,(z1), ..., roundy(z,)).

5. Let unif = roundy-»(U') and H = roundy—-(H')

6. If ay,...,a, € R", then width(az, ..., a,) will be the width of the parallelepiped defined
by the vectors ay, ..., an, that is, the maximum of the distances between the point a; and the
subspace generated by {a;|7 # i}, fori=1,...,n.

7. If k > 0 is a fixed positive integer then we will call the following problem the n*-unique
shortest vector problem:

Find the shortest nonzero vector in an n dimensional lattice L where the shortest vector
v is unique in the sense that any other vector whose length is at most n*||v|| is parallel to v.

8. When we speak about an instance of the nf-unique shortest vector problem we will
assume that I C Z" and L is represented by a basis. The sum of the logarithms of the
absolute values of all of the nonzero components of the basis vectors will be called the size
of the instance.

We describe a public cryptosystem, and prove that it is secure unless the nP2-unique
shortest vector problem has a polynomial time probabilistic solution.

We describe first a conceptually simple system, which also makes our proofs easier to
understand. We will point out later that with some modification we can make it more
efficient. We assume that a positive integer n is fixed and published. (Alternately n can be
part of the public key.) The public and private keys are chosen in the following way.

(1) Choose a random vector u with uniform distribution on the set
o € R7a]] < 1.

(2) The private key is u.

(3) Generate m = nP: independent values vy, ..., v, of the random variable Houn=—21 1>
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(4) vy, ...,V is the public key

For the encryption of a message, the sender will need the smallest integer 7y so that
width(vig11, ey Vigyn) is at least n72K. We will show later, that with a probability expo-
nentially close to 1, 79 < n?. Since the value of iq does not depend on the message, we may
consider iy also as a part of the public key. Let wy = v 41, ..., Wn = Vig4n. A 0,1 bit z will
be encrypted in the following way:

if z =0 then

(1) choose m random 0,1 values 4y, ..., 6, independently and with probabilities

(2) compute the vector z = 37", &;v;,

11
2727

(3) reduce the vector z modulo wy, ..., wy, into the prarallelepiped P~ (w1, ..., wp) ={37-; A;w;|0 <
A; < 1,7 =1,...,n} that is, find the unique vector z’ in P~ (wy,...,w,) = so that z — &’ is
an integer linear combination of the vectors wy, ..., w,.

(4) z' is the encrypted message.

If z =1 then we get the encrypted message in the following way. Let 27"Z" be the set
of all vectors of the form 27"b, where b € Z".

(5) the encrytped message z” is a random vector chosen with uniform distribution from
the set P~ (wy,...,w,) N 27"Z".

The decryption of the message. Assume that z is the encrypted message. Knowing the
vector u we can decrypt the message in the following way. Let v -2z = 1+ § where: € Z
and —% <8< %, where u - z is the inner product of the n dimensional vectors v and 2. If
6] < % then z is decrypted as a 0 otherwise as a 1. (Our definitions imply that if the bit
0 is sent then it is always decrypted correctly, while the bit 1 is decrypted correctly with a
probability of at least 1 — %)

We will show that our assumption about the hardness of the nP2-unique shortest vector
problem implies that the distribution of z’ and z” cannot be disntiguished by polynomial
time computation.

z' and z" as given in the definition of the encrypted message depend only on the vectors

V1, ...,Um. For later use we define two random variables whose values can be computed in
the same way as z’ and z".
Definition. Assume that vy,...,v,, € IR™, where m = nP*. We define two random

variables S, . ., and &, in the following way. Let 19 be the smallest integer so that
width(vig 41, -, Vigsn) 18 at least n72K and let wy = Vi 41, ..., Wn = Vigyn. (If there is no 1y
with this porperty then the value of both random variables is 0.) We define z’ and z” in the
same way as in the description of the protocol. z’ will be a value of S,, .

value of &,, .

m <Um

z" will be a

e Um)

Definition. Assume that £, {; are random variables whose each value is represented by
a 0, 1-sequence of length k, S is a 0,1 sequence of length s and A is a probabilistic circuit
with 2kt + s input nodes and é > 0. We will say that A distinguishes the random variables
&o and & over S with a bias of at least  if the following holds.

The input nodes of A are partitioned into three subsets Yy, Y1, Y, so that |Y5| = |Yi| = kt.
Yy and Y; are further partitioned into blocks of sizes k. Suppose that we give ¢ mutually
indepent values of both £, and ¢; and the sequence S as inputs to A in the following way.
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First we pick an ¢ € {0,1}. The values of & will be given on the blocks of Y; and the values
of £_1 on the blocks of Y;. S will be given as input on Y. Then for each fixed choice of
1 = 0,1, the probability that the output of A is 7 is at least % + &, where the probability is
taken for both the randomization of £, £, and the probabilistic steps in A.

and &, . will be indistinguishable over
v1,..., Uy in this sense by any polynomial size circuit A4 which does not depend on the

The following theorem says that S, . .,

m < Um

choice of u, provided that the nP2-unique shortest vector problem has no polynomial time
probabilistic solution. We assume that vy, ..., v,, 1s represented by a 0,1 sequence. The fact
that both these vectors and the values of ¢y and £, are elements of 27" Z with a known upper
bound on their components, provides a natural way for representing them by 0, 1-sequences.

Theorem 2.1 For all ci, ¢y, c3,cq > 0 there exists a c5 and a probabilistic algorithm B (using
an oracle) so that for all sufficiently large n, condition (1) implies condition (2), where

(1) A is a probabilistic circuit of size n® so that if u,vs, ..., vm are picked at random as
described in the protocol for generating the public and private keys, then with a probability
of at least n=° the following holds:

A distinguishes the random variables S, .. , over vy, ..., Uy, with a bias of

and &,, .

m owUm?

at least n™°.

(2) B, using A as an oracle, can solve any instance of size at most n°* of the nP2-unique
shortest vector problem in time n® and with a probability at least 1 — 27™.

Remarks. 1. As we have already indicated in the introduction,there are ways to make the
cryptosystem more efficient. One possibility is that instead of choosing the vectors wy, ..., wy,
from the set vy, ..., vy, we may randomize them separately, making sure that they are almost
orthogonal, and so width(wy, ..., w,) will be automatically large. E.g. we may pick w; from
the cube Ke; + (/C)%U("). The proof remains essentially the same, although it causes some
additional complication that the vectors vy, ..., v, w1, ..., w, are now choosen (independently
and) with n + 1 different distributions.

2. Lemma 9.2 shows that if the worst-case n°-unique short vector problem has no poly-
nomial time solution then in a large cube the uniform distribution is computationally indis-
tigushable from the following distribution:

we fix a random vector u in the unit ball, than take random points from the large cubes
on the hyperplanes where the inner products of the vectors with w is an integer, and then
perturb these points slightly. (Each perturbed point is a value of the random variable.)

Using the fact that the distribution of this random variable is computationally indistin-
gushable from the uniform distribution we may construct a pseudo random number generator
in the same way as it is done in [3].

3 Proof of the Theorem

Lemma 3.1 For all ¢y, c; there ezists c3, cs and a probabilistic algorithm B (using an oracle)
so that for all sufficiently large n, condition (1) implies condition (2), where
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(1) A is a probabilistic circuit so that u,vy,...,v, are picked at random as described in
the protocol for generating the public and private keys, then with a probability of at least n™
the following holds:

A distinguishes the random variables S, .., over vy, ..., Uy, with a bias of

and &,, .

m HWUm

at least n™°2.

(2) Suppose that we pick the random vector u as described in the protocol for generating
the public and private keys. Then with a probability of at least n= the following holds: B,
using A as an oracle, distinguishes the random variables unif and ‘H,, ,,-», , with a bias of
in time n.

at least n™ % ,

Proof of Lemma 9.1.

We may assume that condition (1) of the lemma holds even if in its conclusion we require
that A distinguishes z’ and z" with a bias of at least %—n_z’. Indeed suppose that u, vy, ..., vy,
is fixed with the property that A distinguishes S,,, . ., and &, . ., with a bias of at least
n=%. B produces a long independent sequence of values of both random variables (n°2*!

m

times longer, than required by A) and applies A n°2*! times, then takes the majority of the

decisions. The bias of the decision will be exponentially close to %, certainly greater than
1

5~ n~2. For the sake of notational simplicity we assume that already the original A has this
property.
Let X be the set of sequences vy, ...,v,, with the property that A4 distinguishes the

. . . 1 _9 .
random variables Sy, ... vy Eu ..o With a bias of at least 5 —n7%. Since S, . Eor,...ovm CAI

be generated in polynomial time, there is a polynomial time probabilistic algorithm which,
for any fixed values vy, ..., v,,, approximates the bias of A with a polynomially small error,
using only a polynomial number of applications of A. Therefore there is a set ¥ O X so
that

(a) y € Y can be decided in polynomial time, with a probability exponentially close ot
one.

(b) for each (vy,...,v,) € Y, A distinguishes Sy, 4,., Eu,. v, With a bias of at least
1 _n-l
i Now we give a definition for the algorithm B. B gets mt, t = n?* values of a random
variable ¢ and it tries to decide whether it is unif or H,, ,-», ,
partitions the values into blocks of size m. For each fixed block B it computes two 0,1
bits f(B) and g(B). Assume that the values in B are by,...,by. If (b1,...,b,,) ¢ Y then
f(B) = g(B) = 0. Suppose (by,...,b,) € Y. B produces as many independent values of the
random variables Sy, 3., &, ... b, as needed for the input of A. B gives the values of S and
€ to A as an input in a random order. If 4 identifies S and £ correctly then g(B) = 1
otherwise g(B) = 0. f(B) = 1 in both cases. Finally let fo = Y f(B), 90 = X g9(B),
where we take the sums for all ¢ blocks. If f > %n_clt and go > %fo then B decides that
§ = H,pn-m: , otherwise it decides that £ = unif . This completes the definition of 3.

in the following way: B

For any fixed u let B, be the following event: if we randomize v, ...,v,, as described in
the protocol, then with a probability of at least =2, we have that, “A distinguishes the
random variables § and &, over vy, ..., v,, with a bias of at least % —n~l7,
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Condition (1) of the lemma implies that if we randomize only u then P(B,) > n~%.
Since n™?% > n~%, it is sufficient to show that if B, holds then B distinguishes H,, ,-», ,
and unif with a bias of at least i.

We will show that if { = H, ,-», ,, then for each fixed block B the following holds,
where the probabilities are taken both for the randomization of the elements by, ...,5,, and
the random steps of B and A:

() P((B) = 1) > n=5, P(g(B) = 1/f(B) = 1) > 1 — "1,

Since the events for different blocks are independent These inequalities imply that with
a probability exponentialy close to one, we have fy > %n_clt and gg > %fo.

For ¢ = unif we will show that

(d) P(g(B) = 11f(B) =1) < 1+ 1.

This implies that with a probability exponentially close to one either f; < %n_clt or
90 < 3fo.

Therefore it is enough to show that the inequalities (c) and (d) hold for the appropriate
choice of €.

Assume first that { = H,, ,-», ,. Since Y 2 X and P(X) > n™*, we have P(Y) > n™.
Since (b, ...,by) € Y implies f(B) = 1 we have P(f(B) =1) > n™.

Assume f(B) = 1 and therefore (b1, ...,b,) € Y. By the definition of Y, A distinguishes
S and £ with a bias of at least % —n~!. Therefore the probability that A gives the right
answer is at least 1 —n~!, in other words P(g(B) = 1|f(B)=1)>1—n"",

Assume now that ¢ = unif. Suppose that v is fixed, % < ||lu|]| £ 1. (Clearly the probability
of this event is exponentially close to one.) We show that in this case for almost all choices of
V1, ...,Um (with an exponentially small exception) the random variables S and & are almost
identical in the sense that the distance of their distribution is smaller than 27", This will
imply the required inequality, since A is trying to distinguish two random variables whose
distance is exponentially small and which are given to it in a random order, therefore the
bias of its decision is exponentially small.

We show now that if vy,...,v,, are independent values of unif then with a probability
exponentially close to one, we have that the distance of the distribution S,, . .,, and &, . .
is exponentially small.

v ,...w, Dy definition has a uniform distribution on A = P~ (wy, ..., w,)N27"Z". We have
to show that with high probability S,,, . ., has also an almost uniform distribution on this
set. (We note that this is not true if vy, ..., v, are random values of H,, ,-», ,,.) The elements
of A form an Abelian group if we define addition as the addition in IR" modulo the subgroup
generated by wy, ..., w,. We want to apply Lemma 9.3 for this group and the sum Y em)2 8;v;.
First we randomize v, ..., Um/2. We show that with a probablity of at least 1 — 27" we
have 19 < 7 — n — 1, therefore this randomization already decides the values wy, ..., wn.
To show that we estimate for a fixed j the probability of the event B; where B; holds iff
width(vjy1, ..., vj4n) < a/n?. For any fixed ¢ = 1, ..,n the probability that the distance of v,;
from the subspace generated by {vi|k # j+15+1 < k < j4n} is smaller than n~? is at most

2_ (see Lemma 9.4), therefore the probability that this happens for at least one 4 is at most

o= 3

n~2. The events B; for j = nl,l = 1,...,7> —1 are independent, therefore the the probability
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that there exists a 7 = nl, [ = 1,...,5- — 1 with =B, is at least (1 — cn_%)ﬁ_l <1-2™"
provided that m > n? and n is sufficiently large with respect to c. Therefore we may assume
that 19 < 7 and so wy, ..., w, are defined after the randomization of vy, ..., V2. Now we may
apply Lemma 9.3 with & — % b, — Vm oy, b — 5%_“-. Since A C 27"Z" N Q has at most
(2mK)" —9m°9n°logn elements and m = nP* = n3, we have that if we randomize CESRI
then with a probability of at least 1 — 27°™ the following holds for the randomization of
the number é=, ..., 6m: Yaca [Pa — |A|7!] < 27", where p, = P(a = ™ = &;v;). That is the

=
distance of the distribution of the sum from the uniform distribution is ja,t most 27", Since
the distance from the uniform distribution is a convex function the same will be true for the
sum Y., 6;v; if we are taking into account the randomization of the values 41, ..., 572_n_1.
That is, we have shown that with a probability exponentially close to one the distribution
of § is exponentially close to the uniform distribution, that is, to the distribution of £.

Q.E.D.(Lemma 9.1)

Lemma 3.2 For all ¢1,cy there ezists a c3,cs and a probabilistic algorithm B (using an
oracle) so that for all sufficiently large n, condition (1) implies condition (2), where

(1) A is a probabilistic circuit with the following property: if we pick the random vector u
as described in the protocol for generating the public and private keys, then with a probability
of at least n=° the following holds: A distinguishes the random variables unif and H
with a bias of at least n™°2,

(2) B, using A as an oracle, can solve any instance of size at most n° of the nP2-unique

shortest vector problem in time n° and with a probability greater than 1 — 27",

u,n_Dl \n

Proof. We describe an algorithm B satisfying the requirements of (2). The input will
be a basis of a lattice L whose shortest vector is unique upto a factor of nP2. Let v be a
shortest non-zero vector in L. Let X be the set of all u € IR™ so that % < |lul]] €1 and A4
distinguishes the random variables unif and H,, ,-», , 2,

We apply Lemma 9.5 with the set X defined above. The lemma implies that if we
compute ¢t = [n2*?] (where ¢, is from Lemma 9.5) values Uy, ..., U; of the random variable

with a bias of at least n™

v then with a probability of at least 1 — 272" at least one of the vectors U;v, ¢ = 1,...,t is
in X. Assume that an ¢ is fixed with this property. We will find the shortest vector of U, L.
Since U; = 0V where 6 € IR and V is an orthogonal linear transformation, we have that w is
Dz_unique shortest vector of L iff U;w is an nP2-unique shortest vector of U; L. Let J be
the dual lattice of U; L. Since U; L has an nP?-unique shortest vector, J is an (nP2,1) lattice

an n

in the sense of [AD]. In the remaining part of the proof we assume that the reader is familiar
with this paper. To be able to apply the results of [AD] we pick a new system of coordinates
so that Use;, 7 = 1,...,,n is the new basis. Let K = K, that is, KU®™ = Q. As it is proved
in [AD] the distance of the distributions of H,, o, ,
clearly ng = unif. Therefore the distinguishability of unif, and H

and {;k g 1s exponentially small and
un-D1 » Would imply the
distinguishability of ;% r and nx and so the algorithm given in [AD] in polynomial time
would find J(#M) and so the shortest vector of U;L using A as an orcale with a probability

exponentially close to one. Q.E.D.(Lemma 9.2)
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Proof of Theorem 8.1. Condition (1) of the theorem is identical to condition (1) of
Lemma 9.1. Its consequence condition (2) of Lemma 9.1 implies the existence of a circuit
which satisfies the requirements of (1) Lemma 9.2. The conclusion of Lemma 9.2 implies the
existence of an algorithm, which uses another algorithm as an oracle (the second algorithm
uses a circuit as an oracle.) We can make a single algorithm from the two mentioned ones
and get the conclusion of the theorem. Q.E.D.(Theorem 8.1)

Remark. We have shown that with high probability 10 < % only in the case when

V0, ..., Um are values of the random variable unif. (See the proof of Lemma 9.1.) In the same

!

way we can also show that if v],...,v) are random independent values of unif then with a

probability exponentially close to one, there is an 13 < 7 so that width(v; ,,...,v; ,,) >

by adding independent values of pert,,-», ,,
2

n~la. We may get idependent values of H

to vy, ...,v.,. Since each possible value of pert,-», » is much smaller than n~

U
: ! ! -1_: : : -2
width(v{ ,1,...,v} 4,) > n"'a implies width(vs 41, ..., v, 4n) > n7%a.

The following lemma is from [Ajt]

u,n_Dl n
a we have that

Lemma 3.3 There ezists a ¢ > 0 so that if A is a finite Abelian group with n elements
and k is a positive integer and b = (by,...,bx) is a sequence of length k whose elements are
chosen wndependently and with uniform distribution from A, then with a probability of at
least 1 — 27 the following holds:

Assume that b is fized and we randomize a 0,1-sequence 61, ...0r, where the numbers ;

are chosen independetly and with uniform distribution from {0,1}. For each a € A let
pa = Pla = le 8;b;). Then

(a’) ZaeA(pa - |A|_1)2 S 2_2Ck and
(b) EaEA |pa - |A|_1| S |A|%2_Ck

Lemma 3.4 Assume that Q = U™ C IR" is the unit cube of the n-dimensional space and

and H C IR"™ is a hyperplane, and V 1is the set of those points in () whose distance from H
1

is at most v > 0. Then the volume of V is at most 2yn=.

Proof. Let b = (by,...,b,,) be a unit vector orthogonal to H. Since 1 = ||b|| = ¥ |b:|?,
thereis a 1 < j < n, so that |b;| > n=%. This implies that the vectors u,v € V differ only in
their jth components u;,v;, then |u; — v;| < Q’yn%. Let Q' be the orthogonal projection of
@ to the hyperspace z; = 0. The previous remark implies that for for each fixed p € Q' the
length of the interval in V which is projected to p is at most QPyn%. Therefore the volume of
Q' is at most 2yn3.

Definitions. 1. We call a linear transformation U of IR"”, orthogonal, if for any u € IR",
|luU]| = ||||- (An equivalent characterization of the orthogonal linear transformation U is
the following: with respect to any orthonormal basis the matrix of U is orthonormal, that
is, its rows as n-dimensional vectors form an orthonormal system.)

2. If the values of a random variable ¢ are real numbers (or vectors, matrices with real
component), then we say that a probabilistic algorithm generates ¢ in polynomial time, if
for any ¢ > 0 there is a ¢/ > 0 so that the algorithm generates a random variable in time n¢
which approximates ¢ with an error not greater then 27",
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Lemma 3.5 For all ¢c; > 0, there is a c; > 0 and a probabilistic algorithm which generates
a random variable v in polynomial time so that

(1) each value of v can be written in the form of Ov1 where 8 € IR and v1 ts an orthogonal
linear transformtaion of IR™

(2) If X is a Lebesque measurable subset of the unit ball of R™ whose density in it is at
least n= and v € R™ with 27 < v < 27°  then P(vv e X) >n"%.

In the proof of this lemma we will use the following well-known facts about orthogonal
linear transformations. The set of all orthogonal linear transformations of IR™ is a compact
topological group under the multiplication of linear transformations and the usual topology
of linear transformation (induced by e.g. any fixed matrix representation). There is a unique
probability measure on this group (defined on all Borel sets) which is invariant under the
mappings defined by the multiplication with any fixed element of the group. (The Haar
measure of the group.) We assume that p is a random variable taking its values with
uniform distribution on the set of orthogonal linear transformations of IR™ according to this
distribtuion. We will use that following property of u: If v € R", ||v|| = 1 is fixed, then pv
has a uniform distribution on the set of vectors with length 1. There are several ways to

generate p in polynomial time, e.g, we may randomize sequentially the vectors pey, ..., pe,.
After pey, ..., pue; has been selected, pe;11 is choosen with uniform distribution from the set
of all unit vectors orthogonal to uey, ..., uen,.

Let 8 be a random variable taking its values on the [0, 1] interval and defined in the
following way: first we take a vector w with uniform distribution on the unit ball of IR™, and
let = ]|

Let v be the random variable which takes the value (1 + %)z with a probability # +1
for: = —nt* ..., -1,0,1,...,n*

Finally we assume that g, 0 and 7 are independent and define v,1; and 6 as follows:
vi = u, 8 =8, v = 7Bu. Assume now that a v € R" is fixed with 27 < |lv]| < 2.

According to the definition of « there is a vy so that the probability of v = g is and

L< vofoll < (1+3).

We estimate the conditional probability P(vv € X|y = 7). Since, 3, p are independent
this is the (unconditional) probability P(yoBuv € X). As we have remarked earlier pv has
a uniform distribution on the set of all vectors with length ||v|| and so by the definition

_1
2n241

of 3, voBuv has a uniform distribution on the ball around 0 with radius ~gl||v||. Since this
ball contains the unit ball and the ratio of their volumes is at most (1 + %)" < 3, we get a
point in X with a probability of at least %n_cl, that is, P(vv € X|y = y0) < %n‘cl and so
Pvv e X) < %n‘cl 2n21+1. Q.E.D.(Lemma 9.5).

Remarks. 1. As we have already indicated in the introduction,there are ways to make the

cryptosystem more efficient. One possibility is that instead of choosing the vectors wy, ..., wpn,
from the set vy, ..., v, we may randomize them separately, making sure that they are almost
orthogonal, and so width(wy, ..., w,) will be automatically large. E.g. we may pick w; from
the cube Ke; + (/C)%U("). The proof remains essentially the same, although it causes some
additional complication that the vectors vy, ..., v, w1, ..., w, are now choosen (independently
and) with n + 1 different distributions.
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