Electronic Colloquium on Computational Complexity - Reports Series 1996 - available via:
E(:(:(: FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW: http://www.eccc.uni-trier.de/eccc/

T R96- 066 Email: ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

Structure in Approximation Classes”

P. Crescenzit V. Kann? R. Silvestri® L. Trevisan¥

Abstract

The study of the approximability properties of NP-hard optimization problems has recently
made great advances mainly due to the results obtained in the field of proof checking. The
last important breakthrough shows the APX-completeness of several important optimization
problems is proved and thus reconciles ‘two distinct views of approximation classes: syntactic and
computational’. In this paper we obtain new results on the structure of several computationally-
defined approximation classes. In particular, after defining a new approximation preserving
reducibility to be used for as many approximation classes as possible, we give the first examples of
natural NPO-complete problems and the first examples of natural APX-intermediate problems.
Moreover, we state new connections between the approximability properties and the query
complexity of NPO problems.

Key words. Complexity classes, reducibilities, approximation algorithms

AMS subject classifications. 03D30, 68Q15, 68Q20

1 Introduction

In his pioneering paper on the approximation of combinatorial optimization problems [20], David
Johnson formally introduced the notion of approximable problem, proposed approximation algo-
rithms for several problems, and suggested a possible classification of optimization problems on
grounds of their approximability properties. Since then it was clear that, even though the decision
versions of most NP-hard optimization problems are many-one polynomial-time reducible to each
other, they do not share the same approximability properties. The main reason of this fact is that
many-one reductions not always preserve the objective function and, even if this happens, they
rarely preserve the quality of the solutions. It is then clear that a stronger kind of reducibility
has to be used. Indeed, an approximation preserving reduction not only has to map instances of
a problem A to instances of a problem B, but it also has to be able to come back from “good”
solutions for B to “good” solutions for A. Surprisingly, the first definition of this kind of reducibil-
ity [33] was given as long as 13 years after Johnson’s paper and, after that, at least seven different

*An extended abstract of this paper has been presented at the 1st Annual International Computing and Combi-
natorics Conference.

'Dipartimento di Scienze dell’Informazione, Universitd di Roma “La Sapienza”, Via Salaria 113, 00198 Rome,
Italy. E-mail: piluc@dsi.uniromal.it

{Department of Numerical Analysis and Computing Science, Royal Institute of Technology, S-100 44 Stockholm,
Sweden, E-mail: viggo@nada.kth.se

$Dipartimento di Scienze dell’Informazione, Universitd di Roma “La Sapienza”, Via Salaria 113, 00198 Rome,
Italy. E-mail: silver@dsi.uniromal.it

T Centre Universitaire d’Informatique, Université de Genéve, Rue Général-Dufour 24, CH-1211, Genéve, Switzer-
land. E-mail: trevisan@cui.unige.ch. Work done at the Universita di Roma “La Sapienza”.

PTAS-reduction [14]

T

P-reduction [33] = A-reduction [33]

/\/”\

L-reduction [36] E-reduction [26]Continuous reduction [39]

!

Strict reduction [33]

Figure 1: The taxonomy of approximation preserving reducibilities

approximation preserving reducibilities appeared in the literature (see Fig. 1). These reducibili-
ties are identical with respect to the overall scheme but differ essentially in the way they preserve
approximability: they range from the Strict reducibility in which the error cannot increase to the
PTAS-reducibility in which there are basically no restrictions (see also Chapter 3 of [23]).

By means of these reducibilities, several notions of completeness in approximation classes have
been introduced and, basically, two different approaches were followed. On the one hand, the
attention was focused on computationally defined classes of problems, such as NPO (i.e., the class
of optimization problems whose underlying decision problem is in NP) and APX (i.e., the class
of constant-factor approximable NPO problems): along this line of research, however, almost all
completeness results dealt either with artificial optimization problems or with problems for which
lower bounds on the quality of the approximation were easily obtainable [12, 33]. On the other
hand, researchers focused on the logical definability of optimization problems and introduced several
syntactically defined classes for which natural completeness results were obtained [27, 34, 36]:
unfortunately, the approximability properties of the problems in these latter classes were not related
to standard complexity-theoretic conjectures. A first step towards the reconciling of these two
approaches consisted of proving lower bounds (modulo P # NP or some other likely condition) on
the approximability of complete problems for syntactically defined classes [1, 31]. More recently,
another step has been performed since the closure of syntactically defined classes with respect
to an approximation preserving reducibility has been proved to be equal to the more familiar
computationally defined classes [26].

In spite of this important achievement, beyond APX we are still forced to distinguish between
maximization and minimization problems as long as we are interested in completeness proofs.
Indeed, a result of [27] states that it is not possible to rewrite every NP maximization problem as
an NP minimization problem unless NP=co-NP. A natural question is thus whether this duality
extends to approximation preserving reductions.

Finally, even though the existence of “intermediate” artificial problems, that is, problems for
which lower bounds on their approximation are not obtainable by completeness results was proved in
[12], a natural question arises: do natural intermediate problems exist? Observe that this question
is also open in the field of decision problems: for example, it is known that the graph isomorphism
problem cannot be NP-complete unless the polynomial-time hierarchy collapses [38], but no result
has ever been obtained giving evidence that the problem does not belong to P.

The first goal of this paper is to define an approximation preserving reducibility that can be
used for as many approximation classes as possible and such that all reductions that have appeared

in the literature still hold. In spite of the fact that the L-reducibility has been the most widely used
so far, we will give strong evidence that it cannot be used to obtain completeness results in “com-
putationally defined” classes such as APX, log-APX (that is, the class of problems approximable
within a logarithmic factor), and poly-APX (that is, the class of problems approximable within a
polynomial factor). Indeed, on the one hand in [14] it has been shown that the L-reducibility is
too strict and does not allow to reduce some problems which are known to be easy to approximate
to problems which are known to be hard to approximate. On the other hand in this paper we
show that it is too weak and is not approximation preserving (unless P = NP N co-NP). The
weakness of the L-reducibility is, essentially, shared by all reducibilities of Fig. 1 but the Strict
reducibility and the E-reducibility, while the strictness of the L-reducibility is shared by all of them
(unless PNP C PNP[O(IOgn)]) but the PTAS-reducibility. The reducibility we propose is a combina-
tion of the E-reducibility and of the PTAS-reducibility and, as far as we know, it is the strictest
reducibility that allows to obtain all approximation completeness results that have appeared in the
literature, such as, for example, the APX-completeness of MAXIMUM SATISFIABILITY [14, 26] and
the poly-APX-completeness of MaxiMuM CLIQUE [26].

The second group of results refers to the existence of natural complete problems for NPO.
Indeed, both [33] and [12] provide examples of natural complete problems for the class of mini-
mization and maximization NP problems, respectively. In Sect. 3 we will show the ezistence of
both maximization and minimization NPO-complete natural problems. In particular, we prove that
MAXIMUM 0 —1 PROGRAMMING and MINIMUM 0 — 1 PROGRAMMING are NPO-complete. This re-
sult shows that making use of a natural approximation preserving reducibility is enough powerful to
encompass the “duality” problem raised in [27] (indeed, in [26] it was shown that this duality does
not arise in APX, log-APX, poly-APX, and other subclasses of NPO). Moreover, the same result
can also be obtained when restricting ourselves to the class NPO PB (i.e., the class of polynomially
bounded NPO problems). In particular, we prove that MaxiMuM PB 0 — 1 PROGRAMMING and
MINIMUM PB 0 — 1 PROGRAMMING are NPO PB-complete.

The third group of results refers to the existence of natural APX-intermediate problems. In
Sect. 4, we will prove that MINIMUM BIN PACKING (and other natural NPO problems) cannot be
APX-complete unless the polynomial-time hierarchy collapses. Since it is well-known [32] that this
problem belongs to APX and that it does not belong to PTAS (that is, the class of NPO problems
with polynomial-time approximation schemes) unless P=NP, our result yields the first ezample of
a natural APX-intermediate problem (under a natural complexity-theoretic conjecture). Roughly
speaking, the proof of our result is structured into two main steps. In the first step, we show that
if MiNniMUM BIN PACKING were APX-complete then the problem of answering any set of k non-
adaptive queries to an NP-complete problem could be reduced to the problem of approximating an
instance of MINIMUM BIN PACKING within a ratio depending on k. In the second step, we show that
the problem of approximating an instance of MINIMUM BIN PACKING within a given performance
ratio can be solved in polynomial-time by means of a constant number of non-adaptive queries to
an NP-complete problem. These two steps will imply the collapse of the query hierarchy which
in turn implies the collapse of the polynomial-time hierarchy. As a side effect of our proof, we
will show that if a problem s APX-complete, then it does not admit an asymptotic approximation
scheme.

The previous results are consequences of new connections between the approximability prop-
erties and the query complexity of NP-hard optimization problems. In several recent papers the
notion of query complexity (that is, the number of queries to an NP oracle needed to solve a given
problem) has been shown to be a very useful tool for understanding the complexity of approxi-
mation problems. In [7, 9] upper and lower bounds have been proved on the number of queries

needed to approximate certain optimization problems (such as MAXIMUM SATISFIABILITY and
MaxiMuM CLIQUE): these results deal with the complexity of approximating the value of the op-
timum solution and not with the complexity of computing approximate solutions. In this paper,
instead, the complexity of “constructive” approximation will be addressed by considering the lan-
guages that can be recognized by polynomial-time machines which have a function oracle that solves
the approximation problem. In particular, after proving the existence of natural APX-intermediate
problems, in Sect. 4.1 we will be able to solve an open question of [7] proving that finding the
vertices of the largest clique is more difficull than merely finding the vertices of a 2-approzimale
clique unless the polynomial-time hierarchy collapses.

The results of [7, 9] show that the query complexity is a good measure to study approximability
properties of optimization problems. The last group of our results show that completeness in
approximation classes implies lower bounds on the query complexity. Indeed, in Sect. 5 we show
that the two approaches are basically equivalent by giving sufficient and necessary conditions for
approzimalion completeness in terms of query-complexity hardness and combinatorial properties.
The importance of these results is twofold: they give new insights into the structure of complete
problems for approximation classes and they reconcile the approach based on standard computation
models with the approach based on the computation model for approximation proposed in [8]. As a
final observation, our results can be seen as extensions of a result of [26] in which general sufficient
(but not necessary) conditions for APX-completeness are proved.

1.1 Preliminaries

We assume the reader to be familiar with the basic concepts of computational complexity theory.
For the definitions of most of the complexity classes used in the paper we refer the reader to one
of the books on the subject (see, for example, [2, 5, 16, 35]).

We now give some standard definitions in the field of optimization and approximation theory.

Definition 1 An NP optimization problem A is a fourtuple (I, sol,m,type) such that
1. I is the set of the instances of A and it is recognizable in polynomial time.

2. Given an instance x of I, sol(x) denotes the set of feasible solutions of . These solutions are
short, that is, a polynomial p exists such that, for any y € sol(z), |y| < p(|z|). Moreover, for
any x and for any y with |y| < p(|z|), it is decidable in polynomial time whether y € sol(z).

3. Given an instance x and a feasible solution y of x, m(x,y) denotes the positive integer measure
of y (often also called the value of y). The function m is computable in polynomial time and
is also called the objective function.

4. type € {max, min}.

The goal of an NP optimization problem with respect to an instance z is to find an oplimum
solution, that is, a feasible solution y such that m(z,y) = type{m(z,y’) : ¢’ € sol(z)}. In the
following opt will denote the function mapping an instance z to the measure of an optimum solution.

The class NPO is the set of all NP optimization problems. Max NPO is the set of maximization
NPO problems and Min NPO is the set of minimization NPO problems.

An NPO problem is said to be polynomially bounded if a polynomial ¢ exists such that, for
any instance z and for any solution y of z, m(z,y) < ¢(|z|). The class NPO PB is the set of all
polynomially bounded NPO problems. Max PB is the set of all maximization problems in NPO PB
and Min PB is the set of all minimization problems in NPO PB.

Definition 2 Let A be an NPO problem. Given an instance x and a feasible solution y of x, we
define the performance ratio of y with respect to = as

m(z,y) opt(z) }

opt(z) " m(z,y)

R(z,y) = maX{
and the relative error of y with respect to z as

lopt(z) — m(z,y)|
opt(z) '

E(may):

The performance ratio (respectively, relative error) is always a number greater than or equal to
1 (respectively, 0) and is as close to 1 (respectively, 0) as the value of the feasible solution is close
to the optimum value. It is easy to see that, for any instance z and for any feasible solution y of z,

E(z,y) < R(z,y)— 1.

Definition 3 Let A be an NPO problem and let T be an algorithm that, for any instance x of
A such that sol(z) # (, returns a feasible solution T(z) in polynomial time. Given an arbitrary
function r: N — [1,00), we say that T is an r(n)-approximate algorithm for A if the performance
ratio of the feasible solution T(z) with respect to x verifies the following inequality:

R(z,T(z)) < r([z]).

Definition 4 Given a class of functions F, an NPO problem A belongs to the class F-APX if an
r(n)-approzimate algorithm T for A exists, for some function r € F.

In particular, APX, log-APX, poly-APX, and exp-APX will denote the classes F-APX with F
equal to the set O(1), to the set O(logn), to the set O(n°1)), and to the set O(?no(l)), respectively.
One could object that there is no difference between NPO and exp-APX since the polynomial
bound on the computation time of the objective function implies that any NPO problem is h2n" -
approximable for some h and k. This is not true, since NPO problems exist for which it is even
hard to find a feasible solution. We will see examples of such problems in Sect. 3 (e.g. MAXIMUM
WEIGHTED SATISFIABILITY).

Definition 5 An NPO problem A belongs to the class PTAS if an algorithm T exists such that,
for any fized rational r > 1, T(-,r) is an r-approzimate algorithm for A.

Clearly, the following inclusions hold:
PTAS C APX C log-APX C poly-APX C exp-APX C NPO.
It is also easy to see that these inclusions are strict if and only if P # NP.

1.2 A list of NPO problems

We here define the NP optimization problems that will be used in the paper. For a much larger
list of NPO problems we refer to [11].

MAXIMUM CLIQUE

INsTANCE: Graph G = (V, E).

SoLuTiON: A clique in G, i.e. a subset V' C V such that every two vertices in V' are joined by an
edge in F.

MEeasuRE: Cardinality of the clique, i.e., |[V'].

MAXIMUM WEIGHTED SATISFIABILITY and MINIMUM WEIGHTED SATISFIABILITY

INSTANCE: Set of variables X, boolean quantifier-free first-order formula ¢ over the variables in X,
and a weight function w: X — N.

SorLuTioN: Truth assignment that satisfies ¢.

MEASURE: The sum of the weights of the true variables.

MaxiMuM PB 0 — 1 PROGRAMMING and MINIMUM PB 0 — 1 PROGRAMMING

INsSTANCE: Integer m X n-matrix A, integer m-vector b, binary n-vector c.
SOLUTION: A binary n-vector z such that Az > b.

n
MEASURE: 1+ > ciz;.

i=1

MAXIMUM SATISFIABILITY

INSTANCE: Set of variables X and Boolean CNF formula ¢ over the variables in X.
SoruTioN: Truth assignment to the variables in X.
MEASURE: The number of satisfied clauses.

MiNIMUM BIN PACKING

INSTANCE: Finite set U of items, and a size s(u) € @ N (0,1] for each u € U.

SoLuTioN: A partition of U into disjoint sets Uy, Us, ..., U,, such that the sum of the sizes of the
items in each U; is at most 1.

MEASURE: The number of used bins, i.e., the number m of disjoint sets.

MINIMUM ORDERED BIN PACKING

INsTANCE: Finite set U of items, a size s(u) € @ N (0, 1] for each u € U, and a partial order < on
U.

SOLUTION: A partition of U into disjoint sets Uy, Us, ..., U, such that the sum of the sizes of the
items in each U; is at most 1 and if u € U; and v’ € U; with v < «/, then ¢ < j.

MEASURE: The number of used bins, i.e., the number m of disjoint sets.

MINIMUM DEGREE SPANNING TREE

INsTANCE: Graph G = (V, E).
SOLUTION: A spanning tree for .
MEASURE: The maximum degree of the spanning tree.

MiNiMUM EDGE COLORING

INsTaNCE: Graph G = (V, E).

SorLuTioN: A coloring of F, i.e., a partition of F into disjoint sets Fq, F, ..., F} such that, for
1 < ¢ <k, no two edges in E; share a common endpoint in G.

MEASURE: Cardinality of the coloring, i.e., the number k of disjoint sets.

2 A new approximation preserving reducibility

The goal of this section is to define a new approximation preserving reducibility that can be used
for as many approximation classes as possible and such that all reductions that have appeared in
the literature still hold. We will justify the definition of this new reducibility by emphasizing the
disadvantages of previously known ones. In the following, we will assume that, for any reducibility,
an instance x such that sol(z) # 0 is mapped into an instance 2’ such that sol(z') # 0.

2.1 The L-reducibility

The first reducibility we shall consider is the L-reducibility (for linear reducibility) [36] which is
often most practical to use in order to show that a problem is at least as hard to approximate as
another.

Definition 6 Let A and B be two NPO problems. A is said to be L-reducible to B, in symbols
A <y, B, if two functions [and g and two positive constants o and 3 exist such that:

1. For any x € 14, f(z) € I is computable in polynomial time.

2. For any x € I4 and for any y € solg(f(x)), g(z,y) € sola(x) is computable in polynomial
time.

3. For any x € 14, optg(f(z)) < aopt4(2).

4. For any x € I4 and for any y € solg(f(x)),

lopt4(2) — ma(z,g(x,y))| < Bloptg(f(2)) — mp(f(2),y)]
The fourtuple (f, g, a,) is said to be an L-reduction from A to B.

Clearly, the L-reducibility preserves membership in PTAS. Indeed, if (f, g, a, §)is an L-reduction
from A to B then, for any « € I4 and for any y € solg(f(z)), we have that

Eu(z,9(z,9)) < afEp(f(2),y),

so that if B € PTAS then A € PTAS [36]. The above inequality also implies that if A is a mini-
mization problem and an r-approximate algorithm for B exists, then a (14 af8(r —1))-approximate
algorithm for A exists. In other words, L-reductions from minimization problems to optimization
problems preserve membership in APX. The next result gives a strong evidence that, in general,
this is not true whenever the starting problem is a maximization one.

Theorem 7 The following stalements are equivalent:

1. Two problems A € Max NPO and B € Min NPO ezist such that A ¢ APX, B € APX, and
A <1, B.

2. Two Max NPO problems A and B exist such that A ¢ APX, B € APX, and A <1, B.

3. A polynomial-time recognizable set of satisfiable Boolean formulas exists for which no
polynomial-time algorithm can compute a satisfying assignment for each of them.

Proor:

(1) = (2). In this case, it suffices to L-reduce B to a maximization problem ' in APX [26].

(2) = (3). Assume that for any polynomial-time recognizable set of satisfiable Boolean formulas
there is a polynomial-time algorithm computing a satisfying assignment for each formula in the set.
Suppose that (f,g,a,3) is an L-reduction from a maximization problem A to a maximization
problem B and that B is r-approximable for some r > 1. Let 2 be an instance of A and let
y be a solution of f(z) such that optg(f(z))/ms(f(z),y) < r. For the sake of convenience, let
opty = opty(z), ma = ma(z,9(2,y)), optg = optg(f(z)), and mp = mp(f(z),y). Let also
my = max{ma, mp/a}. Since m4 < opt, and mp/a < optg/a < opt,, we have that m, < opty.
We now show that opt,/m, < 1+ af(r — 1), that is, m, is a non-constructive approximation of

opty. Let v = #@_1) There are two cases.

1. optg < 7opty. By the definition of the L-reducibility, opty, — m4 < f(optg — mp). Since
optg < yopt, and optg/mp < r, we have that

optA—mA<A optB_mB<7ﬁ(1—1/T)
opty optg .
Hence,
OPtASOPtAS 1 _ — 1t af(r—1)
my my 1- ”/ﬂT

where the last equality is due to the definition of 7.

2. optg > vyopt,. It holds that

opt 4 opt 4
My mp/a
a(optp/7) (
mp
a(optp/7)

(optg/T)

E
= 1+af(r-1).

since opt, < optg/7)

(since mp > optg/r)

Let us now consider the following non-deterministic polynomial-time algorithm.

begin {input: z € 14}
compute m, by using the r-approximate algorithm for B and the L-reduction from A to B;
guess y € sola(z);
if ma(z,y) > m, then accept else reject;

end;

By applying Cook’s reduction [10] to the above algorithm, it easily follows that, for any @ € I4,
a satisfiable Boolean formula ¢, can be constructed in polynomial time in the length of z so that
any satisfying assignment for ¢, encodes a solution of z whose measure is at least m,. Moreover,
the set {¢ : @ € I4} is recognizable in polynomial time. By assumption, it is then possible to
compute in polynomial time a satisfying assignment for ¢, and thus an approximate solution for

(3) = (1). Assume that a polynomial-time recognizable set 5 of satisfiable Boolean formulas
exists for which no polynomial-time algorithm can compute a satisfying assignment for each of them.
Consider the following two NPO problems A = (14, sol4, m4, max) and B = (Ip, solg, mp, min)
where I4 = Igp = 5, sola(x) = solg(z) = {y : y is a truth assignment to the variables of z},

| |a| if yis a satisfying assignment for x,
ma(,y) = { 1 otherwise,

and

, B |z| if y is a satisfying assignment for w,
ma(2,y) = { 2|z| otherwise.

Clearly, problem B is in APX, while if A isin APX then there is a polynomial-time algorithm that
computes a satisfying assignment for each formula in S, contradicting the assumption. Moreover,
it is easy to see that A L-reduces to B via f = Az.z, g = AzAy.y,a =1, and § = 1.

a

Observe that in [30] it is shown that the third statement of the above theorem holds if and only if
the y-reducibility is different from the many-one reducibility. Moreover, in [19] it is shown that the
latter hypothesis is somewhat intermediate between P # NP N co-NP and P # NP. In other words,
there is strong evidence that, even though the L-reducibility is suitable for proving completeness
results within classes contained in APX (such as Max SNP [36]), this reducibility cannot be used to
define the notion of completeness for classes beyond APX. Moreover, it cannot be blindly used to
obtain positive results, that is, to prove the existence of approximation algorithms via reductions.
Finally, it is possible to L-reduce the maximization problem B defined in the last part of the proof
of the previous theorem to MAXIMUM 3-SATISFIABILITY: this implies that the closure of Max SNP
with respect to the L-reducibility is not included in APX, contrary to what is commonly believed
(e.g. see [35], page 314).

2.2 The E-reducibility

The drawbacks of the L-reducibility are mainly due to the fact that the relation between the
performance ratios is set by two separate linear constraints on both the optimum values and the
absolute errors. The E-reducibility (for error reducibility) [26], instead, imposes a linear relation
directly between the performance ratios.

Definition 8 Let A and B be two NPO problems. A is said to be E-reducible to B, in symbols
A <g B, if two functions f and g and a posilive constant a exist such that:

1. For any z € 14, f(x) € I is computable in polynomial time.

2. For any @ € I4 and for any y € solp(f(x)), g(x,y) € sola(x) is computable in polynomial
time.

3. For any x € 14 and for any y € solg(f(z)),

RA(xvg(xv y)) <1+ Oz(RB(f(LU), y) - 1)'
The triple (f,g,a) is said to be an E-reduction from A to B.

Observe that, for any function r, an E-reduction maps r(n)-approximate solutions into (1 +
a(r(n")—1))-approximate solutions where A is a constant depending only on the reduction. Hence,
the E-reducibility not only preserves membership in PTAS but also membership in exp-APX, poly-
APX, log-APX, and APX. As a consequence of this observation and of the results of the previous
section, we have that NPO problems should exist which are L-reducible to each other but not
E-reducible. However, the following result shows that within the class APX the E-reducibility is
just a generalization of the L-reducibility.

Proposition 9 For any two NPO problems A and B, if A <1, B and A € APX, then A <g B.

Proor: Let T be an r-approximate algorithm for A with r constant and let (f7, ¢z, ar, 1) be an
L-reduction from A to B. Then, for any @ € I4 and for any y € solp(fr(z)), Ea(z,gr(z,y)) <
arfrEs(fr(z),y). If Aisaminimization problem then, for any z € I4 and for any y € solg(fr.(2)),

Ra(z,gr(z,y)) = 14 Eag(z,gr(x,y))
< 14 arfrEs(fir(z),y)
< 1+ apfr(BRe(fo(z),y)—1),

and thus (fr,9r,ar08r) is an E-reduction from A to B. Otherwise (that is, A is a maximization
problem) we distinguish the following two cases.

1. Eg(fr(x),y) < m: in this case we have that

EA(I,gL($,y))
1- EA(:C,gL(:C,y))
arBrEp(fL(z),y)
1 —arfrEs(fr(z),y)
< 2apBr(Re(fr(z),y) - 1).

Ra(z,gr(z,y)) -1

A

2. Eg(fr(z),y) > m: in this case we have that Rg(fr(z),y) — 1> m so that

Ra(z,T(z)) = 1<r—1<2arf(r -)(Rp(fr(z),y) - 1)

where the first inequality is due to the fact that T is an r-approximation algorithm for A.

10

We can thus define a triple (fz, 95, ag) as follows:

1. For any z € 14, fr(z) = fr(z).

2. For any z € I4 and for any y € solg(fg(z)),

et = { 5 gl > e 1)

3. ag = max{2a10r,2ap(r — 1)}.
From the above discussion it follows that (fz,gg,ag) is an E-reduction from A to B. a

Clearly, the converse of the above result does not hold since no problem in NPO —NPO PB can
be L-reduced to a problem in NPO PB while any problem in PO can be E-reduced to any NPO
problem. Moreover, in [26] it is shown that MAXiMUM 3-SATISFIABILITY is (NPO PB N APX)-
complete with respect to the E-reducibility. This result is not obtainable by means of the L-
reducibility: indeed, it is easy to prove that MINIMUM BIN PACKING is not L-reducible to MAXI-
MUM 3-SATISFIABILITY unless P = NP (see, for example, [6]).

The E-reducibility is still somewhat too strict. Indeed, in [14] it has been shown that natural
PTAS problems exist, such as MAXIMUM KNAPSACK, which are not E-reducible to polynomially
bounded APX problems, such as MAXIMUM 3-SATISFIABILITY (unless a logarithmic number of
queries to an NP oracle is as powerful as a polynomial number of queries).

2.3 The AP-reducibility

The above mentioned drawback of the E-reducibility is mainly due to the fact that an E-reduction
preserves optimum values (see [14]). Indeed, the linear relation between the performance ratios
seems to be too restrictive. According to the definition of approximation preserving reducibilities
given in [12], we could overcome this problem by expressing this relation by means of an implication.
However, this is not sufficient: intuitively, since the function g does not know which approximation is
required, it must still map optimum solutions into optimum solutions. The final step thus consists
of letting the functions f and ¢ depend on the performance ratio'. This implies that different
constraints have to be put on the computation time of f and g: on the one hand, we still want to
preserve membership in PTAS, on the other we want the reduction to be efficient even when poor
performance ratios are required. These constraints are formally imposed in the following definition

of approzimation preserving reducibility (which is a restriction of the PTAS-reducibility introduced
in [14]).

Definition 10 Let A and B be two NPO problems. A is said to be AP-reducible to B, in symbols
A <ap B, if two functions f and g and a positive constant a exist such that:

1. For any x € I4 and for any r > 1, f(z,r) € Ip is compulable in time ts(|z|,r).

2. For any © € Iy, for any r > 1, and for any y € solg(f(z,r)), g(z,y,r) € sola(z) is
computable in time t,(|z|,|y|,r).

3. For any fized v, both t4(-,r) and t,(-,-,r) are bounded by a polynomial.

"We also let the function f depend on the performance ratio because this feature will turn out to be useful in
order to prove interesting characterizations of complete problems for approximation classes.

11

4. For any fized n, both ts(n,-) and t,(n,n,-) are non-increasing functions.

5. For any x € 14, for any r > 1, and for any y € solg(f(x,r)),

RB(f(va)vy) < r implies RA(fL',g(-’L',y,’/')) <1+ (l(’l' B 1)

The triple (f,g,) is said to be an AP-reduction from A to B.
According to the above definition, functions like 21/ =Dph or n!/(=1) are admissible bounds on
the computation time of f and g, while this is not true for functions like n" or 2".

Observe that, clearly, the AP-reducibility is a generalization of the E-reducibility. Moreover, it
is easy to see that, contrary to the E-reducibility, any PTAS problem is AP-reducible to any NPO
problem.

As far as we know, this reducibility is the strictest one appearing in the literature that allows
to obtain natural APX-completeness results (for instance, the APX-completeness of MAXIMUM
SATISFIABILITY [14, 26]).

3 NPO-complete problems

We will in this section prove that there are natural problems that are complete for the classes NPO
and NPO PB. Previously, completeness results have been obtained just for Max NPO, Min NPO,
Max PB, and Min PB [12, 33, 4, 24]. One example of such a result is the following theorem.

Theorem 11 MINIMUM WEIGHTED SATISFIABILITY s Min NPO-complelte and MAXIMUM
WEIGHTED SATISFIABILITY is Max NPO-complete, even if only a subset {v1,...,vs} of the vari-
ables has nonzero weight w(v;) = 25~ and any truth assignment satisfying the instance gives the
value true to at least one v;.

We will construct AP-reductions from maximization problems to minimization problems and
vice versa. Using these reductions we will show that a problem that is Max NPQO-complete or
Min NPO-complete in fact is complete for the whole of NPO, and that a problem that is Max PB-
complete or Min PB-complete is complete for the whole of NPO PB.

Theorem 12 MINIMUM WEIGHTED SATISFIABILITY and MAXIMUM WEIGHTED SATISFIABILITY
are NPO-complete.

Proovr: In order to establish the NPO-completeness of MINIMUM WEIGHTED SATISFIABILITY we
just have to show that there is an AP-reduction from a Max NPO-complete problem to MINIMUM
WEIGHTED SATISFIABILITY. As the Max NPQO-complete problem we will use the restricted version
of MAXIMUM WEIGHTED SATISFIABILITY from Theorem 11.

Let z be an instance of MAXIMUM WEIGHTED SATISFIABILITY, i.e. a formula ¢ over variables
v1,...,0s with weights w(v;) = 2°~* and some variables with weight zero. We will first give a simple
reduction that preserves the approximability within the factor 2, and then adjust it to obtain an
AP-reduction.

Let f(z) be the formula ¢ A a3 A --- A a5 where a; is the conjunctive normal form of (z; =
(71 A+~ AT A v;)), where z1,...,z; are new variables with weights w(z;) = 2' and where all
other variables (even the v-variables) have zero weight. If y is a satisfying assignment of f(z), let

12

g(z,y) be the restriction of the assignment to the variables that occur in ¢. This assignment clearly
satisfies ¢.

Note that exactly one of the z-variables is true in any satisfying assignment of f(z). Indeed, if
all z-variables were false, then all v-variables would be false and ¢ would not be satisfied. On the
other hand, if both z; and z; were true with 7 > 4, then v; would be both true and false which is a
contradiction. Hence,

m(f(@)y)=2 & z=1
< ?.71:?.72:"':’02'_1:0,’02':1
& 277 <mfe,g(e,y)) <2-2°7
28 28
=

@)y S @ 9le9) <20

In particular this holds for the optimum solution. Thus the performance ratio for MAXIMUM
WEIGHTED SATISFIABILITY is

28

)
o) P Topt(()) _ ,mf()y) e
Mg = ey S 2 ety IO

m(f(z),y)

which means that the reduction preserves the approximability within 2.

Let us now extend the construction in order to obtain R(z,g(z,y)) < (14 27%)R(fx(z),vy) for
every nonnegative integer k. The reduction described above corresponds to k = 0.

For any 7 € {1,..., s} and for any (b1, ..., b)) € {0, 1}#0) where k(i) = min{s — i, k}, we have
a variable Ziby o) - Let

fu(z) =0 A A TR
1€{1,..,5}
(b1 seeesbisy) €{0,1 140

where a;p, . is the conjuctive normal form of

-br(i)

(Zz',bl,...,bk(i) = (51 A ATt A0 A (Vi1 = b1) A A (Vi) = bk(i)))) .

Define g(z,y) as above. Finally, define

w(z) K -2° K -2
i,b1,biiy) = 50 = k(i -
w(v;) + Zj(zi bjw(viy;) 14 Zj(zi b;23

(by choosing K greater than 2* we can disregard the effect of the ceiling operation in the following
computations).

As in the previous reduction exactly one of the z-variables is true in any satisfying assignment
of fr(z). If, in a solution y of fi(z), iy biisy = Ls then we have m(fi(z),y) = w(Zi,bl,...,bk(i)) and
we know that

13

k(i) _ k(i) ‘
m(z,g(z,y)) > w(v;) + E byw(viy;) = 2°7(1 + E b;277).

=1 7=1
On the other hand, if k(i) = s — i then m(z, g(z,y)) = 2°7*(1 + Zf(:q b;277), otherwise

k k

m(w, g(z,y)) < w(vi) +) bjw(vie;) + w(v;) <2214 D027) (14 270).
71=1 7=k+i+1 71=1

In both cases, we thus get

<, g(,9) < — (1427
— N o> glr, Y N N
m(fi(z),y) m(fi(z),y)
and therefore R(z,g(z,y)) < (1 4+ 27%)R(fe(2z),y). Given any r > 1, if we choose k such that
27F < (r = 1)/r, eg. k = [logr —log(r —1)], then R(fi(z),y) < r implies R(z,g(z,y)) <
1+ 27" R(fu(z),y) <r4+r27F <r+4r—1=1+2(r—1). This is obviously an AP-reduction with
a=2.

A very similar proof can be used to show that MAXIMUM WEIGHTED SATISFIABILITY is NPO-
complete.

a

Corollary 13 Any Min NPO-complete problem is NPO-complete and any Max NPQO-complete
problem is NPO-complete.

As an application of the above corollary, we have that the MINIMUM 0 — 1 PROGRAMMING problem
is NPO-complete.

We can also show that there are natural complete problems for the class of polynomially bounded
NPO problems.

Theorem 14 MaXiMUM PB 0 — 1 PROGRAMMING and MINIMUM PB 0 — 1 PROGRAMMING are
NPO PB-complete.

Proor: MaxmMmuM PB 0 —1 PROGRAMMING is known to be Max PB-complete [4] and MINIMUM
PB 0—1 PROGRAMMING is known to be Min PB-complete [24]. Thus we just have to show that there
are AP-reductions from MiNIMUM PB 0—1 PROGRAMMING to MAXIMUM PB 0—1 PROGRAMMING
and from MaAXmMuM PB 0 — 1 PROGRAMMING to MINIMUM PB 0 — 1 PROGRAMMING.

Both reductions use exactly the same construction. Given a satisfying variable assignment, we
define the one-variables to be the variables occurring in the objective function that have the value
one. The objective value is the number of one-variables plus 1.

The objective value of a solution is encoded by introducing an order of the one-variables. The
order is encoded by a squared number of 0 — 1 variables, see Fig. 2. The idea is to invert the
objective values, so that a solution without one-variables corresponds to an objective value of n
of the constructed problem, and, in general, a solution with p one-variables corresponds to an

objective value of {#J .
The reductions are constructed as follows. Given an instance of MINIMUM PB 0 —1 PROGRAM-

MING or MAXIMUM PB 0 — 1 PROGRAMMING, i.e. an objective function 1+ > 7~ vz and some

14

only zeros in upper part

size of |T

sl one 1 in each row
solutiof]

L=l enRan Yen}
TOoOOoOCSHROO
T RO ooo
TooCcCCoo
T OoORSOoOoo
TooCcCcoCo

solution: e e @ 0 @ o

Figure 2: The idea of the reduction from MINIMUM/MAXIMUM PB 0 — 1 PROGRAMMING to
MaxiMuM/MINIMUM PB 0 — 1 PROGRAMMING. The variable 27 = 1 if and only if v; is the jth
one-variable in the solution. There is at most one 1 in each column and in each row.

inequalities over variables V = {vq,..., v, } U U, construct m? variables wg, 1<1,7 < m, and the
following inequalities:

Vi € [1..m] > xf <1 (at most one 1 in each column) (1)
=1
Vj € [1..m] Yl <1 (at most one 1 in each row) (2)
=1
Vje[l.m—1] Y al— > 2™ >0 (only zeros in upper part) (3)
i=1 =1

Besides these inequalities we include all inequalities from the original problem, but we substitute
¥ The variables in U (that do not occur in the objective

each variable v; with the sum > ;- «7.
function) are left intact.

The objective function is defined as

=2 (- Dz ®

p=1

In order to express the objective function with only binary coefficients we have to introduce n
new variables y1,...,y, where y; = 1 — > 7 z” for [n/(p+ 1)] < j < |n/p| and y; = 1 for
J < [n/(m+1)]. The objective function then is 3°7_; y;. One can now verify that a solution of the
original problem instance with s one-variables (i.e. with an objective value of s + 1) will exactly
correspond to a solution of the constructed problem instance with objective value [n/(s+1)| and
vice versa.

Suppose that the optimum solution to the original problem instance has M one-variables, then
the performance ratio (s 4+ 1)/(M + 1) will correspond to the performance ratio

sl
M+1] _ s+ 1 <1iﬂ>
an M+1 n
s+ 1

for the constructed problem, where 2 is the relative error due to the floor operation. By choosing

n large enough the relative error can be made arbitrarily small. Thus it is easy to see that the
reduction is an AP-reduction. O

15

Corollary 15 Any Min PB-complete problem is NPO PB-complete and any Max PB-complete
problem is NPO PB-complele.

4 Query complexity and APX-intermediate problems

The existence of APX-intermediate problems (that is, problems in APX which are not APX-
complete) has already been shown in [12] where an artificial such problem is obtained by diagonal-
ization techniques similar to those developed to prove the existence of NP-intermediate problems
[29]. In this section, we prove that “natural” APX-intermediate problems exist: for instance, we
will show that MINIMUM BIN PACKING is APX-intermediate. In order to prove this result, we
will establish new connections between the approximability properties and the query complexity of
NP-hard optimization problems. To this aim, let us first recall the following definition.

Definition 16 A language L belongs to the class PNPUM if it is decidable by a polynomial-time
oracle Turing machine which asks at most f(n) queries to an NP-complete oracle, where n is the
inpul size. The class QH is equal to the union |J-, pNPIH],

Similarly, we can define the class of functions FPNPI/([28] The following result has been
proved in [21, 22].

Theorem 17 If a constant k exists such that
QH PNP]
then the polynomial-time hierarchy collapses.

The query-complexity of the “non-constructive” approximation of several NP-hard optimization
problems has been studied by using hardness results with respect to classes of functions FPNPL]
[7, 9]. However, this approach cannot be applied to analyze the complexity of “constructing”
approximate solutions. To overcome this limitation, we use a novel approach that basically consists
of considering how helpful is an approximation algorithm for a given optimization problem to solve
decision problems.

Definition 18 Given an NPO problem A and a rational r > 1, A, is a multi-valued partial function
that, given an instance x of A, returns the set of feasible solutions y of x such that R(z,y) < r.

Definition 19 Given an NPO problem A and a rational v > 1, a language L belongs to P4 if two
polynomial-time computable functions f and ¢ exist such that, for any z, f(x) is an instance of A
with sol(f(z)) # 0, and, for anyy € A, (f(z)), g(z,y) =1 if and only if z € L. The class AQH(A)
is equal to the union | J,~q P.

The following result states that an approximation problem does not help more than a constant
number of queries to an NP-complete problem. It is worth observing that, in general, an approx-
imate solution, even though not very helpful, requires more than a logarithmic number of queries
to be computed [8].

Proposition 20 For any problem A in APX, AQH(A) C QH.

16

ProoOF: Assume that A is a maximization problem (the proof for minimization problems is similar).
Let T be an r-approximate algorithm for A, for some r > 1, and let I € P4¢ for some p > 1. Two
polynomial-time computable functions f and g then exist witnessing this latter fact. For any z, let
m = m(f(z), T(f(z))), so that m < opt(f(z)) < rm. We can then partition the interval [m,rm]
into |log, 7] + 1 subintervals

[m, pm), [pm, p*m), ..., [pU°% 1" m, plosomIm], [pl8e "L, rma],

and start looking for the subinterval containing the optimum value (a similar technique has been
used in [7, 9]). This can clearly be done using [log,r] + 1 queries to an NP-complete oracle.
One more query is sufficient to know whether a feasible solution y exists whose value lies in that
interval and such that g(z,y) = 1. Since y is p-approximate, it follows that L can be decided using
llog, r] + 2 queries, that is, L € QH. O

Recall that an NPO problem admits an asymptotic polynomial-time approximation scheme if
an algorithm T exists such that, for any z and for any r > 1, R(z,T(z,r)) < r + k/opt(z) with k
constant and the time complexity of T'(z, r) is polynomial with respect to |z|. The class of problems
that admit an asymptotic polynomial-time approximation scheme is usually denoted by PTAS.
The following result shows that, for this class, the previous fact can be strengthened.

Proposition 21 Let A € PTAS®. Then a constant h exists such that AQH(A) C PNPIAL,

Proor: Let A be a minimization problem in PTAS® (the proof for maximization problem is very
similar). By definition, a constant & and an algorithm T exist such that, for any instance z and
for any rational r > 1,

m(z,T(z,r)) < r-opt(z)+ k.

We will now prove that a constant h exists such that, for any » > 1, a function [, € FpNPh-1]
exists such that, for any instance z of the problem A,

opt(x) < In(x) < r - opt(x).

Intuitively, functions [, form a non-constructive approximation scheme that is computable by a
constant number of queries to an NP-complete oracle. Given an instance z, we can check whether
sol(z) = 0 by means of a single query to an NP oracle, so that we can restrict ourselves to
instances such that sol(z) # () (and thus opt(z) > 1). Note that, for these instances, T'(-,2) is a
(k 4+ 2)-approximate algorithm for A. Let us fix an r > 1,let e = r -1, y = T(2,14 ¢/2) and
a=m(z,T(z,2)). We have to distinguish two cases.

1. @ > 2k(k 4 2)/e: in this case, opt(z) > 2k/e, that is, opt(z)e/2 > k. Then

opt(z)(14+¢/2)+k
opt(z)(1+¢/2) + opt(z)e/2
opt(z)(1 +¢) = ropt(x),

m(z,y)

IN A

that is, y is an r-approximate solution for z, and we can set [,(z) = m(z,y) (in this case I,
has been computed by only one query).

17

2. a < 2k(k + 2)/e: in this case, opt(z) < 2k(k + 2)/e. Then,

opt(z) < m(z,y) < opt(z)+ opt(z)e/2 + k < opt(z) + k(k + 2) + k.

Clearly, [log k(k+3)] queries to NP are sufficient to find the optimum value opt(z) by means of
a binary search technique: in this case [,(z) = opt(z) has been computed by [log k(k+3)] +1
queries.

Let now L be a language in AQH(A), then L € P4r for some r > 1. Let f and g be the functions
witnessing that I € PAr. Observe that, for any z, € L if and only if a solution y for f(z) exists
such that m(f(z),y) > L.(f(z)) and g(f(z),y) = 1: that is, given [,(f(z)), deciding whether & € L
is an NP problem. Since I.(f(z)) is computable by means of at most [log k(k + 3)| + 1 queries to
NP, we have that I € PNPIA] where h = [log k(k 4+ 3)] + 2. a

The next proposition, instead, states that any language L in the query hierarchy can be decided
using just one query to A, where A is APX-complete and r depends on the level of the query
hierarchy L belongs to. In order to prove this proposition, we need the following technical result?.

Lemma 22 For any APX-complete problem A and for any k, two polynomial-time computable
functions f and g and a constant v exist such that, for any k-tuple (z1,...,z1) of instances of
PARTITION, @ = f(z1,...,2k) is an instance of A and if y is a solution of x whose performance
ratio is smaller than r then g(x,y) = (b1,...,by) where b; € {0,1} and b; = 1 if and only if x; is a
yes-instance.

Proor: Let z; = (U;,s;) be an instance of ParTITION for ¢ = 1,...,k. Without loss of gener-
ality, we can assume that the U;s are pairwise disjoint and that, for any ¢, >°,cp, si(u) = 2. Let
w = (U,s,=<) be an instance of MINIMUM ORDERED BIN PACKING defined as follows (a similar
construction has been used in [37]).

1. U= Ule U; U{vy,...,vp_1} where the v;s are new items.
2. For any u € U;, s(u) = sj(u) and s(v;) =1fori=1,...,k— 1.
3. For any i < j <k, for any u € U;, and for any v’ € U;, u < v; < u'.

Any solution of w must be formed by a sequence of packings of Uy, ..., Uy such that, for any i,
the bins used for U; are separated by the bins used for U;;; by means of one bin which is completely
filled by v;. In particular, the packings of the U;s in any optimum solution must use either two or
three bins: two bins are used if and only if z; is a yes-instance. The optimum measure thus is at
most 4k — 1 so that any (14 1/(4k))-approximate solution is an optimum solution.

Since MINIMUM ORDERED BIN PACKING belongs to APX [41] and A is APX-complete, then an
AP-reduction (f1,¢1,) exists from MINIMUM ORDERED BIN PACKING to A. We can then define
= f(z1,...,2r) = fi(w,14+ 1/(4ak)) and r = 1 + 1/(4ak). For any r-approximate solution y of

?Recall that the NP-complete problem PARTITION is defined as follows: given a set U of items and a size function
s: U — Qn(0,1], does there exists a subset U’ C U such that

Z s(u) = Z s(u)?

ucU! ugU’

18

z, the fourth property of the AP-reducibility implies that z = g1(z,y, 1+ 1/(4ak))is a (1+1/(4k))-
approximate solution of w and thus an optimum solution of w. From z, we can easily derive the
right answers to the k queries z1,..., . a

We are now able to prove the following result.
Proposition 23 For any APX-complete problem A, QH C AQH(A).

ProoF: Let I € QH, then L € PNFI*l for some h. Tt is well known (see, for instance, [3]) that L can
be reduced to the problem of answering k& = 2"~! non-adaptive queries to NP. More formally, two
polynomial-time computable functions ¢; and ¢ exist such that, for any z, t1(z) = (z1,...,2k),
where z1,...,2; are k instances of the PARTITION problem, and for any (by,...,b;) € {0,1}*,
ty(z,b1,...,b) € {0,1}. Moreover, if, for any j, b; = 1 if and only if 2; is a yes-instance, then
to(z,b1,...,bp) = 1if and only if z € L.

Let now f, ¢ and r be the two functions and the constant of Lemma 22 applied to problem A
and constant k. For any z, 2’ = f({1(z)) is an instance of A such that if y is an r-approximate
solution for 2/, then t5(g(2’,y)) = 1 if and only if 2 € L. Thus, I € P4, O

By combining Propositions 20 and 23, we thus have the following theorem that characterizes
the approximation query hierarchy of the hardest problems in APX.

Theorem 24 For any APX-complete problem A, AQH(A) = QH.

Finally, we have the following result that states the existence of natural intermediate problems

in APX.

Theorem 25 If the polynomial-time hierarchy does not collapse, then MINIMUM BIN PACKING,
MINIMUM DEGREE SPANNING TREE, and MINIMUM EDGE COLORING are APX-inlermediale.

Proor: From Proposition 21 and from the fact that Minimum BIN PACKING is in PTAS™ [25], it
follows that AQH(MiNiMuM BIN PackinG) C PNPI for a given h. If MiINIMUM BIN PACKING is
APX-complete, then from Proposition 23 it follows that QH C PNPIA, From Theorem 17 we thus
have the collapse of the polynomial-time hierarchy. The proofs for MINIMUM DEGREE SPANNING
TREE and MINIMUM EDGE COLORING are identical and use the results of [18, 15]. O

Observe that the previous result does not seem to be obtainable by using the hypothesis P # NP,
as shown by the following theorem.

Theorem 26 If NP = co-NP then MINIMUM BIN PACKING is APX-complete.

Proor: Assume NP = co-NP, we will present an AP reduction from MAXIMUM SATISFIABILITY
to MINIMUM BIN PACKING. Since NP = co-NP a nondeterministic polynomial time Turing ma-
chine M exists that, given in input an instance ¢ of MAXIMUM SATISFIABILITY, has an accepting
computation and all accepting computations halt with an optimum solution for ¢ written on the
tape. Indeed, M guesses an integer k, an assigment 7 such that m(¢,7) = k and a proof of the
fact that opt(¢) < k. From the proof of Cook’s theorem it follows that, given ¢, we can find in
polynomial time a formula ¢’ such that ¢’ is satisfiable and that given any satisfying assignment for
¢' we can find in polynomial time an optimum solution for ¢. By combining this construction with
the NP-completeness proof of the MINIMUM BIN PACKING problem, we obtain two polynomial-
time computable functions ¢; and 73 such that, for any instance ¢ of MAXIMUM SATISFIABILITY,

19

11(¢) = x4 is an instance of MINIMUM BIN PACKING such that opt(z,) = 2 and, for any opti-
mum solution y of x4, {3(24,y) is an optimum solution of ¢. Observe that, by construction, an
r-approximate solution for x4 is indeed an optimum solution provided that r < 3/2. Let T be a
4/3-approximate algorithm for MAXIMUM SATISFIABILITY [42, 17]. The reduction from MAXIMUM
SATISFIABILITY to MINIMUM BIN PACKING is defined as follows: f(¢,r) = t1(¢);

[T(e) if r >4/3,
9(0,y,7) = { to(t1(¢),y) otherwise.

It is immediate to verify that the above is an AP-reduction with a = 1.
a

Finally, note that the above result can be extended to any APX problem which is NP-hard to
approximate within a given performance ratio.

4.1 A remark on MAXIMUM CLIQUE

The following lemina is the analogoue of Proposition 20 within NPO PB and can be proved similarly
by binary search techniques.

Lemma 27 For any NPO PB problem A and for any r > 1, PAr C PNPlloglogn+0(1)],

From this lemma, from the fact that PNFPlogn] i contained in PMC where MC stands for
MaxiMuM CrLIQUE [28], and from the fact that if a constant k exists such that

NP[loglogn+k] _ pNP[logn
pNPlloglogn+k] — pNP[logn]

then the polynomial-time hierarchy collapses [40], it follows the next result that solves an open
question posed in [7]. Informally, this result states that it is not possible to reduce the problem of
finding a maximum clique to the problem of finding a 2-approximate clique (unless the polynomial-
time hierarchy collapses).

Theorem 28 If PMC1 C PMC2 ypep the polynomial-time hierarchy collapses.

5 Query complexity and completeness in approximation classes

In this final section, we shall give a full characterization of problems complete for poly-APX and
for APX, respectively, in terms of hardness of the corresponding approximation problems with
respect to classes of partial multi-valued functions and in terms of suitably defined combinatorial
properties.

The classes of functions we will refer to have been introduced in [8] as follows.

Definition 29 FNPNPUM] is the class of partial multi-valued functions computable by nondeter-
ministic polynomial-time Turing machines which ask at most g(n) queries to an NP oracle in the
entire computation tree.?

We say that a multi-valued partial function F is computable by a nondeterministic Turing machine N if, for any
z in the domain of F', an halting computation path of N(z) exists and any halting computation path of N(z) outputs
a value of F(z).

20

In order to talk about hardness with respect to these classes we will use the following reducibility
which is an extension of both metric reducibility [28] and one-query reducibility [13] and has been
introduced in [8].

Definition 30 Let F' and G be two partial multi-valued functions. We say that F many-one reduces
to G (in symbols, F<uyG) if two polynomial-time algorithms t; and iy exist such that, for any x
in the domain of F, t1(x) is in the domain of G and, for any y € G(t1(x)), t2(z,y) € F(x).

The combinatorial property used to characterize poly-APX-complete problems is the well-known
self-improvability (see, for instance, [34]).

Definition 31 A problem A is self-improvable if two algorithms t, and ty exist such that, for any
instance x of A and for any two rationals r1,r9 > 1, &' = t1(x,r1,72) is an instance of A and, for
any y' € A, (2"), y = ta(a, ¥, r1,72) € Ay (2). Moreover, for any fized vy and rq, the running time
of t1 and ty is polynomial.

We are now ready to state the first result of this section.

Theorem 32 A poly-APX problem A is poly-APX-complete if and only if it is self-improvable and
Ay is FNPNPloglogntO(1)]_pqrd for some rg > 1.

Proor: Let A be a poly-APX-complete problem. Since MaxiMmum CLIQUE is self-improvable [16]
and poly-APX-complete [26] and since the equivalence with respect to the AP-reducibility preserves
the self-improvability property (see [34]), we have that A is self-improvable. It is then sufficient to
prove that A, is hard for FNPNPlloglogn+O(1)],

From the poly-APX-completeness of A we have that MAXIMUM CLIQUE <ap A: let «
be the constant of this reduction. From Theorem 12 of [8] we have that any function F' in
FNPNPlloglogntOM)] many-one reduces to MAXIMUM CLIQUE 4,. From the definition of AP-
reducibility, we also have that MAXIMUM CLIQUE{4,<myA3 so that /" many-one reduces to A,.

Conversely, let A be a poly-APX self-improvable problem such that, for some rg, A, is
FNPNPlloglogntO(M] pard. We will show that, for any problem B in poly-APX, B is AP-reducible
to A. To this aim, we introduce the following partial multi-valued function multisat: given in
input a sequence (¢1,...,¢,) of instances of the satisfiability problem with m < log|(¢1,...,¢m)|
and such that, for any ¢, if ¢;41 is satisfiable then ¢; is satisfiable, a possible output is a satisfying
truth-assignment for ¢;» where i* = max{i : ¢; is satisfiable}. From the proof of Theorem 12 of [§]
it follows that this function is FNPNP[loglog”+O(1)]—complete.

By making use of techniques similar to those of the proof of Proposition 20, it is easy to
see that, since B is in poly-APX, two algorithms ¢ and t£ exist such that, for any fixed r >
1, tB(-,r) and tP(-,-,7) form a many-one reduction from B, to multisat. Moreover, since A,,
is FNPNP[IOglOg”"'0(1)]—hard7 then a many-one reduction (t{vj,té\/[) exists from multisat to A, .
Finally, let #! and #4 be the functions witnessing the self-improvability of A.

The AP-reduction from B to A can then be derived as follows:

tlB(l',’r') , t{VI(l") " ti“(x”,ro,r) "

zr —m8 —— g/ — — s
tB(z,y'r) , tM(z! y'" " (& y" o) "

Y ¢ y < Yy ¢ Yy

It is easy to see that if y"’ is an r-approximate solution for the instance z of A, then y is an

r-approximate solution of the instance x of B. That is, B is AP-reducible to A with a = 1. a

21

The above theorem cannot be proved without the dependency of both f and ¢ on r in the
definition of AP-reducibility. Indeed, it is possible to prove that if only g has this property then,
unless the polynomial-time hierarchy collapses, a self-improvable problem A exists such that As is
FNPNPloglogn+O()] hard and A is not poly-APX-complete.

In order to characterize APX-complete problems, we have to define a different combinatorial
property. Intuitively, this property states that it is possible to merge several instances into one
instance in an approximation preserving fashion.

Definition 33 An NPO problem A is linearly additive if a constant § and two algorithms t,

and 1y exist such that, for any rational r > 1 and for any sequence x1, ...,z of instances of A,
¢’ = ti(@1,. .., x5, 1) is an instance of A and, for any y' € Ayy(_1)pm(a’), ta(wr,. .. ap, 4 1) =
Y1, .-, Yp where each y; is an r-approrimate solution of x;. Moreover, the running time of 11 and

to is polynomial for every fized r.

Theorem 34 An APX problem A is APX-complete if and only if it is linearly addilive and a
constant ro exists such that A, is FNPNPU_pqrd.

Proovr: Let A be an r4-approximable APX-complete problem. From the proof of Proposition 23
a constant rg exists such that A, is hard for FNPNPUL T order to prove the linear additivity, fix
any r > 1 and let zq,...,2; be instances of A. Without loss of generality, we can assume r < r4
(otherwise the k instances can be r-approximated by using the r 4-approximate algorithm). For any
t=1,...,k the problem of finding an r-approximate solution y; for x; is reducible to the problem of
constructively solving a set of [log, 4| instances of PARTITION. Observe that [log, r4] < ¢/(r—1)
for a certain constant ¢ depending on r4. Moreover, we claim that a constant 7 exists such
that constructively solving ke/(r — 1) instances of PARTITION is reducible to (1 4+ v(r — 1)/kc)-
approximating a single instance of A (indeed, this can be shown along the lines of the proof of
Proposition 23). That is, A is linearly additive with 5 = v/c.

Conversely, let A be a linearly additive APX problem such that A,/ is FNPNULhard for some
ro and let B be an rp-approximable problem. Given an instance xz of B, for any r > 1 we can
reduce the problem of finding an r-approximate solution for z to the problem of constructively
solving ¢/(r —1) instances of PARTITION, for a proper constant ¢ not depending on r. Each of these
questions is reducible to A,,, since any NP problem can be constructively solved by an FNPNPI
function. From linear additivity, it follows that ro-approximating ¢/(r—1)instances of A is reducible
to (1+ B(ro — 1)(r — 1)/c)-approximating a single instance of A. This is an AP-reduction from B
to A with a = ¢/(B(ro — 1)). m|

Note that linear additivity plays for APX more or less the same role of self-improvability for
poly-APX. These two properties are, in a certain sense, one the opposite of the other: while the
usefulness of APX-complete approximation problems to solve decision problems depends on the
performance ratio and does not depend on the size of the instance, the usefulness of poly-APX-
complete approximation problems depends on the size of the instance and does not depend on
the performance ratio. Indeed, it is possible to prove that no APX-complete problem can be self-
improvable (unless P = NP) and that no poly-APX-complete problem can be linearly additive
(unless the polynomial-time hierarchy collapses).

It is now an interesting question to find a characterizing combinatorial property of log-APX-
complete problems. Indeed, we have not been able to establish this characterization: at present, we
can only state that it cannot be based on the self-improvability property as shown by the following
result.

22

Theorem 35 No log-APX-complete problem can be self-improvable unless the polynomial-time hi-
erarchy collapses.

Proor: Let us consider the optimization problem MAX NUMBER OF SATISFIABLE FORMULAS (in
short, MNSF') defined as follows.

INSTANCE: Set of m boolean formulas ¢1,..., ¢, in 3CNF, such that ¢y is a tautology and m <
log n, where n is the size of the input instance.

SoruTioN: Truth assignment 7 to the variables of ¢1,..., ¢p,.
MEASURE: The number of satisfied formulas, i.e., [{i : ¢; is satisfied by 7}|.

Clearly, MNSF is in log-APX, since the measure of any assignment 7 is at least 1, and the
optimum value is always smaller than logn, where n is the size of the input. We will show that,
for any r < 2, MNSF, is hard for FNPNF[logloglogn—1]

Given loglogn queries to an NP-complete language (of size polynomial in n) z1, ..., Zloglogn,
we can construct an instance ® = ¢q,..., ¢, of MNSF where ¢; is a tautology and, for ¢ > 1, the
formulas ¢gi = ... = ¢yit1_; are satisfiable if and only if at least 7 instances among z1,. .., Zioglogn

are yes-instances (these formulas can be easily constructed using the standard proof of Cook’s
theorem). Note that m = loglogn+1 _ 1 and, by adding dummy clauses to some formulas, we can
achieve the bound m < log|¢1,...,¢n|. Moreover, from an r-approximate solution for ® we can
decide how many instances in 1,...,Zloglogn are yes-instances, and we can also recover solutions
for such instances. That is, any function in FNPNPllogloglogn—1] i many-one reducible to MNSF,.

Let A be a self-improvable log-APX-complete problem. Then, for any function F €
FNPNP[IoglOglogn_l]7 FSmVIVINSFl.5§mVA1+Q/2vaA216 where « is the constant in the AP-
reduction from MNSF to A and where the last reduction is due to the self-improvability of A.
Thus, for any z, computing F(z) is reducible to finding a 2!%-approximate solution for an in-
stance ' with |2'| < |z|¢ for a certain constant ¢. Since A € log-APX, it is possible to find
in polynomial time a (klog|z'|)-approximate solution y for z’ where k is a constant. From
y, by means of binary search techniques, we can find a 2'6-approximate solution for 2’ using
[log [logqis(klog |2'])]] < log[loglog |z|**] — 3 < logloglog |z| — 2 adaptive queries to NP where the
last inequality surely holds for sufficiently large |z|. Thus,

FNPNP[logloglogn—l] C FNPNP[logloglogn—Q]
which implies the collapse of the polynomial-time hierarchy [40]. a

As a consequence of the above theorem and of the results of [26], we conjecture that the minimum
set cover problem is not self-improvable.

References

[1] Arora, S., Lund, C., Motwani, R., Sudan, M., and Szegedy, M. (1992), “Proof verification
and hardness of approximation problems”, Proc. of 33rd Ann. IFEE Symp. on Foundations
of Comput. Sci., IEEE Computer Society, 14-23.

[2] Balcdzar, J.L., Diaz, J., and Gabarré, J. (1988), Structural complexity I. Springer-Verlag.

[3] Beigel, R. (1991), “Bounded queries to SAT and the Boolean hierarchy”, Theoretical Computer
Science 84, 199-223.

23

[4]

[5]
[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Berman, P., and Schnitger, G. (1992), “On the complexity of approximating the independent
set problem”, Inform. and Comput. 96, 77-94.

Bovet, D.P., and Crescenzi, P. (1993), Introduction to the theory of complexity. Prentice Hall.
Cai, L. (1994), Ph.D. Dissertation, Department of Computer Science, Texas A&M University.

Chang, R. (1994), “On the query complexity of clique size and maximum satisfiability”, Proc.
9th Ann. Structure in Complexity Theory Conf., IEEE Computer Society, 31-42.

Chang, R. (1994), “A machine model for NP-approximation problems and the revenge of the
Boolean hierarchy”, FATCS Bulletin 54, 166—-182.

Chang, R., Gasarch, W.I., and Lund, C. (1994), “On bounded queries and approximation”,
Technical Report TR (CS-94-05, Department of Computer Science, University of Maryland
Baltimore County.

Cook, S.A. (1971), “The complexity of theorem proving procedures”, Proc. of ACM Symp.
on Theory of Comp., 151-158.

Crescenzi, P., and Kann, V. (1995), “A compendium of NP optimization problems”, Technical
Report ST/RR-95/02, Dipartimento di Scienze dell’Informazione, Universita di Roma “La
Sapienza”. The list is updated continuously. The latest version is available by anonymous ftp
from nada.kth.se as Theory/Viggo-Kann/compendium.ps.Z

Crescenzi, P., and Panconesi, A. (1991), “Completeness in approximation classes”, Inform.
and Compul. 93, 241-262.

Crescenzi P., and Silvestri, R. (1990), “Relative Complexity of Evaluating the Optimum Cost
and Constructing the Optimum for Maximization Problems”, Information Processing Lelters
33, 221-226

Crescenzi, P., and Trevisan, L. (1994), “On approximation scheme preserving reducibility and
its applications”, Proc. 14th FSTTCS, Lecture Notes in Comput. Sci. 880, Springer-Verlag,
330-341.

Firer, M., and Raghavachari, B. (1992), “Approximating the minimum degree spanning tree
to within one from the optimal degree”, Proc. Third Ann. ACM-SIAM Symp. on Discrete
Algorithms, ACM-SIAM, 317-324.

Garey, M.R., and Johnson, D.S. (1979) Computers and intractability: a guide to the theory of
NP-completeness. Freeman, 1979,

Goemans, M.X., and Williamson, D.P. (1994), “New 3/4-approximation algorithms for the
maximum satisfiability problem”, SIAM J. Discrete Mathematics 7, 656—666.

Holyer, 1. (1981), “The NP-completeness of edge-coloring”, SIAM J. Computing 10, 718-720.

Impagliazzo, R., and Naor, M. (1988), “Decision trees and downward closures”, Proc. 3rd
Structure in Complexity Theory Conference, IEEE Computer Society, 29-38.

Johnson, D.S. (1974), “Approximation algorithms for combinatorial problems”, J. Comput.
System Sci. 9, 256-278.

24

[21] Kadin, J. (1988), “The polynomial time hierarchy collapses if the Boolean hierarchy collapses”,
SIAM J. Compuling 17, 1263-1282.

[22] Kadin, J. (1990), “ERRATUM: The Polynomial Time Hierarchy Collapses if the Boolean
Hierarchy Collapses”, SIAM J. Computing 20, 404.

(23] Kann, V. (1992), On the approrimabililty of NP-complete optimization problems, PhD thesis,
Department of Numerical Analysis and Computing Science, Royal Institute of Technology,
Stockholm.

[24] Kann, V. (1994), “Polynomially bounded minimization problems that are hard to approxi-
mate”, Nordic J. Computing 1, 317-331.

[25] Karmarkar, N., and Karp, R. M. (1982), “An efficient approximation scheme for the one-
dimensional bin packing problem”, Proc. of 23rd Ann. IEFE Symp. on Foundations of Comput.
Sci., IEEE Computer Society, 312-320.

[26] Khanna, S., Motwani, R., Sudan, M., and Vazirani, U. (1994), “On syntactic versus computa-
tional views of approximability”, Proc. of 35th Ann. IEEE Symp. on Foundations of Comput.
Sci., IEEE Computer Society, 819-830.

[27] Kolaitis, P. G., and Thakur, M. N. (1991), “Approximation properties of NP minimization
classes”, Proc. Sizth Ann. Structure in Complexity Theory Conf., IEEE Computer Society,
353-366.

[28] Krentel, M.W. (1988), “The complexity of optimization problems”, J. Comput. System Sci.
36, 490-509.

[29] Ladner, R.E. (1975), “On the structure of polynomial-time reducibility”, J. ACM 22, 155-171.

[30] Long, T.J. (1981), “On 7y-reducibility versus polynomial time many-one reducibility”, Theo-
retical Computer Science 14, 91-101.

[31] Lund, C., and Yannakakis, M. (1994), “On the hardness of approximating minimization
problems”, J. ACM 41, 960-981.

[32] Motwani, R. (1992), “Lecture notes on approximation algorithmns”, Technical Report STAN-
(CS-92-1435, Department of Computer Science, Stanford University, 1992.

[33] Orponen, P., and Mannila, H. (1987), “On approximation preserving reductions: Complete
problems and robust measures”, Technical Report C-1987-28, Department of Computer Sci-
ence, University of Helsinki.

[34] Panconesi, A., and Ranjan, D. (1993), “Quantifiers and approximation”, Theoretical Computer
Science 107, 145-163.

[35] Papadimitriou, C.H. (1993), Computational complezity. Addison-Wesley.

[36] Papadimitriou, C. H., and Yannakakis, M. (1991), “Optimization, approximation, and com-
plexity classes”, J. Comput. System Sci. 43, 425-440.

[37] Queyranne, M. (1985), “Bounds for assembly line balancing heuristics”, Operations Research
33, 13531359,

25

[38] Schoning, U. (1986), “Graph isomorphism is in the low hierarchy”, Proc. jth Ann. Symp.
on Theoretical Aspects of Comput. Sci., Lecture Notes in Comput. Sci. 247, Springer-Verlag,
114-124.

[39] Simon, H.U. (1989), “Continuous reductions among combinatorial optimization problems”,
Acta Informatica 26, 771-785.

[40] Wagner, K. (1988), “Bounded query computations”, Proc. 3rd Ann. Structure in Complezity
Theory Conf., IEEE Computer Society, 260-277.

[41] Wee, T.S. and Magazine M.J. (1982), “Assembly line balancing as generalized bin packing”,
Operations Research Letters 1, 56-58.

[42] Yannakakis, M. (1994), “On the approximation of maximum satisfiability”, J. Algorithms 17,
475-502.

26

Electronic Colloquium on Computational Complexity - Reports Series 1996 - available via:
E(:(:(: FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW: http://www.eccc.uni-trier.de/eccc/

T R96- 066 Email: ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

Structure in Approximation Classes”

P. Crescenzit V. Kann? R. Silvestri® L. Trevisan¥

Abstract

The study of the approximability properties of NP-hard optimization problems has recently
made great advances mainly due to the results obtained in the field of proof checking. The
last important breakthrough shows the APX-completeness of several important optimization
problems is proved and thus reconciles ‘two distinct views of approximation classes: syntactic and
computational’. In this paper we obtain new results on the structure of several computationally-
defined approximation classes. In particular, after defining a new approximation preserving
reducibility to be used for as many approximation classes as possible, we give the first examples of
natural NPO-complete problems and the first examples of natural APX-intermediate problems.
Moreover, we state new connections between the approximability properties and the query
complexity of NPO problems.

Key words. Complexity classes, reducibilities, approximation algorithms

AMS subject classifications. 03D30, 68Q15, 68Q20

1 Introduction

In his pioneering paper on the approximation of combinatorial optimization problems [20], David
Johnson formally introduced the notion of approximable problem, proposed approximation algo-
rithms for several problems, and suggested a possible classification of optimization problems on
grounds of their approximability properties. Since then it was clear that, even though the decision
versions of most NP-hard optimization problems are many-one polynomial-time reducible to each
other, they do not share the same approximability properties. The main reason of this fact is that
many-one reductions not always preserve the objective function and, even if this happens, they
rarely preserve the quality of the solutions. It is then clear that a stronger kind of reducibility
has to be used. Indeed, an approximation preserving reduction not only has to map instances of
a problem A to instances of a problem B, but it also has to be able to come back from “good”
solutions for B to “good” solutions for A. Surprisingly, the first definition of this kind of reducibil-
ity [33] was given as long as 13 years after Johnson’s paper and, after that, at least seven different

*An extended abstract of this paper has been presented at the 1st Annual International Computing and Combi-
natorics Conference.

'Dipartimento di Scienze dell’Informazione, Universitd di Roma “La Sapienza”, Via Salaria 113, 00198 Rome,
Italy. E-mail: piluc@dsi.uniromal.it

{Department of Numerical Analysis and Computing Science, Royal Institute of Technology, S-100 44 Stockholm,
Sweden, E-mail: viggo@nada.kth.se

$Dipartimento di Scienze dell’Informazione, Universitd di Roma “La Sapienza”, Via Salaria 113, 00198 Rome,
Italy. E-mail: silver@dsi.uniromal.it

T Centre Universitaire d’Informatique, Université de Genéve, Rue Général-Dufour 24, CH-1211, Genéve, Switzer-
land. E-mail: trevisan@cui.unige.ch. Work done at the Universita di Roma “La Sapienza”.

PTAS-reduction [14]

T

P-reduction [33] = A-reduction [33]

/\/”\

L-reduction [36] E-reduction [26]Continuous reduction [39]

!

Strict reduction [33]

Figure 1: The taxonomy of approximation preserving reducibilities

approximation preserving reducibilities appeared in the literature (see Fig. 1). These reducibili-
ties are identical with respect to the overall scheme but differ essentially in the way they preserve
approximability: they range from the Strict reducibility in which the error cannot increase to the
PTAS-reducibility in which there are basically no restrictions (see also Chapter 3 of [23]).

By means of these reducibilities, several notions of completeness in approximation classes have
been introduced and, basically, two different approaches were followed. On the one hand, the
attention was focused on computationally defined classes of problems, such as NPO (i.e., the class
of optimization problems whose underlying decision problem is in NP) and APX (i.e., the class
of constant-factor approximable NPO problems): along this line of research, however, almost all
completeness results dealt either with artificial optimization problems or with problems for which
lower bounds on the quality of the approximation were easily obtainable [12, 33]. On the other
hand, researchers focused on the logical definability of optimization problems and introduced several
syntactically defined classes for which natural completeness results were obtained [27, 34, 36]:
unfortunately, the approximability properties of the problems in these latter classes were not related
to standard complexity-theoretic conjectures. A first step towards the reconciling of these two
approaches consisted of proving lower bounds (modulo P # NP or some other likely condition) on
the approximability of complete problems for syntactically defined classes [1, 31]. More recently,
another step has been performed since the closure of syntactically defined classes with respect
to an approximation preserving reducibility has been proved to be equal to the more familiar
computationally defined classes [26].

In spite of this important achievement, beyond APX we are still forced to distinguish between
maximization and minimization problems as long as we are interested in completeness proofs.
Indeed, a result of [27] states that it is not possible to rewrite every NP maximization problem as
an NP minimization problem unless NP=co-NP. A natural question is thus whether this duality
extends to approximation preserving reductions.

Finally, even though the existence of “intermediate” artificial problems, that is, problems for
which lower bounds on their approximation are not obtainable by completeness results was proved in
[12], a natural question arises: do natural intermediate problems exist? Observe that this question
is also open in the field of decision problems: for example, it is known that the graph isomorphism
problem cannot be NP-complete unless the polynomial-time hierarchy collapses [38], but no result
has ever been obtained giving evidence that the problem does not belong to P.

The first goal of this paper is to define an approximation preserving reducibility that can be
used for as many approximation classes as possible and such that all reductions that have appeared

in the literature still hold. In spite of the fact that the L-reducibility has been the most widely used
so far, we will give strong evidence that it cannot be used to obtain completeness results in “com-
putationally defined” classes such as APX, log-APX (that is, the class of problems approximable
within a logarithmic factor), and poly-APX (that is, the class of problems approximable within a
polynomial factor). Indeed, on the one hand in [14] it has been shown that the L-reducibility is
too strict and does not allow to reduce some problems which are known to be easy to approximate
to problems which are known to be hard to approximate. On the other hand in this paper we
show that it is too weak and is not approximation preserving (unless P = NP N co-NP). The
weakness of the L-reducibility is, essentially, shared by all reducibilities of Fig. 1 but the Strict
reducibility and the E-reducibility, while the strictness of the L-reducibility is shared by all of them
(unless PNP C PNP[O(IOgn)]) but the PTAS-reducibility. The reducibility we propose is a combina-
tion of the E-reducibility and of the PTAS-reducibility and, as far as we know, it is the strictest
reducibility that allows to obtain all approximation completeness results that have appeared in the
literature, such as, for example, the APX-completeness of MAXIMUM SATISFIABILITY [14, 26] and
the poly-APX-completeness of MaxiMuM CLIQUE [26].

The second group of results refers to the existence of natural complete problems for NPO.
Indeed, both [33] and [12] provide examples of natural complete problems for the class of mini-
mization and maximization NP problems, respectively. In Sect. 3 we will show the ezistence of
both maximization and minimization NPO-complete natural problems. In particular, we prove that
MAXIMUM 0 —1 PROGRAMMING and MINIMUM 0 — 1 PROGRAMMING are NPO-complete. This re-
sult shows that making use of a natural approximation preserving reducibility is enough powerful to
encompass the “duality” problem raised in [27] (indeed, in [26] it was shown that this duality does
not arise in APX, log-APX, poly-APX, and other subclasses of NPO). Moreover, the same result
can also be obtained when restricting ourselves to the class NPO PB (i.e., the class of polynomially
bounded NPO problems). In particular, we prove that MaxiMuM PB 0 — 1 PROGRAMMING and
MINIMUM PB 0 — 1 PROGRAMMING are NPO PB-complete.

The third group of results refers to the existence of natural APX-intermediate problems. In
Sect. 4, we will prove that MINIMUM BIN PACKING (and other natural NPO problems) cannot be
APX-complete unless the polynomial-time hierarchy collapses. Since it is well-known [32] that this
problem belongs to APX and that it does not belong to PTAS (that is, the class of NPO problems
with polynomial-time approximation schemes) unless P=NP, our result yields the first ezample of
a natural APX-intermediate problem (under a natural complexity-theoretic conjecture). Roughly
speaking, the proof of our result is structured into two main steps. In the first step, we show that
if MiNniMUM BIN PACKING were APX-complete then the problem of answering any set of k non-
adaptive queries to an NP-complete problem could be reduced to the problem of approximating an
instance of MINIMUM BIN PACKING within a ratio depending on k. In the second step, we show that
the problem of approximating an instance of MINIMUM BIN PACKING within a given performance
ratio can be solved in polynomial-time by means of a constant number of non-adaptive queries to
an NP-complete problem. These two steps will imply the collapse of the query hierarchy which
in turn implies the collapse of the polynomial-time hierarchy. As a side effect of our proof, we
will show that if a problem s APX-complete, then it does not admit an asymptotic approximation
scheme.

The previous results are consequences of new connections between the approximability prop-
erties and the query complexity of NP-hard optimization problems. In several recent papers the
notion of query complexity (that is, the number of queries to an NP oracle needed to solve a given
problem) has been shown to be a very useful tool for understanding the complexity of approxi-
mation problems. In [7, 9] upper and lower bounds have been proved on the number of queries

needed to approximate certain optimization problems (such as MAXIMUM SATISFIABILITY and
MaxiMuM CLIQUE): these results deal with the complexity of approximating the value of the op-
timum solution and not with the complexity of computing approximate solutions. In this paper,
instead, the complexity of “constructive” approximation will be addressed by considering the lan-
guages that can be recognized by polynomial-time machines which have a function oracle that solves
the approximation problem. In particular, after proving the existence of natural APX-intermediate
problems, in Sect. 4.1 we will be able to solve an open question of [7] proving that finding the
vertices of the largest clique is more difficull than merely finding the vertices of a 2-approzimale
clique unless the polynomial-time hierarchy collapses.

The results of [7, 9] show that the query complexity is a good measure to study approximability
properties of optimization problems. The last group of our results show that completeness in
approximation classes implies lower bounds on the query complexity. Indeed, in Sect. 5 we show
that the two approaches are basically equivalent by giving sufficient and necessary conditions for
approzimalion completeness in terms of query-complexity hardness and combinatorial properties.
The importance of these results is twofold: they give new insights into the structure of complete
problems for approximation classes and they reconcile the approach based on standard computation
models with the approach based on the computation model for approximation proposed in [8]. As a
final observation, our results can be seen as extensions of a result of [26] in which general sufficient
(but not necessary) conditions for APX-completeness are proved.

1.1 Preliminaries

We assume the reader to be familiar with the basic concepts of computational complexity theory.
For the definitions of most of the complexity classes used in the paper we refer the reader to one
of the books on the subject (see, for example, [2, 5, 16, 35]).

We now give some standard definitions in the field of optimization and approximation theory.

Definition 1 An NP optimization problem A is a fourtuple (I, sol,m,type) such that
1. I is the set of the instances of A and it is recognizable in polynomial time.

2. Given an instance x of I, sol(x) denotes the set of feasible solutions of . These solutions are
short, that is, a polynomial p exists such that, for any y € sol(z), |y| < p(|z|). Moreover, for
any x and for any y with |y| < p(|z|), it is decidable in polynomial time whether y € sol(z).

3. Given an instance x and a feasible solution y of x, m(x,y) denotes the positive integer measure
of y (often also called the value of y). The function m is computable in polynomial time and
is also called the objective function.

4. type € {max, min}.

The goal of an NP optimization problem with respect to an instance z is to find an oplimum
solution, that is, a feasible solution y such that m(z,y) = type{m(z,y’) : ¢’ € sol(z)}. In the
following opt will denote the function mapping an instance z to the measure of an optimum solution.

The class NPO is the set of all NP optimization problems. Max NPO is the set of maximization
NPO problems and Min NPO is the set of minimization NPO problems.

An NPO problem is said to be polynomially bounded if a polynomial ¢ exists such that, for
any instance z and for any solution y of z, m(z,y) < ¢(|z|). The class NPO PB is the set of all
polynomially bounded NPO problems. Max PB is the set of all maximization problems in NPO PB
and Min PB is the set of all minimization problems in NPO PB.

Definition 2 Let A be an NPO problem. Given an instance x and a feasible solution y of x, we
define the performance ratio of y with respect to = as

m(z,y) opt(z) }

opt(z) " m(z,y)

R(z,y) = maX{
and the relative error of y with respect to z as

lopt(z) — m(z,y)|
opt(z) '

E(may):

The performance ratio (respectively, relative error) is always a number greater than or equal to
1 (respectively, 0) and is as close to 1 (respectively, 0) as the value of the feasible solution is close
to the optimum value. It is easy to see that, for any instance z and for any feasible solution y of z,

E(z,y) < R(z,y)— 1.

Definition 3 Let A be an NPO problem and let T be an algorithm that, for any instance x of
A such that sol(z) # (, returns a feasible solution T(z) in polynomial time. Given an arbitrary
function r: N — [1,00), we say that T is an r(n)-approximate algorithm for A if the performance
ratio of the feasible solution T(z) with respect to x verifies the following inequality:

R(z,T(z)) < r([z]).

Definition 4 Given a class of functions F, an NPO problem A belongs to the class F-APX if an
r(n)-approzimate algorithm T for A exists, for some function r € F.

In particular, APX, log-APX, poly-APX, and exp-APX will denote the classes F-APX with F
equal to the set O(1), to the set O(logn), to the set O(n°1)), and to the set O(?no(l)), respectively.
One could object that there is no difference between NPO and exp-APX since the polynomial
bound on the computation time of the objective function implies that any NPO problem is h2n" -
approximable for some h and k. This is not true, since NPO problems exist for which it is even
hard to find a feasible solution. We will see examples of such problems in Sect. 3 (e.g. MAXIMUM
WEIGHTED SATISFIABILITY).

Definition 5 An NPO problem A belongs to the class PTAS if an algorithm T exists such that,
for any fized rational r > 1, T(-,r) is an r-approzimate algorithm for A.

Clearly, the following inclusions hold:
PTAS C APX C log-APX C poly-APX C exp-APX C NPO.
It is also easy to see that these inclusions are strict if and only if P # NP.

1.2 A list of NPO problems

We here define the NP optimization problems that will be used in the paper. For a much larger
list of NPO problems we refer to [11].

MAXIMUM CLIQUE

INsTANCE: Graph G = (V, E).

SoLuTiON: A clique in G, i.e. a subset V' C V such that every two vertices in V' are joined by an
edge in F.

MEeasuRE: Cardinality of the clique, i.e., |[V'].

MAXIMUM WEIGHTED SATISFIABILITY and MINIMUM WEIGHTED SATISFIABILITY

INSTANCE: Set of variables X, boolean quantifier-free first-order formula ¢ over the variables in X,
and a weight function w: X — N.

SorLuTioN: Truth assignment that satisfies ¢.

MEASURE: The sum of the weights of the true variables.

MaxiMuM PB 0 — 1 PROGRAMMING and MINIMUM PB 0 — 1 PROGRAMMING

INsSTANCE: Integer m X n-matrix A, integer m-vector b, binary n-vector c.
SOLUTION: A binary n-vector z such that Az > b.

n
MEASURE: 1+ > ciz;.

i=1

MAXIMUM SATISFIABILITY

INSTANCE: Set of variables X and Boolean CNF formula ¢ over the variables in X.
SoruTioN: Truth assignment to the variables in X.
MEASURE: The number of satisfied clauses.

MiNIMUM BIN PACKING

INSTANCE: Finite set U of items, and a size s(u) € @ N (0,1] for each u € U.

SoLuTioN: A partition of U into disjoint sets Uy, Us, ..., U,, such that the sum of the sizes of the
items in each U; is at most 1.

MEASURE: The number of used bins, i.e., the number m of disjoint sets.

MINIMUM ORDERED BIN PACKING

INsTANCE: Finite set U of items, a size s(u) € @ N (0, 1] for each u € U, and a partial order < on
U.

SOLUTION: A partition of U into disjoint sets Uy, Us, ..., U, such that the sum of the sizes of the
items in each U; is at most 1 and if u € U; and v’ € U; with v < «/, then ¢ < j.

MEASURE: The number of used bins, i.e., the number m of disjoint sets.

MINIMUM DEGREE SPANNING TREE

INsTANCE: Graph G = (V, E).
SOLUTION: A spanning tree for .
MEASURE: The maximum degree of the spanning tree.

MiNiMUM EDGE COLORING

INsTaNCE: Graph G = (V, E).

SorLuTioN: A coloring of F, i.e., a partition of F into disjoint sets Fq, F, ..., F} such that, for
1 < ¢ <k, no two edges in E; share a common endpoint in G.

MEASURE: Cardinality of the coloring, i.e., the number k of disjoint sets.

2 A new approximation preserving reducibility

The goal of this section is to define a new approximation preserving reducibility that can be used
for as many approximation classes as possible and such that all reductions that have appeared in
the literature still hold. We will justify the definition of this new reducibility by emphasizing the
disadvantages of previously known ones. In the following, we will assume that, for any reducibility,
an instance x such that sol(z) # 0 is mapped into an instance 2’ such that sol(z') # 0.

2.1 The L-reducibility

The first reducibility we shall consider is the L-reducibility (for linear reducibility) [36] which is
often most practical to use in order to show that a problem is at least as hard to approximate as
another.

Definition 6 Let A and B be two NPO problems. A is said to be L-reducible to B, in symbols
A <y, B, if two functions [and g and two positive constants o and 3 exist such that:

1. For any x € 14, f(z) € I is computable in polynomial time.

2. For any x € I4 and for any y € solg(f(x)), g(z,y) € sola(x) is computable in polynomial
time.

3. For any x € 14, optg(f(z)) < aopt4(2).

4. For any x € I4 and for any y € solg(f(x)),

lopt4(2) — ma(z,g(x,y))| < Bloptg(f(2)) — mp(f(2),y)]
The fourtuple (f, g, a,) is said to be an L-reduction from A to B.

Clearly, the L-reducibility preserves membership in PTAS. Indeed, if (f, g, a, §)is an L-reduction
from A to B then, for any « € I4 and for any y € solg(f(z)), we have that

Eu(z,9(z,9)) < afEp(f(2),y),

so that if B € PTAS then A € PTAS [36]. The above inequality also implies that if A is a mini-
mization problem and an r-approximate algorithm for B exists, then a (14 af8(r —1))-approximate
algorithm for A exists. In other words, L-reductions from minimization problems to optimization
problems preserve membership in APX. The next result gives a strong evidence that, in general,
this is not true whenever the starting problem is a maximization one.

Theorem 7 The following stalements are equivalent:

1. Two problems A € Max NPO and B € Min NPO ezist such that A ¢ APX, B € APX, and
A <1, B.

2. Two Max NPO problems A and B exist such that A ¢ APX, B € APX, and A <1, B.

3. A polynomial-time recognizable set of satisfiable Boolean formulas exists for which no
polynomial-time algorithm can compute a satisfying assignment for each of them.

Proor:

(1) = (2). In this case, it suffices to L-reduce B to a maximization problem ' in APX [26].

(2) = (3). Assume that for any polynomial-time recognizable set of satisfiable Boolean formulas
there is a polynomial-time algorithm computing a satisfying assignment for each formula in the set.
Suppose that (f,g,a,3) is an L-reduction from a maximization problem A to a maximization
problem B and that B is r-approximable for some r > 1. Let 2 be an instance of A and let
y be a solution of f(z) such that optg(f(z))/ms(f(z),y) < r. For the sake of convenience, let
opty = opty(z), ma = ma(z,9(2,y)), optg = optg(f(z)), and mp = mp(f(z),y). Let also
my = max{ma, mp/a}. Since m4 < opt, and mp/a < optg/a < opt,, we have that m, < opty.
We now show that opt,/m, < 1+ af(r — 1), that is, m, is a non-constructive approximation of

opty. Let v = #@_1) There are two cases.

1. optg < 7opty. By the definition of the L-reducibility, opty, — m4 < f(optg — mp). Since
optg < yopt, and optg/mp < r, we have that

optA—mA<A optB_mB<7ﬁ(1—1/T)
opty optg .
Hence,
OPtASOPtAS 1 _ — 1t af(r—1)
my my 1- ”/ﬂT

where the last equality is due to the definition of 7.

2. optg > vyopt,. It holds that

opt 4 opt 4
My mp/a
a(optp/7) (
mp
a(optp/7)

(optg/T)

E
= 1+af(r-1).

since opt, < optg/7)

(since mp > optg/r)

Let us now consider the following non-deterministic polynomial-time algorithm.

begin {input: z € 14}
compute m, by using the r-approximate algorithm for B and the L-reduction from A to B;
guess y € sola(z);
if ma(z,y) > m, then accept else reject;

end;

By applying Cook’s reduction [10] to the above algorithm, it easily follows that, for any @ € I4,
a satisfiable Boolean formula ¢, can be constructed in polynomial time in the length of z so that
any satisfying assignment for ¢, encodes a solution of z whose measure is at least m,. Moreover,
the set {¢ : @ € I4} is recognizable in polynomial time. By assumption, it is then possible to
compute in polynomial time a satisfying assignment for ¢, and thus an approximate solution for

(3) = (1). Assume that a polynomial-time recognizable set 5 of satisfiable Boolean formulas
exists for which no polynomial-time algorithm can compute a satisfying assignment for each of them.
Consider the following two NPO problems A = (14, sol4, m4, max) and B = (Ip, solg, mp, min)
where I4 = Igp = 5, sola(x) = solg(z) = {y : y is a truth assignment to the variables of z},

| |a| if yis a satisfying assignment for x,
ma(,y) = { 1 otherwise,

and

, B |z| if y is a satisfying assignment for w,
ma(2,y) = { 2|z| otherwise.

Clearly, problem B is in APX, while if A isin APX then there is a polynomial-time algorithm that
computes a satisfying assignment for each formula in S, contradicting the assumption. Moreover,
it is easy to see that A L-reduces to B via f = Az.z, g = AzAy.y,a =1, and § = 1.

a

Observe that in [30] it is shown that the third statement of the above theorem holds if and only if
the y-reducibility is different from the many-one reducibility. Moreover, in [19] it is shown that the
latter hypothesis is somewhat intermediate between P # NP N co-NP and P # NP. In other words,
there is strong evidence that, even though the L-reducibility is suitable for proving completeness
results within classes contained in APX (such as Max SNP [36]), this reducibility cannot be used to
define the notion of completeness for classes beyond APX. Moreover, it cannot be blindly used to
obtain positive results, that is, to prove the existence of approximation algorithms via reductions.
Finally, it is possible to L-reduce the maximization problem B defined in the last part of the proof
of the previous theorem to MAXIMUM 3-SATISFIABILITY: this implies that the closure of Max SNP
with respect to the L-reducibility is not included in APX, contrary to what is commonly believed
(e.g. see [35], page 314).

2.2 The E-reducibility

The drawbacks of the L-reducibility are mainly due to the fact that the relation between the
performance ratios is set by two separate linear constraints on both the optimum values and the
absolute errors. The E-reducibility (for error reducibility) [26], instead, imposes a linear relation
directly between the performance ratios.

Definition 8 Let A and B be two NPO problems. A is said to be E-reducible to B, in symbols
A <g B, if two functions f and g and a posilive constant a exist such that:

1. For any z € 14, f(x) € I is computable in polynomial time.

2. For any @ € I4 and for any y € solp(f(x)), g(x,y) € sola(x) is computable in polynomial
time.

3. For any x € 14 and for any y € solg(f(z)),

RA(xvg(xv y)) <1+ Oz(RB(f(LU), y) - 1)'
The triple (f,g,a) is said to be an E-reduction from A to B.

Observe that, for any function r, an E-reduction maps r(n)-approximate solutions into (1 +
a(r(n")—1))-approximate solutions where A is a constant depending only on the reduction. Hence,
the E-reducibility not only preserves membership in PTAS but also membership in exp-APX, poly-
APX, log-APX, and APX. As a consequence of this observation and of the results of the previous
section, we have that NPO problems should exist which are L-reducible to each other but not
E-reducible. However, the following result shows that within the class APX the E-reducibility is
just a generalization of the L-reducibility.

Proposition 9 For any two NPO problems A and B, if A <1, B and A € APX, then A <g B.

Proor: Let T be an r-approximate algorithm for A with r constant and let (f7, ¢z, ar, 1) be an
L-reduction from A to B. Then, for any @ € I4 and for any y € solp(fr(z)), Ea(z,gr(z,y)) <
arfrEs(fr(z),y). If Aisaminimization problem then, for any z € I4 and for any y € solg(fr.(2)),

Ra(z,gr(z,y)) = 14 Eag(z,gr(x,y))
< 14 arfrEs(fir(z),y)
< 1+ apfr(BRe(fo(z),y)—1),

and thus (fr,9r,ar08r) is an E-reduction from A to B. Otherwise (that is, A is a maximization
problem) we distinguish the following two cases.

1. Eg(fr(x),y) < m: in this case we have that

EA(I,gL($,y))
1- EA(:C,gL(:C,y))
arBrEp(fL(z),y)
1 —arfrEs(fr(z),y)
< 2apBr(Re(fr(z),y) - 1).

Ra(z,gr(z,y)) -1

A

2. Eg(fr(z),y) > m: in this case we have that Rg(fr(z),y) — 1> m so that

Ra(z,T(z)) = 1<r—1<2arf(r -)(Rp(fr(z),y) - 1)

where the first inequality is due to the fact that T is an r-approximation algorithm for A.

10

We can thus define a triple (fz, 95, ag) as follows:

1. For any z € 14, fr(z) = fr(z).

2. For any z € I4 and for any y € solg(fg(z)),

et = { 5 gl > e 1)

3. ag = max{2a10r,2ap(r — 1)}.
From the above discussion it follows that (fz,gg,ag) is an E-reduction from A to B. a

Clearly, the converse of the above result does not hold since no problem in NPO —NPO PB can
be L-reduced to a problem in NPO PB while any problem in PO can be E-reduced to any NPO
problem. Moreover, in [26] it is shown that MAXiMUM 3-SATISFIABILITY is (NPO PB N APX)-
complete with respect to the E-reducibility. This result is not obtainable by means of the L-
reducibility: indeed, it is easy to prove that MINIMUM BIN PACKING is not L-reducible to MAXI-
MUM 3-SATISFIABILITY unless P = NP (see, for example, [6]).

The E-reducibility is still somewhat too strict. Indeed, in [14] it has been shown that natural
PTAS problems exist, such as MAXIMUM KNAPSACK, which are not E-reducible to polynomially
bounded APX problems, such as MAXIMUM 3-SATISFIABILITY (unless a logarithmic number of
queries to an NP oracle is as powerful as a polynomial number of queries).

2.3 The AP-reducibility

The above mentioned drawback of the E-reducibility is mainly due to the fact that an E-reduction
preserves optimum values (see [14]). Indeed, the linear relation between the performance ratios
seems to be too restrictive. According to the definition of approximation preserving reducibilities
given in [12], we could overcome this problem by expressing this relation by means of an implication.
However, this is not sufficient: intuitively, since the function g does not know which approximation is
required, it must still map optimum solutions into optimum solutions. The final step thus consists
of letting the functions f and ¢ depend on the performance ratio'. This implies that different
constraints have to be put on the computation time of f and g: on the one hand, we still want to
preserve membership in PTAS, on the other we want the reduction to be efficient even when poor
performance ratios are required. These constraints are formally imposed in the following definition

of approzimation preserving reducibility (which is a restriction of the PTAS-reducibility introduced
in [14]).

Definition 10 Let A and B be two NPO problems. A is said to be AP-reducible to B, in symbols
A <ap B, if two functions f and g and a positive constant a exist such that:

1. For any x € I4 and for any r > 1, f(z,r) € Ip is compulable in time ts(|z|,r).

2. For any © € Iy, for any r > 1, and for any y € solg(f(z,r)), g(z,y,r) € sola(z) is
computable in time t,(|z|,|y|,r).

3. For any fized v, both t4(-,r) and t,(-,-,r) are bounded by a polynomial.

"We also let the function f depend on the performance ratio because this feature will turn out to be useful in
order to prove interesting characterizations of complete problems for approximation classes.

11

4. For any fized n, both ts(n,-) and t,(n,n,-) are non-increasing functions.

5. For any x € 14, for any r > 1, and for any y € solg(f(x,r)),

RB(f(va)vy) < r implies RA(fL',g(-’L',y,’/')) <1+ (l(’l' B 1)

The triple (f,g,) is said to be an AP-reduction from A to B.
According to the above definition, functions like 21/ =Dph or n!/(=1) are admissible bounds on
the computation time of f and g, while this is not true for functions like n" or 2".

Observe that, clearly, the AP-reducibility is a generalization of the E-reducibility. Moreover, it
is easy to see that, contrary to the E-reducibility, any PTAS problem is AP-reducible to any NPO
problem.

As far as we know, this reducibility is the strictest one appearing in the literature that allows
to obtain natural APX-completeness results (for instance, the APX-completeness of MAXIMUM
SATISFIABILITY [14, 26]).

3 NPO-complete problems

We will in this section prove that there are natural problems that are complete for the classes NPO
and NPO PB. Previously, completeness results have been obtained just for Max NPO, Min NPO,
Max PB, and Min PB [12, 33, 4, 24]. One example of such a result is the following theorem.

Theorem 11 MINIMUM WEIGHTED SATISFIABILITY s Min NPO-complelte and MAXIMUM
WEIGHTED SATISFIABILITY is Max NPO-complete, even if only a subset {v1,...,vs} of the vari-
ables has nonzero weight w(v;) = 25~ and any truth assignment satisfying the instance gives the
value true to at least one v;.

We will construct AP-reductions from maximization problems to minimization problems and
vice versa. Using these reductions we will show that a problem that is Max NPQO-complete or
Min NPO-complete in fact is complete for the whole of NPO, and that a problem that is Max PB-
complete or Min PB-complete is complete for the whole of NPO PB.

Theorem 12 MINIMUM WEIGHTED SATISFIABILITY and MAXIMUM WEIGHTED SATISFIABILITY
are NPO-complete.

Proovr: In order to establish the NPO-completeness of MINIMUM WEIGHTED SATISFIABILITY we
just have to show that there is an AP-reduction from a Max NPO-complete problem to MINIMUM
WEIGHTED SATISFIABILITY. As the Max NPQO-complete problem we will use the restricted version
of MAXIMUM WEIGHTED SATISFIABILITY from Theorem 11.

Let z be an instance of MAXIMUM WEIGHTED SATISFIABILITY, i.e. a formula ¢ over variables
v1,...,0s with weights w(v;) = 2°~* and some variables with weight zero. We will first give a simple
reduction that preserves the approximability within the factor 2, and then adjust it to obtain an
AP-reduction.

Let f(z) be the formula ¢ A a3 A --- A a5 where a; is the conjunctive normal form of (z; =
(71 A+~ AT A v;)), where z1,...,z; are new variables with weights w(z;) = 2' and where all
other variables (even the v-variables) have zero weight. If y is a satisfying assignment of f(z), let

12

g(z,y) be the restriction of the assignment to the variables that occur in ¢. This assignment clearly
satisfies ¢.

Note that exactly one of the z-variables is true in any satisfying assignment of f(z). Indeed, if
all z-variables were false, then all v-variables would be false and ¢ would not be satisfied. On the
other hand, if both z; and z; were true with 7 > 4, then v; would be both true and false which is a
contradiction. Hence,

m(f(@)y)=2 & z=1
< ?.71:?.72:"':’02'_1:0,’02':1
& 277 <mfe,g(e,y)) <2-2°7
28 28
=

@)y S @ 9le9) <20

In particular this holds for the optimum solution. Thus the performance ratio for MAXIMUM
WEIGHTED SATISFIABILITY is

28

)
o) P Topt(()) _ ,mf()y) e
Mg = ey S 2 ety IO

m(f(z),y)

which means that the reduction preserves the approximability within 2.

Let us now extend the construction in order to obtain R(z,g(z,y)) < (14 27%)R(fx(z),vy) for
every nonnegative integer k. The reduction described above corresponds to k = 0.

For any 7 € {1,..., s} and for any (b1, ..., b)) € {0, 1}#0) where k(i) = min{s — i, k}, we have
a variable Ziby o) - Let

fu(z) =0 A A TR
1€{1,..,5}
(b1 seeesbisy) €{0,1 140

where a;p, . is the conjuctive normal form of

-br(i)

(Zz',bl,...,bk(i) = (51 A ATt A0 A (Vi1 = b1) A A (Vi) = bk(i)))) .

Define g(z,y) as above. Finally, define

w(z) K -2° K -2
i,b1,biiy) = 50 = k(i -
w(v;) + Zj(zi bjw(viy;) 14 Zj(zi b;2-3

(by choosing K greater than 2* we can disregard the effect of the ceiling operation in the following
computations).

As in the previous reduction exactly one of the z-variables is true in any satisfying assignment
of fr(z). If, in a solution y of fi(z), Ziby yebiiy = 1, then we have m(fy(z),y) = w(Zi,bl,...,bk(i)) and
we know that

13

k(i) _ k(4) ‘
m(z,g(z,y)) > w(v;) + E bw(viy;) = 2°7(1 + E b;277).

7=1 71=1

On the other hand, if k(i) = s — i then m(z, g(z,y)) = 2°7*(1 + Zf(:q b;277), otherwise

k k

m(x, g(x,9)) < w(vi) +) bjw(vie;) + w(v;) < 22714 D027) (14 27F).
i=1 j=hitl i=1

In both cases, we thus get

s Smleg(e9) < (1427
N oy ST, 9T, Y NN
m(fi(z),y) m(fi(2),y)
and therefore R(z,g(z,y)) < (1 + 27F)R(fe(z),y). Given any r > 1, if we choose k such that
27F < (r = 1)/r, eg. k = [logr —log(r —1)], then R(fr(z),y) < r implies R(z,g(z,y)) <
1+ 27" R(fu(z),y) <r4+r27F <r4r—1=14+2(r—1). This is obviously an AP-reduction with
a =2,

A very similar proof can be used to show that MAXIMUM WEIGHTED SATISFIABILITY is NPO-
complete.

a

Corollary 13 Any Min NPO-complete problem is NPO-complete and any Max NPO-complete
problem is NPO-complete.

As an application of the above corollary, we have that the MINIMUM 0 — 1 PROGRAMMING problem
is NPO-complete.

We can also show that there are natural complete problems for the class of polynomially bounded
NPO problems.

Theorem 14 MAXIMUM PB 0 — 1 PROGRAMMING and MINIMUM PB 0 — 1 PROGRAMMING are
NPO PB-complete.

Proor: MaxmMmuM PB 0 —1 PROGRAMMING is known to be Max PB-complete [4] and MINIMUM
PB 0—1 PROGRAMMING is known to be Min PB-complete [24]. Thus we just have to show that there
are AP-reductions from MINIMUM PB 0—1 PROGRAMMING to MAXIMUM PB 0—1 PROGRAMMING
and from MAXIMUM PB 0 — 1 PROGRAMMING to MINIMUM PB 0 — 1 PROGRAMMING.

Both reductions use exactly the same construction. Given a satisfying variable assignment, we
define the one-variables to be the variables occurring in the objective function that have the value
one. The objective value is the number of one-variables plus 1.

The objective value of a solution is encoded by introducing an order of the one-variables. The
order is encoded by a squared number of 0 — 1 variables, see Fig. 2. The idea is to invert the
objective values, so that a solution without one-variables corresponds to an objective value of n
of the constructed problem, and, in general, a solution with p one-variables corresponds to an

objective value of {#J
The reductions are constructed as follows. Given an instance of MINIMUM PB 0 —1 PROGRAM-

MING or MAXIMUM PB 0 — 1 PROGRAMMING, i.e. an objective function 1+ 5 7~ vz and some

14

only zeros in upper part

size of |T

sl one 1 in each row
solutiof]

L=l enRen Yan}
TOoOOoOCSHROO
T RO ooo
TooCcCCoo
T OoORSOoOoo
TooCcCcoCo

solution: e e @ 0 @ o

Figure 2: The idea of the reduction from MINIMUM/MAXIMUM PB 0 — 1 PROGRAMMING to
MaxiMuM/MINIMUM PB 0 — 1 PROGRAMMING. The variable 27 = 1 if and only if v; is the jth
one-variable in the solution. There is at most one 1 in each column and in each row.

inequalities over variables V = {vq,..., v} U U, construct m? variables wg, 1<1,7 < m, and the
following inequalities:

Vi € [1..m] > xf <1 (at most one 1 in each column) (1)
=1
Vj € [1..m] Sl <1 (at most one 1 in each row) (2)
i=1
. m . m +1 .
Vje[l.m—1] Y al— > 2! >0 (only zeros in upper part) (3)
i=1 i=1

Besides these inequalities we include all inequalities from the original problem, but we substitute
¥ The variables in U (that do not occur in the objective

each variable v; with the sum > ;- «7.
function) are left intact.

The objective function is defined as

=2 (- FaDse ®

p=1

In order to express the objective function with only binary coeflicients we have to introduce n
new variables yy,...,y, where y; = 1 = > 7 z” for [n/(p+ 1)] < j < |n/p| and y; = 1 for
J < [n/(m+1)]. The objective function then is 3°7_; y;. One can now verify that a solution of the
original problem instance with s one-variables (i.e. with an objective value of s + 1) will exactly
correspond to a solution of the constructed problem instance with objective value [n/(s + 1)] and
vice versa.

Suppose that the optimum solution to the original problem instance has M one-variables, then
the performance ratio (s 4+ 1)/(M + 1) will correspond to the performance ratio

sl
M+1] _ s+ 1 <1iﬂ>
an M+1 n
s+ 1

for the constructed problem, where 2 is the relative error due to the floor operation. By choosing

n large enough the relative error can be made arbitrarily small. Thus it is easy to see that the
reduction is an AP-reduction. O

15

Corollary 15 Any Min PB-complete problem is NPO PB-complete and any Max PB-complete
problem is NPO PB-complele.

4 Query complexity and APX-intermediate problems

The existence of APX-intermediate problems (that is, problems in APX which are not APX-
complete) has already been shown in [12] where an artificial such problem is obtained by diagonal-
ization techniques similar to those developed to prove the existence of NP-intermediate problems
[29]. In this section, we prove that “natural” APX-intermediate problems exist: for instance, we
will show that MINIMUM BIN PACKING is APX-intermediate. In order to prove this result, we
will establish new connections between the approximability properties and the query complexity of
NP-hard optimization problems. To this aim, let us first recall the following definition.

Definition 16 A language L belongs to the class PNPU if it is decidable by a polynomial-time
oracle Turing machine which asks at most f(n) queries to an NP-complete oracle, where n is the
input size. The class QH is equal to the union |J-, pNPIH],

Similarly, we can define the class of functions FPNPI/([28] The following result has been
proved in [21, 22].

Theorem 17 If a constant k ewxists such that
QH PNP]
then the polynomial-time hierarchy collapses.

The query-complexity of the “non-constructive” approximation of several NP-hard optimization
problems has been studied by using hardness results with respect to classes of functions FPNPL
[7, 9]. However, this approach cannot be applied to analyze the complexity of “constructing”
approximate solutions. To overcome this limitation, we use a novel approach that basically consists
of considering how helpful is an approximation algorithm for a given optimization problem to solve
decision problems.

Definition 18 Given an NPO problem A and a rational r > 1, A, is a multi-valued partial function
that, given an instance x of A, returns the set of feasible solutions y of x such that R(z,y) < r.

Definition 19 Given an NPO problem A and a rational v > 1, a language L belongs to PAr if two
polynomial-time computable functions f and g exist such that, for any z, f(x) is an instance of A
with sol(f(x)) # 0, and, for any y € A.(f(z)), g(z,y) =1 if and only if © € L. The class AQH(A)
is equal to the union |J.5q P47,

The following result states that an approximation problem does not help more than a constant
number of queries to an NP-complete problem. It is worth observing that, in general, an approx-
imate solution, even though not very helpful, requires more than a logarithmic number of queries
to be computed [8].

Proposition 20 For any problem A in APX, AQH(A) C QH.

16

ProoF: Assume that A is a maximization problem (the proof for minimization problems is similar).
Let T be an r-approximate algorithm for A, for some r > 1, and let L € P4¢ for some p > 1. Two
polynomial-time computable functions f and g then exist witnessing this latter fact. For any z, let
m = m(f(z), T(f(z))), so that m < opt(f(z)) < rm. We can then partition the interval [m,rm]
into |log, 7] + 1 subintervals

[m, pm), [pm, p*m), ..., [plo& "1 m, plosomim] [plogemlm, rm],

and start looking for the subinterval containing the optimum value (a similar technique has been
used in [7, 9]). This can clearly be done using [log,r] + 1 queries to an NP-complete oracle.
One more query is sufficient to know whether a feasible solution y exists whose value lies in that
interval and such that g(z,y) = 1. Since y is p-approximate, it follows that L can be decided using
llog, r] + 2 queries, that is, L € QH. O

Recall that an NPO problem admits an asymptotic polynomial-time approzimation scheme if
an algorithm 7 exists such that, for any 2 and for any r > 1, R(z,T(z,r)) < r + k/opt(z) with k
constant and the time complexity of T'(z, r) is polynomial with respect to |z|. The class of problems
that admit an asymptotic polynomial-time approximation scheme is usually denoted by PTAS®.
The following result shows that, for this class, the previous fact can be strengthened.

Proposition 21 Let A € PTAS®. Then a constant h exists such that AQH(A) C PNPIAL,

Proor: Let A be a minimization problem in PTAS® (the proof for maximization problem is very
similar). By definition, a constant & and an algorithm T exist such that, for any instance z and
for any rational r > 1,

m(x,T(x,r)) < r-opt(z) + k.

We will now prove that a constant h exists such that, for any r > 1, a function I, € FPNPIi-1]
exists such that, for any instance z of the problem A,

opt(x) < In(x) < r - opt(x).

Intuitively, functions [, form a non-constructive approximation scheme that is computable by a
constant number of queries to an NP-complete oracle. Given an instance z, we can check whether
sol(z) = 0 by means of a single query to an NP oracle, so that we can restrict ourselves to
instances such that sol(z) # () (and thus opt(z) > 1). Note that, for these instances, T'(-,2) is a
(k 4+ 2)-approximate algorithm for A. Let us fix an r > 1, let e = r =1, y = T(2,14 ¢/2) and
a=m(z,T(z,2)). We have to distinguish two cases.

1. @ > 2k(k 4 2)/e: in this case, opt(z) > 2k/e, that is, opt(z)e/2 > k. Then

opt(z)(14+¢/2)+k
opt(z)(1+¢/2) + opt(z)e/2
opt(x)(1+ 2) = ropt(z),

m(z, y)

IN A

that is, y is an r-approximate solution for z, and we can set [,(z) = m(z,y) (in this case I,
has been computed by only one query).

17

2. a < 2k(k + 2)/e: in this case, opt(z) < 2k(k + 2)/e. Then,

opt(z) < m(z,y) < opt(z)+ opt(z)e/2 + k < opt(z) + k(k + 2) + k.

Clearly, [log k(k+3)] queries to NP are sufficient to find the optimum value opt(z) by means of
a binary search technique: in this case [,(z) = opt(z) has been computed by [log k(k+3)] +1
queries.

Let now L be a language in AQH(A), then L € P4r for some r > 1. Let f and g be the functions
witnessing that I € P47, Observe that, for any z, € L if and only if a solution y for f(z) exists
such that m(f(z),y) > .(f(z)) and g(f(z),y) = 1: that is, given [,(f(z)), deciding whether « € L
is an NP problem. Since I.(f(z)) is computable by means of at most [log k(k + 3)] + 1 queries to
NP, we have that I € PNPIA] where h = [log k(k 4+ 3)] + 2. a

The next proposition, instead, states that any language L in the query hierarchy can be decided
using just one query to A, where A is APX-complete and r depends on the level of the query
hierarchy L belongs to. In order to prove this proposition, we need the following technical result?.

Lemma 22 For any APX-complete problem A and for any k, two polynomial-time computable
functions f and g and a constant v exist such that, for any k-tuple (z1,...,z1) of instances of
PARTITION, @ = f(z1,...,2) is an instance of A and if y is a solution of x whose performance
ratio is smaller than r then g(x,y) = (b1,...,by) where b; € {0,1} and b; = 1 if and only if x; is a
yes-instance.

Proor: Let z; = (U;,s;) be an instance of ParTITION for ¢ = 1,...,k. Without loss of gener-
ality, we can assume that the U;s are pairwise disjoint and that, for any ¢, >°,cp, si(u) = 2. Let
w = (U,s,=<) be an instance of MINIMUM ORDERED BIN PACKING defined as follows (a similar
construction has been used in [37]).

1. U = Ule U; U{vy,...,vp_1} where the v;s are new items.
2. For any u € U;, s(u) = sj(u) and s(v;) =1fori=1,...,k— 1.
3. For any i < j <k, for any u € U;, and for any v’ € U;, u < v; < o',

Any solution of w must be formed by a sequence of packings of Uy, ..., U such that, for any i,
the bins used for U; are separated by the bins used for U;41 by means of one bin which is completely
filled by v;. In particular, the packings of the U;s in any optimum solution must use either two or
three bins: two bins are used if and only if z; is a yes-instance. The optimum measure thus is at
most 4k — 1 so that any (14 1/(4k))-approximate solution is an optimum solution.

Since MINIMUM ORDERED BIN PACKING belongs to APX [41] and A is APX-complete, then an
AP-reduction (f1,¢1,) exists from MINIMUM ORDERED BIN PACKING to A. We can then define
= f(z1,...,2r) = fi(w,14+ 1/(4ak)) and r = 1 + 1/(4ak). For any r-approximate solution y of

?Recall that the NP-complete problem PARTITION is defined as follows: given a set U of items and a size function
s: U — Qn(0,1], does there exists a subset U’ C U such that

Z s(u) = Z s(u)?

ucU! ugU’

18

z, the fourth property of the AP-reducibility implies that z = g1(z,y, 1+ 1/(4ak))is a (1+1/(4k))-
approximate solution of w and thus an optimum solution of w. From z, we can easily derive the
right answers to the k queries z1,..., . a

We are now able to prove the following result.
Proposition 23 For any APX-complete problem A, QH C AQH(A).

Proor: Let I € QH, then L € PNFI*l for some h. Tt is well known (see, for instance, [3]) that L can
be reduced to the problem of answering k& = 2"~! non-adaptive queries to NP. More formally, two
polynomial-time computable functions ¢; and ¢ exist such that, for any z, t1(z) = (z1,...,2k),
where z1,...,2; are k instances of the PARTITION problem, and for any (by,...,b;) € {0,1}*%,
ta(@,b1,...,bp) € {0,1}. Moreover, if, for any j, b; = 1 if and only if 2; is a yes-instance, then
to(z,b1,...,bp) = 1if and only if z € L.

Let now f, g and r be the two functions and the constant of Lemma 22 applied to problem A
and constant k. For any z, 2’ = f({1(z)) is an instance of A such that if y is an r-approximate
solution for 2/, then t5(g(2’,y)) = 1 if and only if 2 € L. Thus, I € P4,]

By combining Propositions 20 and 23, we thus have the following theorem that characterizes
the approximation query hierarchy of the hardest problems in APX.

Theorem 24 For any APX-complete problem A, AQH(A) = QH.

Finally, we have the following result that states the existence of natural intermediate problems

in APX.

Theorem 25 If the polynomial-time hierarchy does not collapse, then MINIMUM BIN PACKING,
MINIMUM DEGREE SPANNING TREE, and MINIMUM EDGE COLORING are APX-inlermediale.

ProoF: From Proposition 21 and from the fact that MINIMUM BIN PACKING is in PTAS® [25], it
follows that AQH(MiNIMUM BIN PackiNg) C PNPI for a given h. If MINIMUM BIN PACKING is
APX-complete, then from Proposition 23 it follows that QH C PNPIA, From Theorem 17 we thus
have the collapse of the polynomial-time hierarchy. The proofs for MINIMUM DEGREE SPANNING
TREE and MINIMUM EDGE COLORING are identical and use the results of [18, 15]. O

Observe that the previous result does not seem to be obtainable by using the hypothesis P # NP,
as shown by the following theorem.

Theorem 26 If NP = co-NP then MINIMUM BIN PACKING is APX-complete.

ProOF: Assume NP = co-NP, we will present an AP reduction from MAXIMUM SATISFIABILITY
to MiNIMUM BIN PACKING. Since NP = co-NP a nondeterministic polynomial time Turing ma-
chine M exists that, given in input an instance ¢ of MAXIMUM SATISFIABILITY, has an accepting
computation and all accepting computations halt with an optimum solution for ¢ written on the
tape. Indeed, M guesses an integer k, an assigment 7 such that m(¢,7) = k and a proof of the
fact that opt(¢) < k. From the proof of Cook’s theorem it follows that, given ¢, we can find in
polynomial time a formula ¢’ such that ¢’ is satisfiable and that given any satisfying assignment for
¢' we can find in polynomial time an optimum solution for ¢. By combining this construction with
the NP-completeness proof of the MINIMUM BIN PACKING problem, we obtain two polynomial-
time computable functions ¢; and 73 such that, for any instance ¢ of MAXIMUM SATISFIABILITY,

19

11(¢) = x4 is an instance of MINIMUM BIN PACKING such that opt(z,) = 2 and, for any opti-
mum solution y of z4, {3(z4,y) is an optimum solution of ¢. Observe that, by construction, an
r-approximate solution for x4 is indeed an optimum solution provided that r < 3/2. Let T be a
4/3-approximate algorithm for MAXIMUM SATISFIABILITY [42, 17]. The reduction from MAXIMUM
SATISFIABILITY to MINIMUM BIN PACKING is defined as follows: f(¢,r) = t1(¢);

[T(e) if r >4/3,
9(0,y,7) = { ta(t1(¢),y) otherwise.

It is immediate to verify that the above is an AP-reduction with a = 1.
a

Finally, note that the above result can be extended to any APX problem which is NP-hard to
approximate within a given performance ratio.

4.1 A remark on MAXIMUM CLIQUE

The following lemina is the analogoue of Proposition 20 within NPO PB and can be proved similarly
by binary search techniques.

Lemma 27 For any NPO PB problem A and for any r > 1, PAr C pNPlloglogn+0(1)],

From this lemma, from the fact that PNPlognl is contained in PMC1 where MC stands for
MaxiMuM CrLIQUE [28], and from the fact that if a constant k exists such that

NP [logl k NP[L
pNFPlloglognt+k] — pNP[logn]

then the polynomial-time hierarchy collapses [40], it follows the next result that solves an open
question posed in [7]. Informally, this result states that it is not possible to reduce the problem of
finding a maximum clique to the problem of finding a 2-approximate clique (unless the polynomial-
time hierarchy collapses).

Theorem 28 If PMC1 C PMC2 ypen the polynomial-time hierarchy collapses.

5 Query complexity and completeness in approximation classes

In this final section, we shall give a full characterization of problems complete for poly-APX and
for APX, respectively, in terms of hardness of the corresponding approximation problems with
respect to classes of partial multi-valued functions and in terms of suitably defined combinatorial
properties.

The classes of functions we will refer to have been introduced in [8] as follows.

Definition 29 FNPNPl)] s the class of partial multi-valued functions computable by nondeter-
ministic polynomial-time Turing machines which ask at most g(n) queries to an NP oracle in the
entire computation tree.?

We say that a multi-valued partial function F is computable by a nondeterministic Turing machine N if, for any
z in the domain of F', an halting computation path of N(z) exists and any halting computation path of N(z) outputs
a value of F(z).

20

In order to talk about hardness with respect to these classes we will use the following reducibility
which is an extension of both metric reducibility [28] and one-query reducibility [13] and has been
introduced in [8].

Definition 30 Let F' and G be two partial multi-valued functions. We say that F many-one reduces
to G (in symbols, F<uyG) if two polynomial-time algorithms t; and 1y exist such that, for any x
in the domain of F, t1(x) is in the domain of G and, for any y € G(t1(2)), t2(z,y) € F(z).

The combinatorial property used to characterize poly-APX-complete problems is the well-known
self-improvability (see, for instance, [34]).

Definition 31 A problem A is self-improvable if two algorithms t1 and to exist such that, for any
instance x of A and for any two rationals r1,r9 > 1, &' = t1(x,71,72) is an instance of A and, for
any y' € A, (2"), y = ta(z, ¥, r1,72) € Ay (2). Moreover, for any fized vy and rq, the running time
of t1 and ty is polynomial.

We are now ready to state the first result of this section.

Theorem 32 A poly-APX problem A is poly-APX-complete if and only if it is self-improvable and
Ay is FNPNPloglognt O] _pard for some rg > 1.

Proor: Let A be a poly-APX-complete problem. Since MaxiMmum CLIQUE is self-improvable [16]
and poly-APX-complete [26] and since the equivalence with respect to the AP-reducibility preserves
the self-improvability property (see [34]), we have that A is self-improvable. It is then sufficient to
prove that A, is hard for FNPNPlloglogn+O(1)],

From the poly-APX-completeness of A we have that MAXIMUM CLIQUE <ap A: let «
be the constant of this reduction. From Theorem 12 of [8] we have that any function F' in
FNPNPlloglogntOM)] many-one reduces to MAXIMUM CLIQUE y,. From the definition of AP-
reducibility, we also have that MAXIMUM CLIQUE{,,<myA3 so that " many-one reduces to A,.

Conversely, let A be a poly-APX self-improvable problem such that, for some rg, A, is
FNPNPlloglogntO(M] pard. We will show that, for any problem B in poly-APX, B is AP-reducible
to A. To this aim, we introduce the following partial multi-valued function multisat: given in
input a sequence (¢1,...,¢,) of instances of the satisfiability problem with m < log|(¢1,...,¢m)|
and such that, for any ¢, if ¢;41 is satisfiable then ¢; is satisfiable, a possible output is a satisfying
truth-assignment for ¢;» where i* = max{i : ¢; is satisfiable}. From the proof of Theorem 12 of [§]
it follows that this function is FNPNP[loglog”+O(1)]—complete.

By making use of techniques similar to those of the proof of Proposition 20, it is easy to
see that, since B is in poly-APX, two algorithms ¢ and £ exist such that, for any fixed r >
1, tB(-,r) and tP(-,-,7) form a many-one reduction from B, to multisat. Moreover, since A,
is FNPNP[IOglOg”"'0(1)]—hard7 then a many-one reduction (t{vj,té\/[) exists from multisat to A, .
Finally, let #! and #4 be the functions witnessing the self-improvability of A.

The AP-reduction from B to A can then be derived as follows:

tlB(l',’r') , t{VI(l") " ti“(x”,ro,r) m

zr —m —— ¢/ — — s o
tB(z,y'r) , tM(z! 1y " (& y" o) "

Y ¢ y < Yy ¢ Yy

It is easy to see that if y" is an r-approximate solution for the instance z of A, then y is an

r-approximate solution of the instance x of B. That is, B is AP-reducible to A with a = 1. O

21

The above theorem cannot be proved without the dependency of both f and ¢ on r in the
definition of AP-reducibility. Indeed, it is possible to prove that if only g has this property then,
unless the polynomial-time hierarchy collapses, a self-improvable problem A exists such that As is
FNPNPloglogn+O(M] pard and A is not poly-APX-complete.

In order to characterize APX-complete problems, we have to define a different combinatorial
property. Intuitively, this property states that it is possible to merge several instances into one
instance in an approximation preserving fashion.

Definition 33 An NPO problem A is linearly additive if a constant § and two algorithms t;

and ty exist such that, for any rational r > 1 and for any sequence x1, ...,z of instances of A,
a' = t(xy,...,xx, 1) is an instance of A and, for any y' € Ayyi_nyg/(@’), ta(@r,. . kY1) =
Y1, .-, Yp where each y; is an r-approximate solution of x;. Moreover, the running time of 11 and

to is polynomial for every fized r.

Theorem 34 An APX problem A is APX-complete if and only if it is linearly addilive and a
constant ro exists such that A, is FNPNPU_pqrd.

Proovr: Let A be an r4-approximable APX-complete problem. From the proof of Proposition 23
a constant ro exists such that A, is hard for FNPNPUL T order to prove the linear additivity, fix
any r > 1 and let zq,...,2; be instances of A. Without loss of generality, we can assume r < r4
(otherwise the k instances can be r-approximated by using the r 4-approximate algorithm). For any
¢t =1,...,k the problem of finding an r-approximate solution y; for x; is reducible to the problem of
constructively solving a set of [log, 4| instances of PARTITION. Observe that [log, r4] < ¢/(r—1)
for a certain constant ¢ depending on r4. Moreover, we claim that a constant 7 exists such
that constructively solving ke/(r — 1) instances of PARTITION is reducible to (1 4+ v(r — 1)/kc)-
approximating a single instance of A (indeed, this can be shown along the lines of the proof of
Proposition 23). That is, A is linearly additive with 5 = v/c.

Conversely, let A be a linearly additive APX problem such that A, is FNPNPULhard for some
ro and let B be an rp-approximable problem. Given an instance xz of B, for any r > 1 we can
reduce the problem of finding an r-approximate solution for z to the problem of constructively
solving ¢/(r —1) instances of PARTITION, for a proper constant ¢ not depending on r. Each of these
questions is reducible to A,,, since any NP problem can be constructively solved by an FNPNPI
function. From linear additivity, it follows that ro-approximating ¢/(r—1)instances of A is reducible
to (1+ B(ro — 1)(r — 1)/c)-approximating a single instance of A. This is an AP-reduction from B
to A with a = ¢/(B(ro — 1)). m|

Note that linear additivity plays for APX more or less the same role of self-improvability for
poly-APX. These two properties are, in a certain sense, one the opposite of the other: while the
usefulness of APX-complete approximation problems to solve decision problems depends on the
performance ratio and does not depend on the size of the instance, the usefulness of poly-APX-
complete approximation problems depends on the size of the instance and does not depend on
the performance ratio. Indeed, it is possible to prove that no APX-complete problem can be self-
improvable (unless P = NP) and that no poly-APX-complete problem can be linearly additive
(unless the polynomial-time hierarchy collapses).

It is now an interesting question to find a characterizing combinatorial property of log-APX-
complete problems. Indeed, we have not been able to establish this characterization: at present, we
can only state that it cannot be based on the self-improvability property as shown by the following
result.

22

Theorem 35 No log-APX-complete problem can be self-improvable unless the polynomial-time hi-
erarchy collapses.

Proor: Let us consider the optimization problem MAX NUMBER OF SATISFIABLE FORMULAS (in
short, MNSF') defined as follows.

INSTANCE: Set of m boolean formulas ¢1,...,¢,, in 3CNF, such that ¢, is a tautology and m <
log n, where n is the size of the input instance.

SoLuTioN: Truth assignment 7 to the variables of ¢1, ..., ¢,.
MEASURE: The number of satisfied formulas, i.e., [{i : ¢; is satisfied by 7}|.

Clearly, MNSF is in log-APX, since the measure of any assignment 7 is at least 1, and the
optimum value is always smaller than logn, where n is the size of the input. We will show that,
for any r < 2, MNSF, is hard for FNPNPlegloglogn—1]

Given loglogn queries to an NP-complete language (of size polynomial in n) 21, ..., Zloglogn,
we can construct an instance ® = ¢q,..., ¢, of MNSF where ¢y is a tautology and, for ¢ > 1, the
formulas ¢gi = ... = ¢yit1_; are satisfiable if and only if at least 7 instances among z1,. .., Zioglogn

are yes-instances (these formulas can be easily constructed using the standard proof of Cook’s
theorem). Note that m = 2!°81°87+1 _ 1 and, by adding dummy clauses to some formulas, we can
achieve the bound m < log|¢1,...,¢n|. Moreover, from an r-approximate solution for & we can
decide how many instances in 1,..., Zloglogn are yes-instances, and we can also recover solutions
for such instances. That is, any function in FNPNPllogloglogn—1] i many-one reducible to MNSF,..

Let A be a self-improvable log-APX-complete problem. Then, for any function F €
FNPNP[IoglOglogn_l]7 FSmVIVINSFl.5§mVA1+Q/2vaA216 where « is the constant in the AP-
reduction from MNSF to A and where the last reduction is due to the self-improvability of A.
Thus, for any z, computing F(z) is reducible to finding a 2'-approximate solution for an in-
stance ' with |2'| < |z|¢ for a certain constant ¢. Since A € log-APX, it is possible to find
in polynomial time a (klog|2'|)-approximate solution y for 2z’ where k is a constant. From
y, by means of binary search techniques, we can find a 2'®-approximate solution for 2’ using
[og[logye(klog |2'|)]] < log[loglog |z[*] — 3 < logloglog |z| — 2 adaptive queries to NP where the
last inequality surely holds for sufficiently large |z|. Thus,

FNPNP[logloglogn—l] C FNPNP[logloglog n—2]

which implies the collapse of the polynomial-time hierarchy [40]. O

As a consequence of the above theorem and of the results of [26], we conjecture that the minimum
set cover problem is not self-improvable.

References

[1] Arora, S., Lund, C., Motwani, R., Sudan, M., and Szegedy, M. (1992), “Proof verification
and hardness of approximation problems”, Proc. of 33rd Ann. IFEE Symp. on Foundations
of Comput. Sci., IEEE Computer Society, 14-23.

[2] Balcdzar, J.L., Diaz, J., and Gabarrd, J. (1988), Structural complexity I. Springer-Verlag.

[3] Beigel, R. (1991), “Bounded queries to SAT and the Boolean hierarchy”, Theoretical Computer
Science 84, 199-223.

23

[4]

[5]
[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Berman, P., and Schnitger, G. (1992), “On the complexity of approximating the independent
set problem”, Inform. and Comput. 96, 77-94.

Bovet, D.P., and Crescenzi, P. (1993), Introduction to the theory of complexity. Prentice Hall.
Cai, L. (1994), Ph.D. Dissertation, Department of Computer Science, Texas A&M University.

Chang, R. (1994), “On the query complexity of clique size and maximum satisfiability”, Proc.
9th Ann. Structure in Complexity Theory Conf., IEEE Computer Society, 31-42.

Chang, R. (1994), “A machine model for NP-approximation problems and the revenge of the
Boolean hierarchy”, FATCS Bulletin 54, 166-182.

Chang, R., Gasarch, W.I., and Lund, C. (1994), “On bounded queries and approximation”,
Technical Report TR CS-94-05, Department of Computer Science, University of Maryland
Baltimore County.

Cook, S.A. (1971), “The complexity of theorem proving procedures”, Proc. of ACM Symp.
on Theory of Comp., 151-158.

Crescenzi, P., and Kann, V. (1995), “A compendium of NP optimization problems”, Technical
Report ST/RR-95/02, Dipartimento di Scienze dell'Informazione, Universita di Roma “La
Sapienza”. The list is updated continuously. The latest version is available by anonymous ftp
from nada.kth.se as Theory/Viggo-Kann/compendium.ps.Z

Crescenzi, P., and Panconesi, A. (1991), “Completeness in approximation classes”, Inform.
and Comput. 93, 241-262.

Crescenzi P., and Silvestri, R. (1990), “Relative Complexity of Evaluating the Optimum Cost
and Constructing the Optimum for Maximization Problems”, Information Processing Letters
33, 221-226

Crescenzi, P., and Trevisan, L. (1994), “On approximation scheme preserving reducibility and
its applications”, Proc. 14th FSTTCS, Lecture Notes in Comput. Sci. 880, Springer-Verlag,
330-341.

Firer, M., and Raghavachari, B. (1992), “Approximating the minimum degree spanning tree
to within one from the optimal degree”, Proc. Third Ann. ACM-SIAM Symp. on Discrete
Algorithms, ACM-STAM, 317-324.

Garey, M.R., and Johnson, D.S. (1979) Computers and intractability: a guide to the theory of
NP-completeness. Freeman, 1979.

Goemans, M.X., and Williamson, D.P. (1994), “New 3/4-approximation algorithms for the
maximum satisfiability problem”, STAM J. Discrete Mathematics 7, 656—666.

Holyer, I. (1981), “The NP-completeness of edge-coloring”, SIAM .J. Computing 10, 718-720.

Impagliazzo, R., and Naor, M. (1988), “Decision trees and downward closures”, Proc. 3rd
Structure in Complexity Theory Conference, IEEE Computer Society, 29-38.

Johnson, D.S. (1974), “Approximation algorithms for combinatorial problems”, J. Comput.
System Sci. 9, 256-278.

24

[21] Kadin, J. (1988), “The polynomial time hierarchy collapses if the Boolean hierarchy collapses”,
SIAM J. Computing 17, 1263-1282.

[22] Kadin, J. (1990), “ERRATUM: The Polynomial Time Hierarchy Collapses if the Boolean
Hierarchy Collapses”, STAM J. Computing 20, 404.

[23] Kann, V. (1992), On the approzimability of NP-complete optimization problems, PhD thesis,
Department of Numerical Analysis and Computing Science, Royal Institute of Technology,

Stockholm.

[24] Kann, V. (1994), “Polynomially bounded minimization problems that are hard to approxi-
mate”, Nordic J. Computing 1, 317-331.

[25] Karmarkar, N., and Karp, R. M. (1982), “An efficient approximation scheme for the one-
dimensional bin packing problem”, Proc. of 23rd Ann. IEFE Symp. on Foundations of Comput.
Sci., IEEE Computer Society, 312-320.

[26] Khanna, S., Motwani, R., Sudan, M., and Vazirani, U. (1994), “On syntactic versus computa-
tional views of approximability”, Proc. of 35th Ann. IEEE Symp. on Foundations of Comput.
Sci., IEEE Computer Society, 819-830.

[27] Kolaitis, P. G., and Thakur, M. N. (1991), “Approximation properties of NP minimization
classes”, Proc. Sizth Ann. Structure in Complexity Theory Conf., IEEE Computer Society,
353-366.

[28] Krentel, M.W. (1988), “The complexity of optimization problems”, J. Comput. System Sci.
36, 490-509.

[29] Ladner, R.E. (1975), “On the structure of polynomial-time reducibility”, J. ACM 22, 155-171.

[30] Long, T.J. (1981), “On 7y-reducibility versus polynomial time many-one reducibility”, Theo-
retical Computer Science 14, 91-101.

[31] Lund, C., and Yannakakis, M. (1994), “On the hardness of approximating minimization
problems”, J. ACM 41, 960-981.

[32] Motwani, R. (1992), “Lecture notes on approximation algorithmns”, Technical Report STAN-
(CS-92-1435, Department of Computer Science, Stanford University, 1992.

[33] Orponen, P., and Mannila, H. (1987), “On approximation preserving reductions: Complete
problems and robust measures”, Technical Report C-1987-28, Department of Computer Sci-
ence, University of Helsinki.

[34] Panconesi, A., and Ranjan, D. (1993), “Quantifiers and approximation”, Theoretical Computer
Science 107, 145-163.

[35] Papadimitriou, C.H. (1993), Computational complexity. Addison-Wesley.

[36] Papadimitriou, C. H., and Yannakakis, M. (1991), “Optimization, approximation, and com-
plexity classes”, J. Comput. System Sci. 43, 425-440.

[37] Queyranne, M. (1985), “Bounds for assembly line balancing heuristics”, Operations Research
33, 13531359

25

[38] Schoning, U. (1986), “Graph isomorphism is in the low hierarchy”, Proc. jth Ann. Symp.
on Theoretical Aspects of Comput. Sci., Lecture Notes in Comput. Sci. 247, Springer-Verlag,
114-124.

[39] Simon, H.U. (1989), “Continuous reductions among combinatorial optimization problems”,
Acta Informatica 26, 771-785.

[40] Wagner, K. (1988), “Bounded query computations”, Proc. 3rd Ann. Structure in Complezity
Theory Conf., IEEE Computer Society, 260-277.

[41] Wee, T.S. and Magazine M.J. (1982), “Assembly line balancing as generalized bin packing”,
Operations Research Letters 1, 56-58.

[42] Yannakakis, M. (1994), “On the approximation of maximum satisfiability”, J. Algorithms 17,
475-502.

26

